OpenSimMirror/libraries/ode-0.9/ode/demo/demo_trimesh.cpp

538 lines
15 KiB
C++
Raw Normal View History

2007-10-19 05:24:38 +00:00
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
// TriMesh test by Erwin de Vries
#include <ode/ode.h>
#include <drawstuff/drawstuff.h>
#ifdef _MSC_VER
#pragma warning(disable:4244 4305) // for VC++, no precision loss complaints
#endif
// select correct drawing functions
#ifdef dDOUBLE
#define dsDrawBox dsDrawBoxD
#define dsDrawSphere dsDrawSphereD
#define dsDrawCylinder dsDrawCylinderD
#define dsDrawCapsule dsDrawCapsuleD
#define dsDrawLine dsDrawLineD
#define dsDrawTriangle dsDrawTriangleD
#endif
// some constants
#define NUM 200 // max number of objects
#define DENSITY (5.0) // density of all objects
#define GPB 3 // maximum number of geometries per body
#define MAX_CONTACTS 40 // maximum number of contact points per body
// dynamics and collision objects
struct MyObject {
dBodyID body; // the body
dGeomID geom[GPB]; // geometries representing this body
};
static int num=0; // number of objects in simulation
static int nextobj=0; // next object to recycle if num==NUM
static dWorldID world;
static dSpaceID space;
static MyObject obj[NUM];
static dJointGroupID contactgroup;
static int selected = -1; // selected object
static int show_aabb = 0; // show geom AABBs?
static int show_contacts = 0; // show contact points?
static int random_pos = 1; // drop objects from random position?
#define VertexCount 5
#define IndexCount 12
static dVector3 Size;
static dVector3 Vertices[VertexCount];
static int Indices[IndexCount];
static dGeomID TriMesh;
static dGeomID Ray;
// this is called by dSpaceCollide when two objects in space are
// potentially colliding.
static void nearCallback (void *data, dGeomID o1, dGeomID o2)
{
int i;
// if (o1->body && o2->body) return;
// exit without doing anything if the two bodies are connected by a joint
dBodyID b1 = dGeomGetBody(o1);
dBodyID b2 = dGeomGetBody(o2);
if (b1 && b2 && dAreConnectedExcluding (b1,b2,dJointTypeContact)) return;
dContact contact[MAX_CONTACTS]; // up to MAX_CONTACTS contacts per box-box
for (i=0; i<MAX_CONTACTS; i++) {
contact[i].surface.mode = dContactBounce | dContactSoftCFM;
contact[i].surface.mu = dInfinity;
contact[i].surface.mu2 = 0;
contact[i].surface.bounce = 0.1;
contact[i].surface.bounce_vel = 0.1;
contact[i].surface.soft_cfm = 0.01;
}
if (int numc = dCollide (o1,o2,MAX_CONTACTS,&contact[0].geom,
sizeof(dContact))) {
dMatrix3 RI;
dRSetIdentity (RI);
const dReal ss[3] = {0.02,0.02,0.02};
for (i=0; i<numc; i++) {
if (dGeomGetClass(o1) == dRayClass || dGeomGetClass(o2) == dRayClass){
dMatrix3 Rotation;
dRSetIdentity(Rotation);
dsDrawSphere(contact[i].geom.pos, Rotation, REAL(0.01));
dVector3 End;
End[0] = contact[i].geom.pos[0] + (contact[i].geom.normal[0] * contact[i].geom.depth);
End[1] = contact[i].geom.pos[1] + (contact[i].geom.normal[1] * contact[i].geom.depth);
End[2] = contact[i].geom.pos[2] + (contact[i].geom.normal[2] * contact[i].geom.depth);
End[3] = contact[i].geom.pos[3] + (contact[i].geom.normal[3] * contact[i].geom.depth);
dsDrawLine(contact[i].geom.pos, End);
continue;
}
