Cleaned up whitespace and detabified files.

pull/1/head
Kevin Cozens 2018-03-24 11:13:57 -04:00
parent 2e06c0b2d8
commit 654a74ecc7
5 changed files with 654 additions and 654 deletions

View File

@ -31,343 +31,343 @@ using OpenMetaverse;
namespace Flocking
{
public class Bird
{
private static readonly ILog m_log = LogManager.GetLogger (System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType);
private string m_id;
public class Bird
{
private static readonly ILog m_log = LogManager.GetLogger (System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType);
private string m_id;
private Vector3 m_loc;
private Vector3 m_vel;
private Vector3 m_acc;
private Random m_rndnums = new Random (Environment.TickCount);
private Vector3 m_loc;
private Vector3 m_vel;
private Vector3 m_acc;
private Random m_rndnums = new Random (Environment.TickCount);
private FlockingModel m_model;
private FlowMap m_flowMap;
private FlockingModel m_model;
private FlowMap m_flowMap;
private int m_regionX;
private int m_regionY;
private int m_regionZ;
private float m_regionBorder;
/// <summary>
/// Initializes a new instance of the <see cref="Flocking.Bird"/> class.
/// </summary>
/// <param name='l'>
/// L. the initial position of this bird
/// </param>
/// <param name='ms'>
/// Ms. max speed this bird can attain
/// </param>
/// <param name='mf'>
/// Mf. max force / acceleration this bird can extert
/// </param>
public Bird (string id, FlockingModel model, FlowMap flowMap)
{
m_id = id;
m_acc = Vector3.Zero;
m_vel = new Vector3 (m_rndnums.Next (-1, 1), m_rndnums.Next (-1, 1), m_rndnums.Next (-1, 1));
m_model = model;
m_flowMap = flowMap;
/// <summary>
/// Initializes a new instance of the <see cref="Flocking.Bird"/> class.
/// </summary>
/// <param name='l'>
/// L. the initial position of this bird
/// </param>
/// <param name='ms'>
/// Ms. max speed this bird can attain
/// </param>
/// <param name='mf'>
/// Mf. max force / acceleration this bird can extert
/// </param>
public Bird (string id, FlockingModel model, FlowMap flowMap)
{
m_id = id;
m_acc = Vector3.Zero;
m_vel = new Vector3 (m_rndnums.Next (-1, 1), m_rndnums.Next (-1, 1), m_rndnums.Next (-1, 1));
m_model = model;
m_flowMap = flowMap;
m_regionX = m_flowMap.LengthX;
m_regionY = m_flowMap.LengthY;
m_regionZ = m_flowMap.LengthZ;
m_regionBorder = m_flowMap.Border;
}
}
public Vector3 Location {
get { return m_loc;}
set { m_loc = value; }
}
public Vector3 Location {
get { return m_loc;}
set { m_loc = value; }
}
public Vector3 Velocity {
get { return m_vel;}
}
public Vector3 Velocity {
get { return m_vel;}
}
public String Id {
get {return m_id;}
}
public String Id {
get {return m_id;}
}
/// <summary>
/// Moves our bird in the scene relative to the rest of the flock.
/// </summary>
/// <param name='birds'>
/// Birds. all the other chaps in the scene
/// </param>
public void MoveInSceneRelativeToFlock (List<Bird> birds)
{
// we would like to stay with our mates
Flock (birds);
/// <summary>
/// Moves our bird in the scene relative to the rest of the flock.
/// </summary>
/// <param name='birds'>
/// Birds. all the other chaps in the scene
/// </param>
public void MoveInSceneRelativeToFlock (List<Bird> birds)
{
// we would like to stay with our mates
Flock (birds);
// our first priority is to not hurt ourselves
AvoidObstacles ();
// our first priority is to not hurt ourselves
AvoidObstacles ();
// then we want to avoid any threats
// this not implemented yet
// then we want to avoid any threats
// this not implemented yet
// ok so we worked our where we want to go, so ...
UpdatePositionInScene ();
// ok so we worked our where we want to go, so ...
UpdatePositionInScene ();
}
}
/// <summary>
/// Move within our flock
///
/// We accumulate a new acceleration each time based on three rules
/// these are:
/// our separation from our closest neighbours,
/// our desire to keep travelling within the local flock,
/// our desire to move towards the flock centre
///
/// </summary>
void Flock (List<Bird> birds)
{
/// <summary>
/// Move within our flock
///
/// We accumulate a new acceleration each time based on three rules
/// these are:
/// our separation from our closest neighbours,
/// our desire to keep travelling within the local flock,
/// our desire to move towards the flock centre
///
/// </summary>
void Flock (List<Bird> birds)
{
// calc the force vectors on this bird
Vector3 sep = Separate (birds); // Separation
Vector3 ali = Align (birds); // Alignment
Vector3 coh = Cohesion (birds); // Cohesion
// calc the force vectors on this bird
Vector3 sep = Separate (birds); // Separation
Vector3 ali = Align (birds); // Alignment
Vector3 coh = Cohesion (birds); // Cohesion
// Arbitrarily weight these forces
//TODO: expose these consts
sep *= 1.5f; //.mult(1.5);
//ali.mult(1.0);
ali *= 1.0f;
//coh.mult(1.0);
coh *= 1.0f;
// Arbitrarily weight these forces
//TODO: expose these consts
sep *= 1.5f; //.mult(1.5);
//ali.mult(1.0);
ali *= 1.0f;
//coh.mult(1.0);
coh *= 1.0f;
// Add the force vectors to the current acceleration of the bird
//acc.add(sep);
m_acc += sep;
//acc.add(ali);
m_acc += ali;
//acc.add(coh);
m_acc += coh;
}
// Add the force vectors to the current acceleration of the bird
//acc.add(sep);
m_acc += sep;
//acc.add(ali);
m_acc += ali;
//acc.add(coh);
m_acc += coh;
}
/// <summary>
/// Method to update our location within the scene.
