BulletSim: use m_angularMotor to do the basic movement. Add the setting of same. Rename the angular forces and add comments to match MoveAngular to the form of MoveLinear.

connector_plugin^2
Robert Adams 2012-11-25 20:03:36 -08:00
parent d7126a14e1
commit 084e3926ca
1 changed files with 64 additions and 60 deletions

View File

@ -93,6 +93,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// private Vector3 m_linearMotorOffset = Vector3.Zero; // private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties //Angular properties
private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
// private int m_angularMotorApply = 0; // application frame counter // private int m_angularMotorApply = 0; // application frame counter
private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
@ -153,9 +154,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
break; break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
m_angularMotorDecayTimescale = Math.Max(0.01f, Math.Min(pValue,120)); m_angularMotorDecayTimescale = Math.Max(0.01f, Math.Min(pValue,120));
m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
break; break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE: case Vehicle.ANGULAR_MOTOR_TIMESCALE:
m_angularMotorTimescale = Math.Max(pValue, 0.01f); m_angularMotorTimescale = Math.Max(pValue, 0.01f);
m_angularMotor.TimeScale = m_angularMotorTimescale;
break; break;
case Vehicle.BANKING_EFFICIENCY: case Vehicle.BANKING_EFFICIENCY:
m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f)); m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f));
@ -203,10 +206,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// set all of the components to the same value // set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE: case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
break; break;
case Vehicle.ANGULAR_MOTOR_DIRECTION: case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue); m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
// m_angularMotorApply = 100; m_angularMotor.SetTarget(m_angularMotorDirection);
break; break;
case Vehicle.LINEAR_FRICTION_TIMESCALE: case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
@ -231,6 +235,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{ {
case Vehicle.ANGULAR_FRICTION_TIMESCALE: case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
break; break;
case Vehicle.ANGULAR_MOTOR_DIRECTION: case Vehicle.ANGULAR_MOTOR_DIRECTION:
// Limit requested angular speed to 2 rps= 4 pi rads/sec // Limit requested angular speed to 2 rps= 4 pi rads/sec
@ -238,7 +243,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f)); pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f));
pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f)); pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f));
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// m_angularMotorApply = 100; m_angularMotor.SetTarget(m_angularMotorDirection);
break; break;
case Vehicle.LINEAR_FRICTION_TIMESCALE: case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
@ -358,10 +363,13 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_bankingMix = 1; m_bankingMix = 1;
m_referenceFrame = Quaternion.Identity; m_referenceFrame = Quaternion.Identity;
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
m_flags &= | VehicleFlag.HOVER_TERRAIN_ONLY
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | VehicleFlag.HOVER_GLOBAL_HEIGHT
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP
| VehicleFlag.LIMIT_ROLL_ONLY
| VehicleFlag.LIMIT_MOTOR_UP);
break; break;
case Vehicle.TYPE_CAR: case Vehicle.TYPE_CAR:
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
@ -521,8 +529,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// Update any physical parameters based on this type. // Update any physical parameters based on this type.
Refresh(); Refresh();
m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale, m_linearMotorDecayTimescale, m_linearFrictionTimescale, 1f); m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
m_linearMotorDecayTimescale, m_linearFrictionTimescale, 1f);
m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging) m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
m_angularMotorDecayTimescale, m_angularFrictionTimescale, 1f);
m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
// m_bankingMotor = new BSVMotor("BankingMotor", ...);
} }
// Some of the properties of this prim may have changed. // Some of the properties of this prim may have changed.
@ -577,26 +591,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
if (!IsActive) return; if (!IsActive) return;
MoveLinear(pTimestep); MoveLinear(pTimestep);
// Commented out for debug
MoveAngular(pTimestep); MoveAngular(pTimestep);
// Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG
// Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG
LimitRotation(pTimestep); LimitRotation(pTimestep);
// remember the position so next step we can limit absolute movement effects // remember the position so next step we can limit absolute movement effects
m_lastPositionVector = Prim.ForcePosition; m_lastPositionVector = Prim.ForcePosition;
VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG
Prim.LocalID,
BulletSimAPI.GetFriction2(Prim.PhysBody.ptr),
BulletSimAPI.GetGravity2(Prim.PhysBody.ptr),
Prim.Inertia,
m_vehicleMass
);
VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity); Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity);
}// end Step }
// Apply the effect of the linear motor. // Apply the effect of the linear motor.
// Also does hover and float. // Also does hover and float.
@ -789,6 +793,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
} // end MoveLinear() } // end MoveLinear()
// =======================================================================
// ======================================================================= // =======================================================================
// Apply the effect of the angular motor. // Apply the effect of the angular motor.
private void MoveAngular(float pTimestep) private void MoveAngular(float pTimestep)
@ -819,12 +824,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_angularMotorVelocity = Vector3.Zero; m_angularMotorVelocity = Vector3.Zero;
} }
#region Vertical attactor Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep);
Vector3 vertattr = Vector3.Zero;
Vector3 deflection = Vector3.Zero;
Vector3 banking = Vector3.Zero;
// ==================================================================
Vector3 verticalAttractionContribution = Vector3.Zero;
// If vertical attaction timescale is reasonable and we applied an angular force last time... // If vertical attaction timescale is reasonable and we applied an angular force last time...
if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero) if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
{ {
@ -854,24 +857,23 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y
// then .X increases, so change Body angular velocity X based on Y, and Y based on X. // then .X increases, so change Body angular velocity X based on Y, and Y based on X.