dJointID c = dJointCreateContact (world,contactgroup,contact+i);
dJointAttach (c,b1,b2);
if (show_contacts) dsDrawBox (contact[i].geom.pos,RI,ss);
}
}
}
// start simulation - set viewpoint
static void start()
{
static float xyz[3] = {2.1640f,-1.3079f,1.7600f};
static float hpr[3] = {125.5000f,-17.0000f,0.0000f};
dsSetViewpoint (xyz,hpr);
printf ("To drop another object, press:\n");
printf (" b for box.\n");
printf (" s for sphere.\n");
printf (" c for cylinder.\n");
printf (" x for a composite object.\n");
printf ("To select an object, press space.\n");
printf ("To disable the selected object, press d.\n");
printf ("To enable the selected object, press e.\n");
printf ("To toggle showing the geom AABBs, press a.\n");
printf ("To toggle showing the contact points, press t.\n");
printf ("To toggle dropping from random position/orientation, press r.\n");
}
char locase (char c)
{
if (c >= 'A' && c <= 'Z') return c - ('a'-'A');
else return c;
}
// called when a key pressed
static void command (int cmd)
{
int i,j,k;
dReal sides[3];
dMass m;
cmd = locase (cmd);
if (cmd == 'b' || cmd == 's' || cmd == 'c' || cmd == 'x'
/* || cmd == 'l' */) {
if (num < NUM) {
i = num;
num++;
}
else {
i = nextobj;
nextobj++;
if (nextobj >= num) nextobj = 0;
// destroy the body and geoms for slot i
dBodyDestroy (obj[i].body);
for (k=0; k < GPB; k++) {
if (obj[i].geom[k]) dGeomDestroy (obj[i].geom[k]);
}
memset (&obj[i],0,sizeof(obj[i]));
}
obj[i].body = dBodyCreate (world);
for (k=0; k<3; k++) sides[k] = dRandReal()*0.5+0.1;
dMatrix3 R;
if (random_pos) {
dBodySetPosition (obj[i].body,
dRandReal()*2-1,dRandReal()*2-1,dRandReal()+1);
dRFromAxisAndAngle (R,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0,
dRandReal()*2.0-1.0,dRandReal()*10.0-5.0);
}
else {
dReal maxheight = 0;
for (k=0; k<num; k++) {
const dReal *pos = dBodyGetPosition (obj[k].body);
if (pos[2] > maxheight) maxheight = pos[2];
}
dBodySetPosition (obj[i].body, 0,0,maxheight+1);
dRFromAxisAndAngle (R,0,0,1,dRandReal()*10.0-5.0);
}
dBodySetRotation (obj[i].body,R);
dBodySetData (obj[i].body,(void*)(size_t)i);
if (cmd == 'b') {
dMassSetBox (&m,DENSITY,sides[0],sides[1],sides[2]);
obj[i].geom[0] = dCreateBox (space,sides[0],sides[1],sides[2]);
}
else if (cmd == 'c') {
sides[0] *= 0.5;
dMassSetCapsule (&m,DENSITY,3,sides[0],sides[1]);
obj[i].geom[0] = dCreateCapsule (space,sides[0],sides[1]);
}
/*
// cylinder option not yet implemented
else if (cmd == 'l') {
sides[1] *= 0.5;
dMassSetCapsule (&m,DENSITY,3,sides[0],sides[1]);
obj[i].geom[0] = dCreateCylinder (space,sides[0],sides[1]);
}
*/
else if (cmd == 's') {
sides[0] *= 0.5;
dMassSetSphere (&m,DENSITY,sides[0]);
obj[i].geom[0] = dCreateSphere (space,sides[0]);
}
else if (cmd == 'x') {
dGeomID g2[GPB]; // encapsulated geometries
dReal dpos[GPB][3]; // delta-positions for encapsulated geometries
// start accumulating masses for the encapsulated geometries
dMass m2;
dMassSetZero (&m);
// set random delta positions
for (j=0; j<GPB; j++) {
for (k=0; k<3; k++) dpos[j][k] = dRandReal()*0.3-0.15;
}
for (k=0; k<GPB; k++) {
obj[i].geom[k] = dCreateGeomTransform (space);
dGeomTransformSetCleanup (obj[i].geom[k],1);
if (k==0) {