/// update our location in the world based on our
/// current location, velocity and acceleration
/// taking into account our max speed
///
/// </summary>
void UpdatePositionInScene ()
{
// Update velocity
//vel.add(acc);
m_vel += m_acc;
// Limit speed
//m_vel.limit(maxspeed);
m_vel = BirdsUtil.Limit (m_vel, m_model.MaxSpeed);
m_loc += m_vel;
// Reset accelertion to 0 each cycle
m_acc *= 0.0f;
}
/// <summary>
/// Method to update our location within the scene.
/// update our location in the world based on our
/// current location, velocity and acceleration
/// taking into account our max speed
///
/// </summary>
void UpdatePositionInScene ()
{
// Update velocity
//vel.add(acc);
m_vel += m_acc;
// Limit speed
//m_vel.limit(maxspeed);
m_vel = BirdsUtil.Limit (m_vel, m_model.MaxSpeed);
m_loc += m_vel;
// Reset accelertion to 0 each cycle
m_acc *= 0.0f;
}
/// <summary>
/// Seek the specified target. Move into that flock
/// Accelerate us towards where we want to go
/// </summary>
/// <param name='target'>
/// Target. the position within the flock we would like to achieve
/// </param>
void Seek (Vector3 target)
{
m_acc += Steer (target, false);
}
/// <summary>
/// Seek the specified target. Move into that flock
/// Accelerate us towards where we want to go
/// </summary>
/// <param name='target'>
/// Target. the position within the flock we would like to achieve
/// </param>
void Seek (Vector3 target)
{
m_acc += Steer (target, false);
}
/// <summary>
/// Arrive the specified target. Slow us down, as we are almost there
/// </summary>
/// <param name='target'>
/// Target. the flock we would like to think ourselves part of
/// </param>
void arrive (Vector3 target)
{
m_acc += Steer (target, true);
}
/// <summary>
/// Arrive the specified target. Slow us down, as we are almost there
/// </summary>
/// <param name='target'>
/// Target. the flock we would like to think ourselves part of
/// </param>
void arrive (Vector3 target)
{
m_acc += Steer (target, true);
}
/// A method that calculates a steering vector towards a target
/// Takes a second argument, if true, it slows down as it approaches the target
Vector3 Steer (Vector3 target, bool slowdown)
{
Vector3 steer; // The steering vector
Vector3 desired = Vector3.Subtract(target, m_loc); // A vector pointing from the location to the target
float d = desired.Length (); // Distance from the target is the magnitude of the vector
// If the distance is greater than 0, calc steering (otherwise return zero vector)
if (d > 0) {
// Normalize desired
desired.Normalize ();
// Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed)
if ((slowdown) && (d < 100.0f)) {
desired *= (m_model.MaxSpeed * (d / 100.0f)); // This damping is somewhat arbitrary
} else {
desired *= m_model.MaxSpeed;
}
// Steering = Desired minus Velocity
//steer = target.sub(desired,m_vel);
steer = Vector3.Subtract (desired, m_vel);
//steer.limit(maxforce); // Limit to maximum steering force
steer = BirdsUtil.Limit (steer, m_model.MaxForce);
} else {
steer = Vector3.Zero;
}
return steer;
}
/// A method that calculates a steering vector towards a target
/// Takes a second argument, if true, it slows down as it approaches the target
Vector3 Steer (Vector3 target, bool slowdown)
{
Vector3 steer; // The steering vector
Vector3 desired = Vector3.Subtract(target, m_loc); // A vector pointing from the location to the target
float d = desired.Length (); // Distance from the target is the magnitude of the vector
// If the distance is greater than 0, calc steering (otherwise return zero vector)
if (d > 0) {
// Normalize desired
desired.Normalize ();
// Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed)
if ((slowdown) && (d < 100.0f)) {
desired *= (m_model.MaxSpeed * (d / 100.0f)); // This damping is somewhat arbitrary
} else {
desired *= m_model.MaxSpeed;
}
// Steering = Desired minus Velocity
//steer = target.sub(desired,m_vel);
steer = Vector3.Subtract (desired, m_vel);
//steer.limit(maxforce); // Limit to maximum steering force
steer = BirdsUtil.Limit (steer, m_model.MaxForce);
} else {
steer = Vector3.Zero;
}
return steer;
}
/// <summary>
/// Borders this instance.
