OpenSimMirror/OpenSim/Region/Physics/BulletSPlugin/BSMotors.cs

253 lines
10 KiB
C#
Raw Normal View History

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
using System;
using System.Collections.Generic;
using System.Text;
using OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin
{
public abstract class BSMotor
{
// Timescales and other things can be turned off by setting them to 'infinite'.
public const float Infinite = 12345f;
public readonly static Vector3 InfiniteVector = new Vector3(BSMotor.Infinite, BSMotor.Infinite, BSMotor.Infinite);
public BSMotor(string useName)
{
UseName = useName;
PhysicsScene = null;
}
public virtual void Reset() { }
public virtual void Zero() { }
// A name passed at motor creation for easily identifyable debugging messages.
public string UseName { get; private set; }
// Used only for outputting debug information. Might not be set so check for null.
public BSScene PhysicsScene { get; set; }
protected void MDetailLog(string msg, params Object[] parms)
{
if (PhysicsScene != null)
{
if (PhysicsScene.VehicleLoggingEnabled)
{
PhysicsScene.DetailLog(msg, parms);
}
}
}
}
// Can all the incremental stepping be replaced with motor classes?
// Motor which moves CurrentValue to TargetValue over TimeScale seconds.
// The TargetValue decays in TargetValueDecayTimeScale and
// the CurrentValue will be held back by FrictionTimeScale.
// TimeScale and TargetDelayTimeScale may be 'infinite' which means go decay.
// For instance, if something is moving at speed X and the desired speed is Y,
// CurrentValue is X and TargetValue is Y. As the motor is stepped, new
// values of CurrentValue are returned that approach the TargetValue.
// The feature of decaying TargetValue is so vehicles will eventually
// come to a stop rather than run forever. This can be disabled by
// setting TargetValueDecayTimescale to 'infinite'.
// The change from CurrentValue to TargetValue is linear over TimeScale seconds.
public class BSVMotor : BSMotor
{
// public Vector3 FrameOfReference { get; set; }
// public Vector3 Offset { get; set; }
public float TimeScale { get; set; }
public float TargetValueDecayTimeScale { get; set; }
public Vector3 FrictionTimescale { get; set; }
public float Efficiency { get; set; }
public Vector3 TargetValue { get; private set; }
public Vector3 CurrentValue { get; private set; }
public BSVMotor(string useName)
: base(useName)
{
TimeScale = TargetValueDecayTimeScale = BSMotor.Infinite;
Efficiency = 1f;
FrictionTimescale = BSMotor.InfiniteVector;
CurrentValue = TargetValue = Vector3.Zero;
}
public BSVMotor(string useName, float timeScale, float decayTimeScale, Vector3 frictionTimeScale, float efficiency)
: this(useName)
{
TimeScale = timeScale;
TargetValueDecayTimeScale = decayTimeScale;
FrictionTimescale = frictionTimeScale;
Efficiency = efficiency;
CurrentValue = TargetValue = Vector3.Zero;
}
public void SetCurrent(Vector3 current)
{
CurrentValue = current;
}
public void SetTarget(Vector3 target)
{
TargetValue = target;
}
// A form of stepping that does not take the time quantum into account.
// The caller must do the right thing later.
public virtual Vector3 Step()
{
return Step(1f);
}
public virtual Vector3 Step(float timeStep)
{
Vector3 returnCurrent = Vector3.Zero;
if (!CurrentValue.ApproxEquals(TargetValue, 0.01f))
{
Vector3 origTarget = TargetValue; // DEBUG
Vector3 origCurrVal = CurrentValue; // DEBUG
// Addition = (desiredVector - currentAppliedVector) / secondsItShouldTakeToComplete
Vector3 addAmount = (TargetValue - CurrentValue)/TimeScale * timeStep;
CurrentValue += addAmount;
// The desired value reduces to zero which also reduces the difference with current.