// Z is not changed. // Z is not changed.
vertattr.X = verticalError.Y; verticalAttractionContribution.X = verticalError.Y;
vertattr.Y = - verticalError.X; verticalAttractionContribution.Y = - verticalError.X;
vertattr.Z = 0f; verticalAttractionContribution.Z = 0f;
// scaling appears better usingsquare-law // scaling appears better usingsquare-law
Vector3 angularVelocity = Prim.ForceRotationalVelocity; Vector3 angularVelocity = Prim.ForceRotationalVelocity;
float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
vertattr.X += bounce * angularVelocity.X; verticalAttractionContribution.X += bounce * angularVelocity.X;
vertattr.Y += bounce * angularVelocity.Y; verticalAttractionContribution.Y += bounce * angularVelocity.Y;
VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}", VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}",
Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr); Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, verticalAttractionContribution);
} }
#endregion // Vertical attactor
#region Deflection
// ==================================================================
Vector3 deflectionContribution = Vector3.Zero;
if (m_angularDeflectionEfficiency != 0) if (m_angularDeflectionEfficiency != 0)
{ {
// Compute a scaled vector that points in the preferred axis (X direction) // Compute a scaled vector that points in the preferred axis (X direction)
@ -882,18 +884,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame); Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
// Scale by efficiency and timescale // Scale by efficiency and timescale
deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep; deflectionContribution = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}", VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
Prim.LocalID, preferredAxisOfMotion, deflection); Prim.LocalID, preferredAxisOfMotion, deflectionContribution);
// This deflection computation is not correct. // This deflection computation is not correct.
deflection = Vector3.Zero; deflectionContribution = Vector3.Zero;
} }
#endregion // ==================================================================
Vector3 bankingContribution = Vector3.Zero;
#region Banking
if (m_bankingEfficiency != 0) if (m_bankingEfficiency != 0)
{ {
Vector3 dir = Vector3.One * Prim.ForceOrientation; Vector3 dir = Vector3.One * Prim.ForceOrientation;
@ -923,7 +923,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
} }
else else
{ {
banking.Z += (effSquared * (mult * mix)) * (m_angularMotorVelocity.X) * 4; bankingContribution.Z += (effSquared * (mult * mix)) * (m_angularMotorVelocity.X) * 4;
} }
//If they are colliding, we probably shouldn't shove the prim around... probably //If they are colliding, we probably shouldn't shove the prim around... probably
@ -941,22 +941,23 @@ namespace OpenSim.Region.Physics.BulletSPlugin
else if (bankingRot.X < -3) else if (bankingRot.X < -3)
bankingRot.X = -3; bankingRot.X = -3;
bankingRot *= Prim.ForceOrientation; bankingRot *= Prim.ForceOrientation;
banking += bankingRot; bankingContribution += bankingRot;
} }
m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency; m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},effSq={3},mult={4},mix={5},banking={6}", VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},effSq={3},mult={4},mix={5},banking={6}",
Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, effSquared, mult, mix, banking); Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, effSquared, mult, mix, bankingContribution);
} }
#endregion // ==================================================================
m_lastVertAttractor = verticalAttractionContribution;
m_lastVertAttractor = vertattr;
// Sum velocities // Sum velocities
m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection; m_lastAngularVelocity = angularMotorContribution
+ verticalAttractionContribution
#region Linear Motor Offset + bankingContribution
+ deflectionContribution;
// ==================================================================
//Offset section //Offset section
if (m_linearMotorOffset != Vector3.Zero) if (m_linearMotorOffset != Vector3.Zero)
{ {
@ -972,8 +973,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// //
// The torque created is the linear velocity crossed with the offset // The torque created is the linear velocity crossed with the offset
// NOTE: this computation does should be in the linear section // TODO: this computation should be in the linear section
// because there we know the impulse being applied. // because that is where we know the impulse being applied.
Vector3 torqueFromOffset = Vector3.Zero; Vector3 torqueFromOffset = Vector3.Zero;
// torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
if (float.IsNaN(torqueFromOffset.X)) if (float.IsNaN(torqueFromOffset.X))
@ -987,8 +988,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
} }
#endregion // ==================================================================
// NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
{ {
m_lastAngularVelocity.X = 0; m_lastAngularVelocity.X = 0;
@ -996,6 +997,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
} }
// ==================================================================
if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
{ {
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
@ -1008,18 +1010,20 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// The above calculates the absolute angular velocity needed. Angular velocity is massless. // The above calculates the absolute angular velocity needed. Angular velocity is massless.
// Since we are stuffing the angular velocity directly into the object, the computed // Since we are stuffing the angular velocity directly into the object, the computed
// velocity needs to be scaled by the timestep. // velocity needs to be scaled by the timestep.
Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity); // Also remove any motion that is on the object so added motion is only from vehicle.
Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep)
- Prim.ForceRotationalVelocity);
Prim.ForceRotationalVelocity = applyAngularForce; Prim.ForceRotationalVelocity = applyAngularForce;
// Decay the angular movement for next time VDetailLog("{0},MoveAngular,done,newRotVel={1},lastAngular={2}",
Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep; Prim.LocalID, applyAngularForce, m_lastAngularVelocity);
m_lastAngularVelocity *= Vector3.One - decayamount;
VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}",
Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity);
} }
} //end MoveAngular }
// This is from previous instantiations of XXXDynamics.cs.
// Applies roll reference frame.
// TODO: is this the right way to separate the code to do this operation?
// Should this be in MoveAngular()?
internal void LimitRotation(float timestep) internal void LimitRotation(float timestep)
{ {
Quaternion rotq = Prim.ForceOrientation; Quaternion rotq = Prim.ForceOrientation;