/// if we get too close wrap us around
/// CHANGE THIS to navigate away from whatever it is we are too close to
/// </summary>
void AvoidObstacles ()
{
//look tolerance metres ahead
Vector3 normVel = Vector3.Normalize(m_vel);
Vector3 inFront = m_loc + Vector3.Multiply(normVel, m_model.Tolerance);
if( m_flowMap.WouldHitObstacle( m_loc, inFront ) ) {
AdjustVelocityToAvoidObstacles ();
/// <summary>
/// Borders this instance.
/// if we get too close wrap us around
/// CHANGE THIS to navigate away from whatever it is we are too close to
/// </summary>
void AvoidObstacles ()
{
//look tolerance metres ahead
Vector3 normVel = Vector3.Normalize(m_vel);
Vector3 inFront = m_loc + Vector3.Multiply(normVel, m_model.Tolerance);
if( m_flowMap.WouldHitObstacle( m_loc, inFront ) ) {
AdjustVelocityToAvoidObstacles ();
}
}
}
}
void AdjustVelocityToAvoidObstacles ()
{
for( int i = 1; i < 5; i++ ) {
Vector3 normVel = Vector3.Normalize(m_vel);
int xDelta = m_rndnums.Next (-i, i);
int yDelta = m_rndnums.Next (-i, i);
int zDelta = m_rndnums.Next (-i, i);
normVel.X += xDelta;
normVel.Y += yDelta;
normVel.Z += zDelta;
Vector3 inFront = m_loc + Vector3.Multiply(normVel, m_model.Tolerance);
if( !m_flowMap.WouldHitObstacle( m_loc, inFront ) ) {
m_vel.X += xDelta;
m_vel.Y += yDelta;
m_vel.Z += zDelta;
//m_log.Info("avoided");
return;
}
}
//m_log.Info("didn't avoid");
// try increaing our acceleration
// or try decreasing our acceleration
// or turn around - coz where we came from was OK
if (m_loc.X < m_regionBorder || m_loc.X > m_regionX - m_regionBorder)
m_vel.X = -m_vel.X;
void AdjustVelocityToAvoidObstacles ()
{
for( int i = 1; i < 5; i++ ) {
Vector3 normVel = Vector3.Normalize(m_vel);
int xDelta = m_rndnums.Next (-i, i);
int yDelta = m_rndnums.Next (-i, i);
int zDelta = m_rndnums.Next (-i, i);
normVel.X += xDelta;
normVel.Y += yDelta;
normVel.Z += zDelta;
Vector3 inFront = m_loc + Vector3.Multiply(normVel, m_model.Tolerance);
if( !m_flowMap.WouldHitObstacle( m_loc, inFront ) ) {
m_vel.X += xDelta;
m_vel.Y += yDelta;
m_vel.Z += zDelta;
//m_log.Info("avoided");
return;
}
}
//m_log.Info("didn't avoid");
// try increaing our acceleration
// or try decreasing our acceleration
// or turn around - coz where we came from was OK
if (m_loc.X < m_regionBorder || m_loc.X > m_regionX - m_regionBorder)
m_vel.X = -m_vel.X;
if (m_loc.Y < m_regionBorder || m_loc.Y > m_regionY - m_regionBorder)
m_vel.Y = -m_vel.Y;
if (m_loc.Z < 21 || m_loc.Z > m_regionZ )
m_vel.Z = -m_vel.Z;
}
m_vel.Y = -m_vel.Y;
if (m_loc.Z < 21 || m_loc.Z > m_regionZ )
m_vel.Z = -m_vel.Z;
}
/// <summary>
/// Separate ourselves from the specified birds.
/// keeps us a respectable distance from our closest neighbours whilst still
/// being part of our local flock
/// </summary>
/// <param name='birds'>
/// Birds. all the birds in the scene
/// </param>
Vector3 Separate (List<Bird> birds)
{
Vector3 steer = new Vector3 (0, 0, 0);
int count = 0;
// For every bird in the system, check if it's too close
foreach (Bird other in birds) {
float d = Vector3.Distance (m_loc, other.Location);
// If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself)
if ((d > 0) && (d < m_model.DesiredSeparation)) {
// Calculate vector pointing away from neighbor
Vector3 diff = Vector3.Subtract (m_loc, other.Location);
diff.Normalize ();
diff = Vector3.Divide (diff, d);
steer = Vector3.Add (steer, diff);
count++; // Keep track of how many
}
}
// Average -- divide by how many
if (count > 0) {
steer /= (float)count;
}
/// <summary>
/// Separate ourselves from the specified birds.
/// keeps us a respectable distance from our closest neighbours whilst still
/// being part of our local flock
/// </summary>
/// <param name='birds'>
/// Birds. all the birds in the scene
/// </param>
Vector3 Separate (List<Bird> birds)
{
Vector3 steer = new Vector3 (0, 0, 0);
int count = 0;
// For every bird in the system, check if it's too close
foreach (Bird other in birds) {
float d = Vector3.Distance (m_loc, other.Location);
// If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself)
if ((d > 0) && (d < m_model.DesiredSeparation)) {
// Calculate vector pointing away from neighbor
Vector3 diff = Vector3.Subtract (m_loc, other.Location);
diff.Normalize ();
diff = Vector3.Divide (diff, d);
steer = Vector3.Add (steer, diff);
count++; // Keep track of how many
}
}
// Average -- divide by how many
if (count > 0) {
steer /= (float)count;
}
// As long as the vector is greater than 0
if (steer.Length () > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.Normalize ();
steer *= m_model.MaxSpeed;
steer -= m_vel;
//steer.limit(maxforce);
steer = BirdsUtil.Limit (steer, m_model.MaxForce);
}
return steer;
}
// As long as the vector is greater than 0
if (steer.Length () > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.Normalize ();
steer *= m_model.MaxSpeed;
steer -= m_vel;
//steer.limit(maxforce);
steer = BirdsUtil.Limit (steer, m_model.MaxForce);
}
return steer;
}
/// <summary>
/// Align our bird within the flock.