dReal radius = dRandReal()*0.25+0.05;
g2[k] = dCreateSphere (0,radius);
dMassSetSphere (&m2,DENSITY,radius);
}
else if (k==1) {
g2[k] = dCreateBox (0,sides[0],sides[1],sides[2]);
dMassSetBox (&m2,DENSITY,sides[0],sides[1],sides[2]);
}
else {
dReal radius = dRandReal()*0.1+0.05;
dReal length = dRandReal()*1.0+0.1;
g2[k] = dCreateCapsule (0,radius,length);
dMassSetCapsule (&m2,DENSITY,3,radius,length);
}
dGeomTransformSetGeom (obj[i].geom[k],g2[k]);
// set the transformation (adjust the mass too)
dGeomSetPosition (g2[k],dpos[k][0],dpos[k][1],dpos[k][2]);
dMassTranslate (&m2,dpos[k][0],dpos[k][1],dpos[k][2]);
dMatrix3 Rtx;
dRFromAxisAndAngle (Rtx,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0,
dRandReal()*2.0-1.0,dRandReal()*10.0-5.0);
dGeomSetRotation (g2[k],Rtx);
dMassRotate (&m2,Rtx);
// add to the total mass
dMassAdd (&m,&m2);
}
// move all encapsulated objects so that the center of mass is (0,0,0)
for (k=0; k<2; k++) {
dGeomSetPosition (g2[k],
dpos[k][0]-m.c[0],
dpos[k][1]-m.c[1],
dpos[k][2]-m.c[2]);
}
dMassTranslate (&m,-m.c[0],-m.c[1],-m.c[2]);
}
for (k=0; k < GPB; k++) {
if (obj[i].geom[k]) dGeomSetBody (obj[i].geom[k],obj[i].body);
}
dBodySetMass (obj[i].body,&m);
}
if (cmd == ' ') {
selected++;
if (selected >= num) selected = 0;
if (selected < 0) selected = 0;
}
else if (cmd == 'd' && selected >= 0 && selected < num) {
dBodyDisable (obj[selected].body);
}
else if (cmd == 'e' && selected >= 0 && selected < num) {
dBodyEnable (obj[selected].body);
}
else if (cmd == 'a') {
show_aabb ^= 1;
}
else if (cmd == 't') {
show_contacts ^= 1;
}
else if (cmd == 'r') {
random_pos ^= 1;
}
}
// draw a geom
void drawGeom (dGeomID g, const dReal *pos, const dReal *R, int show_aabb)
{
if (!g) return;
if (!pos) pos = dGeomGetPosition (g);
if (!R) R = dGeomGetRotation (g);
int type = dGeomGetClass (g);
if (type == dBoxClass) {
dVector3 sides;
dGeomBoxGetLengths (g,sides);
dsDrawBox (pos,R,sides);
}
else if (type == dSphereClass) {
dsDrawSphere (pos,R,dGeomSphereGetRadius (g));
}
else if (type == dCapsuleClass) {
dReal radius,length;
dGeomCapsuleGetParams (g,&radius,&length);
dsDrawCapsule (pos,R,length,radius);
}
/*
// cylinder option not yet implemented
else if (type == dCylinderClass) {
dReal radius,length;
dGeomCylinderGetParams (g,&radius,&length);
dsDrawCylinder (pos,R,length,radius);
}
*/
else if (type == dGeomTransformClass) {
dGeomID g2 = dGeomTransformGetGeom (g);
const dReal *pos2 = dGeomGetPosition (g2);
const dReal *R2 = dGeomGetRotation (g2);
dVector3 actual_pos;
dMatrix3 actual_R;
dMULTIPLY0_331 (actual_pos,R,pos2);
actual_pos[0] += pos[0];
actual_pos[1] += pos[1];
actual_pos[2] += pos[2];
dMULTIPLY0_333 (actual_R,R,R2);
drawGeom (g2,actual_pos,actual_R,0);
}
if (show_aabb) {
// draw the bounding box for this geom
dReal aabb[6];
dGeomGetAABB (g,aabb);
dVector3 bbpos;
for (int i=0; i<3; i++) bbpos[i] = 0.5*(aabb[i*2] + aabb[i*2+1]);
dVector3 bbsides;
for (int j=0; j<3; j++) bbsides[j] = aabb[j*2+1] - aabb[j*2];
dMatrix3 RI;
dRSetIdentity (RI);
dsSetColorAlpha (1,0,0,0.5);
dsDrawBox (bbpos,RI,bbsides);
}
}
// simulation loop
static void simLoop (int pause)
{
dsSetColor (0,0,2);