// If the decay time is infinite, don't decay at all.
float decayFactor = 0f;
if (TargetValueDecayTimeScale != BSMotor.Infinite)
{
decayFactor = (1.0f / TargetValueDecayTimeScale) * timeStep;
TargetValue *= (1f - decayFactor);
}
Vector3 frictionFactor = Vector3.Zero;
if (FrictionTimescale != BSMotor.InfiniteVector)
{
// frictionFactor = (Vector3.One / FrictionTimescale) * timeStep;
// Individual friction components can be 'infinite' so compute each separately.
frictionFactor.X = FrictionTimescale.X == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.X) * timeStep;
frictionFactor.Y = FrictionTimescale.Y == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Y) * timeStep;
frictionFactor.Z = FrictionTimescale.Z == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Z) * timeStep;
CurrentValue *= (Vector3.One - frictionFactor);
}
returnCurrent = CurrentValue;
MDetailLog("{0}, BSVMotor.Step,nonZero,{1},origCurr={2},origTarget={3},timeStep={4},timeScale={5},addAmnt={6},targetDecay={7},decayFact={8},fricTS={9},frictFact={10}",
BSScene.DetailLogZero, UseName, origCurrVal, origTarget,
timeStep, TimeScale, addAmount,
TargetValueDecayTimeScale, decayFactor,
FrictionTimescale, frictionFactor);
MDetailLog("{0}, BSVMotor.Step,nonZero,{1},curr={2},target={3},add={4},decay={5},frict={6},ret={7}",
BSScene.DetailLogZero, UseName, CurrentValue, TargetValue,
addAmount, decayFactor, frictionFactor, returnCurrent);
}
else
{
// Difference between what we have and target is small. Motor is done.
CurrentValue = Vector3.Zero;
TargetValue = Vector3.Zero;
MDetailLog("{0}, BSVMotor.Step,zero,{1},curr={2},target={3},ret={4}",
BSScene.DetailLogZero, UseName, TargetValue, CurrentValue, returnCurrent);
}
return returnCurrent;
}
public override string ToString()
{
return String.Format("<{0},curr={1},targ={2},decayTS={3},frictTS={4}>",
UseName, CurrentValue, TargetValue, TargetValueDecayTimeScale, FrictionTimescale);
}
}
public class BSFMotor : BSMotor
{
public float TimeScale { get; set; }
public float DecayTimeScale { get; set; }
public float Friction { get; set; }
public float Efficiency { get; set; }
public float Target { get; private set; }
public float CurrentValue { get; private set; }
public BSFMotor(string useName, float timeScale, float decayTimescale, float friction, float efficiency)
: base(useName)
{
}
public void SetCurrent(float target)
{
}
public void SetTarget(float target)
{
}
public virtual float Step(float timeStep)
{
return 0f;
}
}
// Proportional, Integral, Derivitive Motor
// Good description at http://www.answers.com/topic/pid-controller . Includes processes for choosing p, i and d factors.
public class BSPIDVMotor : BSVMotor
{
public Vector3 pFactor { get; set; } // Amount of direct correction of an error (sometimes called 'proportional gain')
public Vector3 iFactor { get; set; } //
public Vector3 dFactor { get; set; }
Vector3 IntegralFactor { get; set; }
Vector3 LastError { get; set; }
public BSPIDVMotor(string useName)
: base(useName)
{
// larger makes more overshoot, smaller means converge quicker. Range of 0.1 to 10.
pFactor = new Vector3(1.00f, 1.00f, 1.00f);
iFactor = new Vector3(1.00f, 1.00f, 1.00f);
dFactor = new Vector3(1.00f, 1.00f, 1.00f);
}
public override Vector3 Step(float timeStep)
{
// How far are we from where we should be
Vector3 error = TargetValue - CurrentValue;
// Add up the error so we can integrate over the accumulated errors
IntegralFactor += error * timeStep;
// A simple derivitive is the rate of change from the last error.
Vector3 derivFactor = (error - LastError) * timeStep;
LastError = error;
// Proportion Integral Derivitive
// Correction = proportionOfPresentError + accumulationOfPastError + rateOfChangeOfError
Vector3 ret = error * pFactor + IntegralFactor * iFactor + derivFactor * dFactor;
return ret;
}
}
}