/// For every nearby bird in the system, calculate the average velocity
/// and move us towards that - this keeps us moving with the flock.
/// </summary>
/// <param name='birds'>
/// Birds. all the birds in the scene - we only really care about those in the neighbourdist
/// </param>
Vector3 Align (List<Bird> birds)
{
Vector3 steer = new Vector3 (0, 0, 0);
int count = 0;
foreach (Bird other in birds) {
float d = Vector3.Distance (m_loc, other.Location);
if ((d > 0) && (d < m_model.NeighbourDistance)) {
steer += other.Velocity;
count++;
}
}
if (count > 0) {
steer /= (float)count;
}
/// <summary>
/// Align our bird within the flock.
/// For every nearby bird in the system, calculate the average velocity
/// and move us towards that - this keeps us moving with the flock.
/// </summary>
/// <param name='birds'>
/// Birds. all the birds in the scene - we only really care about those in the neighbourdist
/// </param>
Vector3 Align (List<Bird> birds)
{
Vector3 steer = new Vector3 (0, 0, 0);
int count = 0;
foreach (Bird other in birds) {
float d = Vector3.Distance (m_loc, other.Location);
if ((d > 0) && (d < m_model.NeighbourDistance)) {
steer += other.Velocity;
count++;
}
}
if (count > 0) {
steer /= (float)count;
}
// As long as the vector is greater than 0
if (steer.Length () > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.Normalize ();
steer *= m_model.MaxSpeed;
steer -= m_vel;
//steer.limit(maxforce);
steer = BirdsUtil.Limit (steer, m_model.MaxForce);
// As long as the vector is greater than 0
if (steer.Length () > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.Normalize ();
steer *= m_model.MaxSpeed;
steer -= m_vel;
//steer.limit(maxforce);
steer = BirdsUtil.Limit (steer, m_model.MaxForce);
}
return steer;
}
}
return steer;
}
/// <summary>
/// MAintain the cohesion of our local flock
/// For the average location (i.e. center) of all nearby birds, calculate our steering vector towards that location
/// </summary>
/// <param name='birds'>
/// Birds. the birds in the scene
/// </param>
Vector3 Cohesion (List<Bird> birds)
{
/// <summary>
/// MAintain the cohesion of our local flock
/// For the average location (i.e. center) of all nearby birds, calculate our steering vector towards that location
/// </summary>
/// <param name='birds'>
/// Birds. the birds in the scene
/// </param>
Vector3 Cohesion (List<Bird> birds)
{
Vector3 sum = Vector3.Zero; // Start with empty vector to accumulate all locations
int count = 0;
Vector3 sum = Vector3.Zero; // Start with empty vector to accumulate all locations
int count = 0;
foreach (Bird other in birds) {
float d = Vector3.Distance (m_loc, other.Location);
if ((d > 0) && (d < m_model.NeighbourDistance)) {
sum += other.Location; // Add location
count++;
}
}
if (count > 0) {
sum /= (float)count;
return Steer (sum, false); // Steer towards the location
}
return sum;
}
}
foreach (Bird other in birds) {
float d = Vector3.Distance (m_loc, other.Location);
if ((d > 0) && (d < m_model.NeighbourDistance)) {
sum += other.Location; // Add location
count++;
}
}
if (count > 0) {
sum /= (float)count;
return Steer (sum, false); // Steer towards the location
}
return sum;
}
}
}

View File

@ -30,23 +30,23 @@ using OpenMetaverse;
namespace Flocking
{
public class BirdsUtil
{
public static Vector3 Limit (Vector3 initial, float maxLen)
{
float currLen = initial.Length ();
float ratio = 1.0f;
public class BirdsUtil
{
public static Vector3 Limit (Vector3 initial, float maxLen)
{
float currLen = initial.Length ();
float ratio = 1.0f;
if (currLen > maxLen) {
ratio = currLen / maxLen;
}
if (currLen > maxLen) {
ratio = currLen / maxLen;
}
return initial /= ratio;
return initial /= ratio;
}
}
}
}
}

View File

@ -31,105 +31,105 @@ using OpenMetaverse;
namespace Flocking
{
public class FlockingModel
{
public class FlockingModel
{
private List<Bird> m_flock = new List<Bird>();
private FlowMap m_flowMap;
private float m_maxSpeed;
private float m_maxForce;
private float m_neighbourDistance;
private float m_desiredSeparation;
private float m_tolerance;
private FlowMap m_flowMap;
