324 lines
12 KiB
C++
324 lines
12 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Contains OBB-related code.
|
||
|
* \file IceOBB.cpp
|
||
|
* \author Pierre Terdiman
|
||
|
* \date January, 29, 2000
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* An Oriented Bounding Box (OBB).
|
||
|
* \class OBB
|
||
|
* \author Pierre Terdiman
|
||
|
* \version 1.0
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Precompiled Header
|
||
|
#include "Stdafx.h"
|
||
|
|
||
|
using namespace IceMaths;
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Tests if a point is contained within the OBB.
|
||
|
* \param p [in] the world point to test
|
||
|
* \return true if inside the OBB
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
bool OBB::ContainsPoint(const Point& p) const
|
||
|
{
|
||
|
// Point in OBB test using lazy evaluation and early exits
|
||
|
|
||
|
// Translate to box space
|
||
|
Point RelPoint = p - mCenter;
|
||
|
|
||
|
// Point * mRot maps from box space to world space
|
||
|
// mRot * Point maps from world space to box space (what we need here)
|
||
|
|
||
|
float f = mRot.m[0][0] * RelPoint.x + mRot.m[0][1] * RelPoint.y + mRot.m[0][2] * RelPoint.z;
|
||
|
if(f >= mExtents.x || f <= -mExtents.x) return false;
|
||
|
|
||
|
f = mRot.m[1][0] * RelPoint.x + mRot.m[1][1] * RelPoint.y + mRot.m[1][2] * RelPoint.z;
|
||
|
if(f >= mExtents.y || f <= -mExtents.y) return false;
|
||
|
|
||
|
f = mRot.m[2][0] * RelPoint.x + mRot.m[2][1] * RelPoint.y + mRot.m[2][2] * RelPoint.z;
|
||
|
if(f >= mExtents.z || f <= -mExtents.z) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Builds an OBB from an AABB and a world transform.
|
||
|
* \param aabb [in] the aabb
|
||
|
* \param mat [in] the world transform
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
void OBB::Create(const AABB& aabb, const Matrix4x4& mat)
|
||
|
{
|
||
|
// Note: must be coherent with Rotate()
|
||
|
|
||
|
aabb.GetCenter(mCenter);
|
||
|
aabb.GetExtents(mExtents);
|
||
|
// Here we have the same as OBB::Rotate(mat) where the obb is (mCenter, mExtents, Identity).
|
||
|
|
||
|
// So following what's done in Rotate:
|
||
|
// - x-form the center
|
||
|
mCenter *= mat;
|
||
|
// - combine rotation with identity, i.e. just use given matrix
|
||
|
mRot = mat;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Computes the obb planes.
|
||
|
* \param planes [out] 6 box planes
|
||
|
* \return true if success
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
bool OBB::ComputePlanes(Plane* planes) const
|
||
|
{
|
||
|
// Checkings
|
||
|
if(!planes) return false;
|
||
|
|
||
|
Point Axis0 = mRot[0];
|
||
|
Point Axis1 = mRot[1];
|
||
|
Point Axis2 = mRot[2];
|
||
|
|
||
|
// Writes normals
|
||
|
planes[0].n = Axis0;
|
||
|
planes[1].n = -Axis0;
|
||
|
planes[2].n = Axis1;
|
||
|
planes[3].n = -Axis1;
|
||
|
planes[4].n = Axis2;
|
||
|
planes[5].n = -Axis2;
|
||
|
|
||
|
// Compute a point on each plane
|
||
|
Point p0 = mCenter + Axis0 * mExtents.x;
|
||
|
Point p1 = mCenter - Axis0 * mExtents.x;
|
||
|
Point p2 = mCenter + Axis1 * mExtents.y;
|
||
|
Point p3 = mCenter - Axis1 * mExtents.y;
|
||
|
Point p4 = mCenter + Axis2 * mExtents.z;
|
||
|
Point p5 = mCenter - Axis2 * mExtents.z;
|
||
|
|
||
|
// Compute d
|
||
|
planes[0].d = -(planes[0].n|p0);
|
||
|
planes[1].d = -(planes[1].n|p1);
|
||
|
planes[2].d = -(planes[2].n|p2);
|
||
|
planes[3].d = -(planes[3].n|p3);
|
||
|
planes[4].d = -(planes[4].n|p4);
|
||
|
planes[5].d = -(planes[5].n|p5);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Computes the obb points.
