OpenSimMirror/libraries/ode-0.9/include/ode/odemath.h

331 lines
11 KiB
C
Raw Normal View History

2007-10-19 05:24:38 +00:00
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifndef _ODE_ODEMATH_H_
#define _ODE_ODEMATH_H_
#include <ode/common.h>
#ifdef __GNUC__
#define PURE_INLINE extern inline
#else
#define PURE_INLINE inline
#endif
/*
* macro to access elements i,j in an NxM matrix A, independent of the
* matrix storage convention.
*/
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
/*
* Macro to test for valid floating point values
*/
#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
/*
* General purpose vector operations with other vectors or constants.
*/
#define dOP(a,op,b,c) \
(a)[0] = ((b)[0]) op ((c)[0]); \
(a)[1] = ((b)[1]) op ((c)[1]); \
(a)[2] = ((b)[2]) op ((c)[2]);
#define dOPC(a,op,b,c) \
(a)[0] = ((b)[0]) op (c); \
(a)[1] = ((b)[1]) op (c); \
(a)[2] = ((b)[2]) op (c);
#define dOPE(a,op,b) \
(a)[0] op ((b)[0]); \
(a)[1] op ((b)[1]); \
(a)[2] op ((b)[2]);
#define dOPEC(a,op,c) \
(a)[0] op (c); \
(a)[1] op (c); \
(a)[2] op (c);
/*
* Length, and squared length helpers. dLENGTH returns the length of a dVector3.
* dLENGTHSQUARED return the squared length of a dVector3.
*/
#define dLENGTHSQUARED(a) (((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]))
#ifdef __cplusplus
PURE_INLINE dReal dLENGTH (const dReal *a) { return dSqrt(dLENGTHSQUARED(a)); }
#else
#define dLENGTH(a) ( dSqrt( ((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]) ) )
#endif /* __cplusplus */
/*
* 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
* p and q indexes apart respectively. dDOT() means dDOT11.
* in C++ we could use function templates to get all the versions of these
* functions - but on some compilers this will result in sub-optimal code.
*/
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
#ifdef __cplusplus
PURE_INLINE dReal dDOT (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); }
PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); }
PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); }
PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); }
PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); }
PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); }
PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); }
#else
#define dDOT(a,b) dDOTpq(a,b,1,1)
#define dDOT13(a,b) dDOTpq(a,b,1,3)
#define dDOT31(a,b) dDOTpq(a,b,3,1)
#define dDOT33(a,b) dDOTpq(a,b,3,3)
#define dDOT14(a,b) dDOTpq(a,b,1,4)
#define dDOT41(a,b) dDOTpq(a,b,4,1)
#define dDOT44(a,b) dDOTpq(a,b,4,4)
#endif /* __cplusplus */
/*
* cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
* and `c' are spaced p, q and r indexes apart respectively.
* dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
* +=, -= etc to get other effects.
*/
#define dCROSS(a,op,b,c) \
do { \
(a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
(a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
(a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \
} while(0)
#define dCROSSpqr(a,op,b,c,p,q,r) \
do { \
(a)[ 0] op ((b)[ q]*(c)[2*r] - (b)[2*q]*(c)[ r]); \
(a)[ p] op ((b)[2*q]*(c)[ 0] - (b)[ 0]*(c)[2*r]); \
(a)[2*p] op ((b)[ 0]*(c)[ r] - (b)[ q]*(c)[ 0]); \
} while(0)
#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)
/*
* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
* A is stored by rows, and has `skip' elements per row. the matrix is
* assumed to be already zero, so this does not write zero elements!
* if (plus,minus) is (+,-) then a positive version will be written.
* if (plus,minus) is (-,+) then a negative version will be written.