private float m_maxSpeed;
private float m_maxForce;
private float m_neighbourDistance;
private float m_desiredSeparation;
private float m_tolerance;
private float m_border;
private string m_name;
private Random m_rnd = new Random(Environment.TickCount);
private Random m_rnd = new Random(Environment.TickCount);
public int Size {
get {return m_flock.Count;}
set {
//if( value < m_flock.Count ) {
// m_flock.RemoveRange( 0, m_flock.Count - value );
//} else
public int Size {
get {return m_flock.Count;}
set {
//if( value < m_flock.Count ) {
// m_flock.RemoveRange( 0, m_flock.Count - value );
//} else
m_flock = new List<Bird>();
while( value > m_flock.Count ) {
AddBird(m_name + m_flock.Count);
}
}
}
AddBird(m_name + m_flock.Count);
}
}
}
public FlockingModel(string moduleName, float maxSpeed, float maxForce, float neighbourDistance, float desiredSeparation, float tolerance, float border) {
public FlockingModel(string moduleName, float maxSpeed, float maxForce, float neighbourDistance, float desiredSeparation, float tolerance, float border) {
m_name = moduleName;
m_maxSpeed = maxSpeed;
m_maxForce = maxForce;
m_neighbourDistance = neighbourDistance;
m_desiredSeparation = desiredSeparation;
m_tolerance = tolerance;
m_maxForce = maxForce;
m_neighbourDistance = neighbourDistance;
m_desiredSeparation = desiredSeparation;
m_tolerance = tolerance;
m_border = border;
}
}
void AddBird (string name)
{
Bird Bird = new Bird (name, this, m_flowMap);
void AddBird (string name)
{
Bird Bird = new Bird (name, this, m_flowMap);
// find an initial random location for this Bird
// somewhere not within an obstacle
int xInit = m_rnd.Next(m_flowMap.LengthX);
int yInit = m_rnd.Next(m_flowMap.LengthY);
int zInit = m_rnd.Next(m_flowMap.LengthZ);
// find an initial random location for this Bird
// somewhere not within an obstacle
int xInit = m_rnd.Next(m_flowMap.LengthX);
int yInit = m_rnd.Next(m_flowMap.LengthY);
int zInit = m_rnd.Next(m_flowMap.LengthZ);
while( m_flowMap.IsWithinObstacle( xInit, yInit, zInit ) ){
xInit = m_rnd.Next(m_flowMap.LengthX);
yInit = m_rnd.Next(m_flowMap.LengthY);
zInit = m_rnd.Next(m_flowMap.LengthZ);
}
while( m_flowMap.IsWithinObstacle( xInit, yInit, zInit ) ){
xInit = m_rnd.Next(m_flowMap.LengthX);
yInit = m_rnd.Next(m_flowMap.LengthY);
zInit = m_rnd.Next(m_flowMap.LengthZ);
}
Bird.Location = new Vector3 (Convert.ToSingle(xInit), Convert.ToSingle(yInit), Convert.ToSingle(zInit));
m_flock.Add (Bird);
}
Bird.Location = new Vector3 (Convert.ToSingle(xInit), Convert.ToSingle(yInit), Convert.ToSingle(zInit));
m_flock.Add (Bird);
}
public float MaxSpeed {
get {return m_maxSpeed;}
public float MaxSpeed {
get {return m_maxSpeed;}
set { m_maxSpeed = value; }
}
}
public float MaxForce {
get {return m_maxForce;}
public float MaxForce {
get {return m_maxForce;}
set { m_maxForce = value; }
}
}
public float NeighbourDistance {
get {return m_neighbourDistance;}
public float NeighbourDistance {
get {return m_neighbourDistance;}
set { m_neighbourDistance = value; }
}
}
public float DesiredSeparation {
get {return m_desiredSeparation;}
public float DesiredSeparation {
get {return m_desiredSeparation;}
set { m_desiredSeparation = value; }
}
}
public float Tolerance {
get {return m_tolerance;}
public float Tolerance {
get {return m_tolerance;}
set { m_tolerance = value; }
}
}
public void Initialise (int num, FlowMap flowMap)
{
m_flowMap = flowMap;
for (int i = 0; i < num; i++) {
AddBird (m_name + i );
}
}
public void Initialise (int num, FlowMap flowMap)
{
m_flowMap = flowMap;
for (int i = 0; i < num; i++) {
AddBird (m_name + i );
}
}
public List<Bird> UpdateFlockPos ()
{
foreach (Bird b in m_flock) {
b.MoveInSceneRelativeToFlock(m_flock); // Passing the entire list of Birds to each Bird individually
}
public List<Bird> UpdateFlockPos ()
{
foreach (Bird b in m_flock) {
b.MoveInSceneRelativeToFlock(m_flock); // Passing the entire list of Birds to each Bird individually
}
return m_flock;
}
}
return m_flock;
}
}
}

View File

@ -34,34 +34,34 @@ using log4net;
namespace Flocking
{
public class FlockingView
{