|
||
|
* \param pts [out] 8 box points
|
||
|
* \return true if success
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
bool OBB::ComputePoints(Point* pts) const
|
||
|
{
|
||
|
// Checkings
|
||
|
if(!pts) return false;
|
||
|
|
||
|
Point Axis0 = mRot[0];
|
||
|
Point Axis1 = mRot[1];
|
||
|
Point Axis2 = mRot[2];
|
||
|
|
||
|
Axis0 *= mExtents.x;
|
||
|
Axis1 *= mExtents.y;
|
||
|
Axis2 *= mExtents.z;
|
||
|
|
||
|
// 7+------+6 0 = ---
|
||
|
// /| /| 1 = +--
|
||
|
// / | / | 2 = ++-
|
||
|
// / 4+---/--+5 3 = -+-
|
||
|
// 3+------+2 / y z 4 = --+
|
||
|
// | / | / | / 5 = +-+
|
||
|
// |/ |/ |/ 6 = +++
|
||
|
// 0+------+1 *---x 7 = -++
|
||
|
|
||
|
pts[0] = mCenter - Axis0 - Axis1 - Axis2;
|
||
|
pts[1] = mCenter + Axis0 - Axis1 - Axis2;
|
||
|
pts[2] = mCenter + Axis0 + Axis1 - Axis2;
|
||
|
pts[3] = mCenter - Axis0 + Axis1 - Axis2;
|
||
|
pts[4] = mCenter - Axis0 - Axis1 + Axis2;
|
||
|
pts[5] = mCenter + Axis0 - Axis1 + Axis2;
|
||
|
pts[6] = mCenter + Axis0 + Axis1 + Axis2;
|
||
|
pts[7] = mCenter - Axis0 + Axis1 + Axis2;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Computes vertex normals.
|
||
|
* \param pts [out] 8 box points
|
||
|
* \return true if success
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
bool OBB::ComputeVertexNormals(Point* pts) const
|
||
|
{
|
||
|
static float VertexNormals[] =
|
||
|
{
|
||
|
-INVSQRT3, -INVSQRT3, -INVSQRT3,
|
||
|
INVSQRT3, -INVSQRT3, -INVSQRT3,
|
||
|
INVSQRT3, INVSQRT3, -INVSQRT3,
|
||
|
-INVSQRT3, INVSQRT3, -INVSQRT3,
|
||
|
-INVSQRT3, -INVSQRT3, INVSQRT3,
|
||
|
INVSQRT3, -INVSQRT3, INVSQRT3,
|
||
|
INVSQRT3, INVSQRT3, INVSQRT3,
|
||
|
-INVSQRT3, INVSQRT3, INVSQRT3
|
||
|
};
|
||
|
|
||
|
if(!pts) return false;
|
||
|
|
||
|
const Point* VN = (const Point*)VertexNormals;
|
||
|
for(udword i=0;i<8;i++)
|
||
|
{
|
||
|
pts[i] = VN[i] * mRot;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Returns edges.
|
||
|
* \return 24 indices (12 edges) indexing the list returned by ComputePoints()
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
const udword* OBB::GetEdges() const
|
||
|
{
|
||
|
static udword Indices[] = {
|
||
|
0, 1, 1, 2, 2, 3, 3, 0,
|
||
|
7, 6, 6, 5, 5, 4, 4, 7,
|
||
|
1, 5, 6, 2,
|
||
|
3, 7, 4, 0
|
||
|
};
|
||
|
return Indices;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Returns local edge normals.
|
||
|
* \return edge normals in local space
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
const Point* OBB::GetLocalEdgeNormals() const
|
||
|
{
|
||
|
static float EdgeNormals[] =
|
||
|
{
|
||
|
0, -INVSQRT2, -INVSQRT2, // 0-1
|
||
|
INVSQRT2, 0, -INVSQRT2, // 1-2
|
||
|
0, INVSQRT2, -INVSQRT2, // 2-3
|
||
|
-INVSQRT2, 0, -INVSQRT2, // 3-0
|
||
|
|
||
|
0, INVSQRT2, INVSQRT2, // 7-6
|
||
|
INVSQRT2, 0, INVSQRT2, // 6-5
|
||
|
0, -INVSQRT2, INVSQRT2, // 5-4
|
||
|
-INVSQRT2, 0, INVSQRT2, // 4-7
|
||
|
|
||
|
INVSQRT2, -INVSQRT2, 0, // 1-5
|
||
|
INVSQRT2, INVSQRT2, 0, // 6-2
|
||
|
-INVSQRT2, INVSQRT2, 0, // 3-7
|
||
|
-INVSQRT2, -INVSQRT2, 0 // 4-0
|
||
|
};
|
||
|
return (const Point*)EdgeNormals;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Returns world edge normal
|
||
|
* \param edge_index [in] 0 <= edge index < 12
|
||
|
* \param world_normal [out] edge normal in world space
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
void OBB::ComputeWorldEdgeNormal(udword edge_index, Point& world_normal) const
|
||
|
{
|
||
|
ASSERT(edge_index<12);
|
||
|
world_normal = GetLocalEdgeNormals()[edge_index] * mRot;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Computes an LSS surrounding the OBB.