*/
#define dCROSSMAT(A,a,skip,plus,minus) \
do { \
(A)[1] = minus (a)[2]; \
(A)[2] = plus (a)[1]; \
(A)[(skip)+0] = plus (a)[2]; \
(A)[(skip)+2] = minus (a)[0]; \
(A)[2*(skip)+0] = minus (a)[1]; \
(A)[2*(skip)+1] = plus (a)[0]; \
} while(0)
/*
* compute the distance between two 3D-vectors
*/
#ifdef __cplusplus
PURE_INLINE dReal dDISTANCE (const dVector3 a, const dVector3 b)
{ return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]) ); }
#else
#define dDISTANCE(a,b) \
(dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))
#endif
/*
* special case matrix multipication, with operator selection
*/
#define dMULTIPLYOP0_331(A,op,B,C) \
do { \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B+4),(C)); \
(A)[2] op dDOT((B+8),(C)); \
} while(0)
#define dMULTIPLYOP1_331(A,op,B,C) \
do { \
(A)[0] op dDOT41((B),(C)); \
(A)[1] op dDOT41((B+1),(C)); \
(A)[2] op dDOT41((B+2),(C)); \
} while(0)
#define dMULTIPLYOP0_133(A,op,B,C) \
do { \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
} while(0)
#define dMULTIPLYOP0_333(A,op,B,C) \
do { \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
(A)[4] op dDOT14((B+4),(C)); \
(A)[5] op dDOT14((B+4),(C+1)); \
(A)[6] op dDOT14((B+4),(C+2)); \
(A)[8] op dDOT14((B+8),(C)); \
(A)[9] op dDOT14((B+8),(C+1)); \
(A)[10] op dDOT14((B+8),(C+2)); \
} while(0)
#define dMULTIPLYOP1_333(A,op,B,C) \
do { \
(A)[0] op dDOT44((B),(C)); \
(A)[1] op dDOT44((B),(C+1)); \
(A)[2] op dDOT44((B),(C+2)); \
(A)[4] op dDOT44((B+1),(C)); \
(A)[5] op dDOT44((B+1),(C+1)); \
(A)[6] op dDOT44((B+1),(C+2)); \
(A)[8] op dDOT44((B+2),(C)); \
(A)[9] op dDOT44((B+2),(C+1)); \
(A)[10] op dDOT44((B+2),(C+2)); \
} while(0)
#define dMULTIPLYOP2_333(A,op,B,C) \
do { \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B),(C+4)); \
(A)[2] op dDOT((B),(C+8)); \
(A)[4] op dDOT((B+4),(C)); \
(A)[5] op dDOT((B+4),(C+4)); \
(A)[6] op dDOT((B+4),(C+8)); \
(A)[8] op dDOT((B+8),(C)); \
(A)[9] op dDOT((B+8),(C+4)); \
(A)[10] op dDOT((B+8),(C+8)); \
} while(0)
#ifdef __cplusplus
#define DECL template <class TA, class TB, class TC> PURE_INLINE void
DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); }
DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); }
DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); }
DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); }
DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); }
DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); }
DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); }
DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); }
DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); }
DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); }
DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); }
DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); }
#undef DECL
#else
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
* normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
*/
ODE_API int dSafeNormalize3 (dVector3 a);
ODE_API int dSafeNormalize4 (dVector4 a);
// For some reason demo_chain1.c does not understand "inline" keyword.
static __inline void _dNormalize3(dVector3 a)
{
int bNormalizationResult = dSafeNormalize3(a);
dIASSERT(bNormalizationResult);
dVARIABLEUSED(bNormalizationResult);
}
static __inline void _dNormalize4(dVector4 a)
{
int bNormalizationResult = dSafeNormalize4(a);
dIASSERT(bNormalizationResult);
dVARIABLEUSED(bNormalizationResult);
}
// For DLL export
ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec
ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec
// For internal use
#define dNormalize3(a) _dNormalize3(a)
#define dNormalize4(a) _dNormalize4(a)
/*
* given a unit length "normal" vector n, generate vectors p and q vectors
* that are an orthonormal basis for the plane space perpendicular to n.
* i.e. this makes p,q such that n,p,q are all perpendicular to each other.
* q will equal n x p. if n is not unit length then p will be unit length but
* q wont be.
*/
ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
#ifdef __cplusplus
}
#endif
#endif