public class FlockingView
{
private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
private Scene m_scene;
private UUID m_owner;
private UUID m_owner;
private String m_name;
private String m_birdPrim;
private String m_birdPrim;
private Dictionary<string, SceneObjectGroup> m_sogMap = new Dictionary<string, SceneObjectGroup> ();
private Dictionary<string, SceneObjectGroup> m_sogMap = new Dictionary<string, SceneObjectGroup> ();
public FlockingView (String moduleName, Scene scene)
{
public FlockingView (String moduleName, Scene scene)
{
m_name = moduleName;
m_scene = scene;
}
}
public void PostInitialize (UUID owner)
{
m_owner = owner;
}
public void PostInitialize (UUID owner)
{
m_owner = owner;
}
public String BirdPrim {
public String BirdPrim {
get { return m_birdPrim; }
set{ m_birdPrim = value;}
}
set{ m_birdPrim = value;}
}
public void Clear ()
{
public void Clear ()
{
//trash everything we have
foreach (string name in m_sogMap.Keys)
{
@ -71,103 +71,103 @@ namespace Flocking
}
m_sogMap.Clear();
m_scene.ForceClientUpdate();
}
}
public void Render(List<Bird> birds)
{
foreach (Bird bird in birds) {
DrawBird (bird);
}
}
{
foreach (Bird bird in birds) {
DrawBird (bird);
}
}
private void DrawBird (Bird bird)
{
SceneObjectPart existing = m_scene.GetSceneObjectPart (bird.Id);
private void DrawBird (Bird bird)
{
SceneObjectPart existing = m_scene.GetSceneObjectPart (bird.Id);
SceneObjectGroup sog;
SceneObjectGroup sog;
SceneObjectPart rootPart;
if (existing == null) {
if (existing == null) {
m_log.InfoFormat("[{0}]: Adding prim {1} in region {2}", m_name, bird.Id, m_scene.RegionInfo.RegionName);
SceneObjectGroup group = findByName (m_birdPrim);
sog = CopyPrim (group, bird.Id);
sog = CopyPrim (group, bird.Id);
rootPart = sog.RootPart;
rootPart.AddFlag(PrimFlags.Temporary);
rootPart.AddFlag(PrimFlags.Phantom);
//set prim to phantom
//sog.UpdatePrimFlags(rootPart.LocalId, false, false, true, false);
m_sogMap [bird.Id] = sog;
m_scene.AddNewSceneObject (sog, false);
m_sogMap [bird.Id] = sog;
m_scene.AddNewSceneObject (sog, false);
// Fire script on_rez
sog.CreateScriptInstances(0, true, m_scene.DefaultScriptEngine, 1);
rootPart.ParentGroup.ResumeScripts();
rootPart.ScheduleFullUpdate();
sog.DetachFromBackup();
} else {
sog = existing.ParentGroup;
} else {
sog = existing.ParentGroup;
m_sogMap[bird.Id] = sog;
//rootPart = sog.RootPart;
//set prim to phantom
//sog.UpdatePrimFlags(rootPart.LocalId, false, false, true, false);
}
}
Quaternion rotation = CalcRotationToEndpoint (sog, sog.AbsolutePosition, bird.Location);
sog.UpdateGroupRotationPR( bird.Location, rotation);
}
Quaternion rotation = CalcRotationToEndpoint (sog, sog.AbsolutePosition, bird.Location);
sog.UpdateGroupRotationPR( bird.Location, rotation);
}
private static Quaternion CalcRotationToEndpoint (SceneObjectGroup copy, Vector3 sv, Vector3 ev)
{
//llSetRot(llRotBetween(<1,0,0>,llVecNorm(targetPosition - llGetPos())));
// bird wil fly x forwards and Z up
private static Quaternion CalcRotationToEndpoint (SceneObjectGroup copy, Vector3 sv, Vector3 ev)
{
//llSetRot(llRotBetween(<1,0,0>,llVecNorm(targetPosition - llGetPos())));
// bird wil fly x forwards and Z up
Vector3 currDirVec = Vector3.UnitX;
Vector3 desiredDirVec = Vector3.Subtract (ev, sv);
desiredDirVec.Normalize ();
Vector3 currDirVec = Vector3.UnitX;
Vector3 desiredDirVec = Vector3.Subtract (ev, sv);
desiredDirVec.Normalize ();
Quaternion rot = Vector3.RotationBetween (currDirVec, desiredDirVec);
return rot;
}
Quaternion rot = Vector3.RotationBetween (currDirVec, desiredDirVec);
return rot;
}
private SceneObjectGroup CopyPrim (SceneObjectGroup prim, string name)
{
SceneObjectGroup copy = prim.Copy (true);
copy.Name = name;
copy.DetachFromBackup ();
return copy;
}
private SceneObjectGroup CopyPrim (SceneObjectGroup prim, string name)
{
SceneObjectGroup copy = prim.Copy (true);
copy.Name = name;
copy.DetachFromBackup ();
return copy;
}
private SceneObjectGroup findByName (string name)
{
SceneObjectGroup retVal = null;
foreach (EntityBase e in m_scene.GetEntities()) {
if (e.Name == name) {