|
||
|
* \param lss [out] the LSS
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
void OBB::ComputeLSS(LSS& lss) const
|
||
|
{
|
||
|
Point Axis0 = mRot[0];
|
||
|
Point Axis1 = mRot[1];
|
||
|
Point Axis2 = mRot[2];
|
||
|
|
||
|
switch(mExtents.LargestAxis())
|
||
|
{
|
||
|
case 0:
|
||
|
lss.mRadius = (mExtents.y + mExtents.z)*0.5f;
|
||
|
lss.mP0 = mCenter + Axis0 * (mExtents.x - lss.mRadius);
|
||
|
lss.mP1 = mCenter - Axis0 * (mExtents.x - lss.mRadius);
|
||
|
break;
|
||
|
case 1:
|
||
|
lss.mRadius = (mExtents.x + mExtents.z)*0.5f;
|
||
|
lss.mP0 = mCenter + Axis1 * (mExtents.y - lss.mRadius);
|
||
|
lss.mP1 = mCenter - Axis1 * (mExtents.y - lss.mRadius);
|
||
|
break;
|
||
|
case 2:
|
||
|
lss.mRadius = (mExtents.x + mExtents.y)*0.5f;
|
||
|
lss.mP0 = mCenter + Axis2 * (mExtents.z - lss.mRadius);
|
||
|
lss.mP1 = mCenter - Axis2 * (mExtents.z - lss.mRadius);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Checks the OBB is inside another OBB.
|
||
|
* \param box [in] the other OBB
|
||
|
* \return TRUE if we're inside the other box
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
BOOL OBB::IsInside(const OBB& box) const
|
||
|
{
|
||
|
// Make a 4x4 from the box & inverse it
|
||
|
Matrix4x4 M0Inv;
|
||
|
{
|
||
|
Matrix4x4 M0 = box.mRot;
|
||
|
M0.SetTrans(box.mCenter);
|
||
|
InvertPRMatrix(M0Inv, M0);
|
||
|
}
|
||
|
|
||
|
// With our inversed 4x4, create box1 in space of box0
|
||
|
OBB _1in0;
|
||
|
Rotate(M0Inv, _1in0);
|
||
|
|
||
|
// This should cancel out box0's rotation, i.e. it's now an AABB.
|
||
|
// => Center(0,0,0), Rot(identity)
|
||
|
|
||
|
// The two boxes are in the same space so now we can compare them.
|
||
|
|
||
|
// Create the AABB of (box1 in space of box0)
|
||
|
const Matrix3x3& mtx = _1in0.mRot;
|
||
|
|
||
|
float f = fabsf(mtx.m[0][0] * mExtents.x) + fabsf(mtx.m[1][0] * mExtents.y) + fabsf(mtx.m[2][0] * mExtents.z) - box.mExtents.x;
|
||
|
if(f > _1in0.mCenter.x) return FALSE;
|
||
|
if(-f < _1in0.mCenter.x) return FALSE;
|
||
|
|
||
|
f = fabsf(mtx.m[0][1] * mExtents.x) + fabsf(mtx.m[1][1] * mExtents.y) + fabsf(mtx.m[2][1] * mExtents.z) - box.mExtents.y;
|
||
|
if(f > _1in0.mCenter.y) return FALSE;
|
||
|
if(-f < _1in0.mCenter.y) return FALSE;
|
||
|
|
||
|
f = fabsf(mtx.m[0][2] * mExtents.x) + fabsf(mtx.m[1][2] * mExtents.y) + fabsf(mtx.m[2][2] * mExtents.z) - box.mExtents.z;
|
||
|
if(f > _1in0.mCenter.z) return FALSE;
|
||
|
if(-f < _1in0.mCenter.z) return FALSE;
|
||
|
|
||
|
return TRUE;
|
||
|
}
|