dSpaceCollide (space,0,&nearCallback);
if (!pause) dWorldStep (world,0.05);
//if (!pause) dWorldStepFast (world,0.05, 1);
// remove all contact joints
dJointGroupEmpty (contactgroup);
dsSetColor (1,1,0);
dsSetTexture (DS_WOOD);
for (int i=0; i<num; i++) {
for (int j=0; j < GPB; j++) {
if (i==selected) {
dsSetColor (0,0.7,1);
}
else if (! dBodyIsEnabled (obj[i].body)) {
dsSetColor (1,0,0);
}
else {
dsSetColor (1,1,0);
}
drawGeom (obj[i].geom[j],0,0,show_aabb);
}
}
/*{
for (int i = 1; i < IndexCount; i++) {
dsDrawLine(Vertices[Indices[i - 1]], Vertices[Indices[i]]);
}
}*/
{const dReal* Pos = dGeomGetPosition(TriMesh);
const dReal* Rot = dGeomGetRotation(TriMesh);
{for (int i = 0; i < IndexCount / 3; i++){
const dVector3& v0 = Vertices[Indices[i * 3 + 0]];
const dVector3& v1 = Vertices[Indices[i * 3 + 1]];
const dVector3& v2 = Vertices[Indices[i * 3 + 2]];
dsDrawTriangle(Pos, Rot, (dReal*)&v0, (dReal*)&v1, (dReal*)&v2, 0);
}}}
if (Ray){
dVector3 Origin, Direction;
dGeomRayGet(Ray, Origin, Direction);
dReal Length = dGeomRayGetLength(Ray);
dVector3 End;
End[0] = Origin[0] + (Direction[0] * Length);
End[1] = Origin[1] + (Direction[1] * Length);
End[2] = Origin[2] + (Direction[2] * Length);
End[3] = Origin[3] + (Direction[3] * Length);
dsDrawLine(Origin, End);
}
}
int main (int argc, char **argv)
{
// setup pointers to drawstuff callback functions
dsFunctions fn;
fn.version = DS_VERSION;
fn.start = &start;
fn.step = &simLoop;
fn.command = &command;
fn.stop = 0;
fn.path_to_textures = "../../drawstuff/textures";
if(argc==2)
{
fn.path_to_textures = argv[1];
}
// create world
dInitODE();
world = dWorldCreate();
space = dSimpleSpaceCreate(0);
contactgroup = dJointGroupCreate (0);
dWorldSetGravity (world,0,0,-0.5);
dWorldSetCFM (world,1e-5);
//dCreatePlane (space,0,0,1,0);
memset (obj,0,sizeof(obj));
Size[0] = 5.0f;
Size[1] = 5.0f;
Size[2] = 2.5f;
Vertices[0][0] = -Size[0];
Vertices[0][1] = -Size[1];
Vertices[0][2] = Size[2];
Vertices[1][0] = Size[0];
Vertices[1][1] = -Size[1];
Vertices[1][2] = Size[2];
Vertices[2][0] = Size[0];
Vertices[2][1] = Size[1];
Vertices[2][2] = Size[2];
Vertices[3][0] = -Size[0];
Vertices[3][1] = Size[1];
Vertices[3][2] = Size[2];
Vertices[4][0] = 0;
Vertices[4][1] = 0;
Vertices[4][2] = 0;
Indices[0] = 0;
Indices[1] = 1;
Indices[2] = 4;
Indices[3] = 1;
Indices[4] = 2;
Indices[5] = 4;
Indices[6] = 2;
Indices[7] = 3;
Indices[8] = 4;
Indices[9] = 3;
Indices[10] = 0;
Indices[11] = 4;
dTriMeshDataID Data = dGeomTriMeshDataCreate();
dGeomTriMeshDataBuildSimple(Data, (dReal*)Vertices, VertexCount, Indices, IndexCount);
TriMesh = dCreateTriMesh(space, Data, 0, 0, 0);
//dGeomSetPosition(TriMesh, 0, 0, 1.0);
Ray = dCreateRay(space, 0.9);
dVector3 Origin, Direction;
Origin[0] = 0.0;
Origin[1] = 0;
Origin[2] = 0.5;
Origin[3] = 0;
Direction[0] = 0;
Direction[1] = 1.1f;
Direction[2] = -1;
Direction[3] = 0;
dNormalize3(Direction);
dGeomRaySet(Ray, Origin[0], Origin[1], Origin[2], Direction[0], Direction[1], Direction[2]);
// run simulation
dsSimulationLoop (argc,argv,352,288,&fn);
dJointGroupDestroy (contactgroup);
dSpaceDestroy (space);
dWorldDestroy (world);
dCloseODE();
return 0;
}