retVal = (SceneObjectGroup)e;
break;
}
}
// can't find it so make a default one
if (retVal == null) {
private SceneObjectGroup findByName (string name)
{
SceneObjectGroup retVal = null;
foreach (EntityBase e in m_scene.GetEntities()) {
if (e.Name == name) {
retVal = (SceneObjectGroup)e;
break;
}
}
// can't find it so make a default one
if (retVal == null) {
m_log.InfoFormat("[{0}]: Prim named {1} was not found in region {2}. Making default wooden sphere.", m_name, name, m_scene.RegionInfo.RegionName);
retVal = MakeDefaultPrim (name);
}
retVal = MakeDefaultPrim (name);
}
return retVal;
}
return retVal;
}
private SceneObjectGroup MakeDefaultPrim (string name)
{
PrimitiveBaseShape shape = PrimitiveBaseShape.CreateSphere ();
shape.Scale = new Vector3 (0.5f, 0.5f, 0.5f);
private SceneObjectGroup MakeDefaultPrim (string name)
{
PrimitiveBaseShape shape = PrimitiveBaseShape.CreateSphere ();
shape.Scale = new Vector3 (0.5f, 0.5f, 0.5f);
SceneObjectGroup prim = new SceneObjectGroup(m_owner, new Vector3((float)m_scene.RegionInfo.RegionSizeX / 2, (float)m_scene.RegionInfo.RegionSizeY / 2, 25f), shape);
prim.Name = name;
prim.DetachFromBackup ();
m_scene.AddNewSceneObject (prim, false);
prim.Name = name;
prim.DetachFromBackup ();
m_scene.AddNewSceneObject (prim, false);
return prim;
}
return prim;
}
}
}
}

View File

@ -32,169 +32,169 @@ using OpenSim.Region.Framework.Scenes;
namespace Flocking
{
public class FlowMap
{
private Scene m_scene;
public class FlowMap
{
private Scene m_scene;
private float[, ,] m_flowMap;
private uint regionX;
private uint regionY;
private uint regionZ;
private float regionBorder;
public FlowMap (Scene scene, int maxHeight, float borderSize)
{
m_scene = scene;
public FlowMap (Scene scene, int maxHeight, float borderSize)
{
m_scene = scene;
regionX = m_scene.RegionInfo.RegionSizeX;
regionY = m_scene.RegionInfo.RegionSizeY;
regionZ = (uint)maxHeight;
regionBorder = borderSize;
m_flowMap = new float[regionX, regionY, regionZ];
}
}
public int LengthX {
get {return (int)regionX;}
}
public int LengthY {
get {return (int)regionY;}
}
public int LengthZ {
get {return (int)regionZ;}
}
public int LengthX {
get {return (int)regionX;}
}
public int LengthY {
get {return (int)regionY;}
}
public int LengthZ {
get {return (int)regionZ;}
}
public int Border {
get {return (int)regionBorder;}
}
public void Initialise() {
//fill in the boundaries
for( int x = 0; x < regionX; x++ ) {
for( int y = 0; y < regionY; y++ ) {
m_flowMap[x,y,0] = 100f;
m_flowMap[x,y, regionZ-1] = 100f;
}
}
for( int x = 0; x < regionX; x++ ) {
for( int z = 0; z < regionZ; z++ ) {
m_flowMap[x,0,z] = 100f;
m_flowMap[x,regionY-1,z] = 100f;
}
}
for( int y = 0; y < regionY; y++ ) {
for( int z = 0; z < regionZ; z++ ) {
m_flowMap[0,y,z] = 100f;
m_flowMap[regionX-1,y,z] = 100f;
}
}
public void Initialise() {
//fill in the boundaries
for( int x = 0; x < regionX; x++ ) {
for( int y = 0; y < regionY; y++ ) {
m_flowMap[x,y,0] = 100f;
m_flowMap[x,y, regionZ-1] = 100f;
}
}
for( int x = 0; x < regionX; x++ ) {
for( int z = 0; z < regionZ; z++ ) {
m_flowMap[x,0,z] = 100f;
m_flowMap[x,regionY-1,z] = 100f;
}
}
for( int y = 0; y < regionY; y++ ) {
for( int z = 0; z < regionZ; z++ ) {
m_flowMap[0,y,z] = 100f;
m_flowMap[regionX-1,y,z] = 100f;
}
}
//fill in the terrain
for( int x = 0; x < regionX; x++ ) {
for( int y = 0; y < regionY; y++ ) {
int zMax = Convert.ToInt32(m_scene.GetGroundHeight( x, y ));
for( int z = 1; z < zMax; z++ ) {
m_flowMap[x,y,z] = 100f;
}
}
}
//fill in the terrain
for( int x = 0; x < regionX; x++ ) {
for( int y = 0; y < regionY; y++ ) {
int zMax = Convert.ToInt32(m_scene.GetGroundHeight( x, y ));
for( int z = 1; z < zMax; z++ ) {
m_flowMap[x,y,z] = 100f;
}
}
}
// fill in the things
foreach( EntityBase entity in m_scene.GetEntities() ) {
if( entity is SceneObjectGroup ) {
SceneObjectGroup sog = (SceneObjectGroup)entity;
// fill in the things
foreach( EntityBase entity in m_scene.GetEntities() ) {
if( entity is SceneObjectGroup ) {
SceneObjectGroup sog = (SceneObjectGroup)entity;
//todo: ignore phantom
float fmaxX, fminX, fmaxY, fminY, fmaxZ, fminZ;
int maxX, minX, maxY, minY, maxZ, minZ;
sog.GetAxisAlignedBoundingBoxRaw( out fminX, out fmaxX, out fminY, out fmaxY, out fminZ, out fmaxZ );
//todo: ignore phantom
float fmaxX, fminX, fmaxY, fminY, fmaxZ, fminZ;
int maxX, minX, maxY, minY, maxZ, minZ;
sog.GetAxisAlignedBoundingBoxRaw( out fminX, out fmaxX, out fminY, out fmaxY, out fminZ, out fmaxZ );
minX = Convert.ToInt32(fminX);
maxX = Convert.ToInt32(fmaxX);
minY = Convert.ToInt32(fminY);
maxY = Convert.ToInt32(fmaxX);
minZ = Convert.ToInt32(fminZ);
maxZ = Convert.ToInt32(fmaxZ);
minX = Convert.ToInt32(fminX);
maxX = Convert.ToInt32(fmaxX);
minY = Convert.ToInt32(fminY);
maxY = Convert.ToInt32(fmaxX);
minZ = Convert.ToInt32(fminZ);
maxZ = Convert.ToInt32(fmaxZ);
for( int x = minX; x < maxX; x++ ) {
for( int y = minY; y < maxY; y++ ) {
for( int z = minZ; z < maxZ; z++ ) {
m_flowMap[x,y,z] = 100f;
}
}
}
}
}
}
for( int x = minX; x < maxX; x++ ) {
for( int y = minY; y < maxY; y++ ) {
for( int z = minZ; z < maxZ; z++ ) {
m_flowMap[x,y,z] = 100f;
}
}
}
}
}
}
public bool WouldHitObstacle (Vector3 currPos, Vector3 targetPos)
{
bool retVal = false;
//fail fast
if( IsOutOfBounds(targetPos) ) {
retVal = true;
} else if( IsWithinObstacle(targetPos) ) {
retVal = true;
} else if( IntersectsObstacle (currPos, targetPos) ) {
retVal = true;
}
public bool WouldHitObstacle (Vector3 currPos, Vector3 targetPos)
{
bool retVal = false;
//fail fast
if( IsOutOfBounds(targetPos) ) {
retVal = true;
} else if( IsWithinObstacle(targetPos) ) {
retVal = true;
} else if( IntersectsObstacle (currPos, targetPos) ) {
retVal = true;
}
return retVal;
}
return retVal;
}
public bool IsOutOfBounds(Vector3 targetPos) {
bool retVal = false;
if( targetPos.X < regionBorder ||
targetPos.X > regionX - regionBorder ||
public bool IsOutOfBounds(Vector3 targetPos) {
bool retVal = false;
if( targetPos.X < regionBorder ||
targetPos.X > regionX - regionBorder ||
targetPos.Y < regionBorder ||
targetPos.Y > regionY - regionBorder ||
targetPos.Z < regionBorder ||
targetPos.Z > regionZ - regionBorder ) {
targetPos.Y > regionY - regionBorder ||
targetPos.Z < regionBorder ||
targetPos.Z > regionZ - regionBorder ) {
retVal = true;
}
retVal = true;
}
return retVal;
}
return retVal;
}
public bool IntersectsObstacle (Vector3 currPos, Vector3 targetPos)
{
bool retVal = false;
// Ray trace the Vector and fail as soon as we hit something
Vector3 direction = targetPos - currPos;
float length = direction.Length();
// check every metre
for( float i = 1f; i < length; i += 1f ) {
Vector3 rayPos = currPos + ( direction * i );
//give up if we go OOB on this ray
if( IsOutOfBounds( rayPos ) ){
retVal = true;
break;
}
else if( IsWithinObstacle( rayPos ) ) {
retVal = true;
break;
}
}
public bool IntersectsObstacle (Vector3 currPos, Vector3 targetPos)
{
bool retVal = false;
// Ray trace the Vector and fail as soon as we hit something
Vector3 direction = targetPos - currPos;
float length = direction.Length();
// check every metre
for( float i = 1f; i < length; i += 1f ) {
Vector3 rayPos = currPos + ( direction * i );
//give up if we go OOB on this ray
if( IsOutOfBounds( rayPos ) ){
retVal = true;
break;
}
else if( IsWithinObstacle( rayPos ) ) {
retVal = true;
break;
}
}
return retVal;
}
return retVal;
}
public bool IsWithinObstacle( Vector3 targetPos ) {
return IsWithinObstacle(Convert.ToInt32(targetPos.X), Convert.ToInt32(targetPos.Y),Convert.ToInt32(targetPos.Z));
}
public bool IsWithinObstacle( Vector3 targetPos ) {
return IsWithinObstacle(Convert.ToInt32(targetPos.X), Convert.ToInt32(targetPos.Y),Convert.ToInt32(targetPos.Z));
}
public bool IsWithinObstacle( int x, int y, int z ) {
bool retVal = false;
public bool IsWithinObstacle( int x, int y, int z ) {
bool retVal = false;
if (x >= LengthX || y >= LengthY || z >= LengthZ)
{
retVal = true;
retVal = true;
}
else if (x < 0 || y < 0 || z < 0)
{
retVal = true;
} else if (m_flowMap[x,y,z] > 50f) {
retVal = true;
}
return retVal;
}
}
retVal = true;
} else if (m_flowMap[x,y,z] > 50f) {
retVal = true;
}
return retVal;
}
}
}