BulletSim: distribute vehicle physical settings to all members of

a linkset. Enables constraint based linksets.
Rename some internal variables to clarify whether values world or
vehicle relative.
TeleportWork
Robert Adams 2013-07-30 15:23:33 -07:00
parent 6ad577d32b
commit 0d189165a8
3 changed files with 61 additions and 43 deletions

View File

@ -589,10 +589,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_vehicleMass = ControllingPrim.TotalMass; m_vehicleMass = ControllingPrim.TotalMass;
// Friction affects are handled by this vehicle code // Friction affects are handled by this vehicle code
m_physicsScene.PE.SetFriction(ControllingPrim.PhysBody, BSParam.VehicleFriction); // m_physicsScene.PE.SetFriction(ControllingPrim.PhysBody, BSParam.VehicleFriction);
m_physicsScene.PE.SetRestitution(ControllingPrim.PhysBody, BSParam.VehicleRestitution); // m_physicsScene.PE.SetRestitution(ControllingPrim.PhysBody, BSParam.VehicleRestitution);
// ControllingPrim.Linkset.SetPhysicalFriction(BSParam.VehicleFriction); ControllingPrim.Linkset.SetPhysicalFriction(BSParam.VehicleFriction);
// ControllingPrim.Linkset.SetPhysicalRestitution(BSParam.VehicleRestitution); ControllingPrim.Linkset.SetPhysicalRestitution(BSParam.VehicleRestitution);
// Moderate angular movement introduced by Bullet. // Moderate angular movement introduced by Bullet.
// TODO: possibly set AngularFactor and LinearFactor for the type of vehicle. // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
@ -602,21 +602,21 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_physicsScene.PE.SetAngularFactorV(ControllingPrim.PhysBody, BSParam.VehicleAngularFactor); m_physicsScene.PE.SetAngularFactorV(ControllingPrim.PhysBody, BSParam.VehicleAngularFactor);
// Vehicles report collision events so we know when it's on the ground // Vehicles report collision events so we know when it's on the ground
m_physicsScene.PE.AddToCollisionFlags(ControllingPrim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS); // m_physicsScene.PE.AddToCollisionFlags(ControllingPrim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
// ControllingPrim.Linkset.SetPhysicalCollisionFlags(CollisionFlags.BS_VEHICLE_COLLISIONS); ControllingPrim.Linkset.AddToPhysicalCollisionFlags(CollisionFlags.BS_VEHICLE_COLLISIONS);
Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(ControllingPrim.PhysShape.physShapeInfo, m_vehicleMass); // Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(ControllingPrim.PhysShape.physShapeInfo, m_vehicleMass);
ControllingPrim.Inertia = inertia * BSParam.VehicleInertiaFactor; // ControllingPrim.Inertia = inertia * BSParam.VehicleInertiaFactor;
m_physicsScene.PE.SetMassProps(ControllingPrim.PhysBody, m_vehicleMass, ControllingPrim.Inertia); // m_physicsScene.PE.SetMassProps(ControllingPrim.PhysBody, m_vehicleMass, ControllingPrim.Inertia);
m_physicsScene.PE.UpdateInertiaTensor(ControllingPrim.PhysBody); // m_physicsScene.PE.UpdateInertiaTensor(ControllingPrim.PhysBody);
// ControllingPrim.Linkset.ComputeLocalInertia(BSParam.VehicleInertiaFactor); ControllingPrim.Linkset.ComputeAndSetLocalInertia(BSParam.VehicleInertiaFactor, m_vehicleMass);
// Set the gravity for the vehicle depending on the buoyancy // Set the gravity for the vehicle depending on the buoyancy
// TODO: what should be done if prim and vehicle buoyancy differ? // TODO: what should be done if prim and vehicle buoyancy differ?
m_VehicleGravity = ControllingPrim.ComputeGravity(m_VehicleBuoyancy); m_VehicleGravity = ControllingPrim.ComputeGravity(m_VehicleBuoyancy);
// The actual vehicle gravity is set to zero in Bullet so we can do all the application of same. // The actual vehicle gravity is set to zero in Bullet so we can do all the application of same.
m_physicsScene.PE.SetGravity(ControllingPrim.PhysBody, Vector3.Zero); // m_physicsScene.PE.SetGravity(ControllingPrim.PhysBody, Vector3.Zero);
// ControllingPrim.Linkset.SetPhysicalGravity(Vector3.Zero); ControllingPrim.Linkset.SetPhysicalGravity(Vector3.Zero);
VDetailLog("{0},BSDynamics.SetPhysicalParameters,mass={1},inert={2},vehGrav={3},aDamp={4},frict={5},rest={6},lFact={7},aFact={8}", VDetailLog("{0},BSDynamics.SetPhysicalParameters,mass={1},inert={2},vehGrav={3},aDamp={4},frict={5},rest={6},lFact={7},aFact={8}",
ControllingPrim.LocalID, m_vehicleMass, ControllingPrim.Inertia, m_VehicleGravity, ControllingPrim.LocalID, m_vehicleMass, ControllingPrim.Inertia, m_VehicleGravity,
@ -1121,7 +1121,6 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{ {
m_VhoverTargetHeight = m_VhoverHeight; m_VhoverTargetHeight = m_VhoverHeight;
} }
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
{ {
// If body is already heigher, use its height as target height // If body is already heigher, use its height as target height
@ -1170,7 +1169,6 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight, m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight,
verticalError, verticalCorrection); verticalError, verticalCorrection);
} }
} }
} }
@ -1357,6 +1355,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
private void ComputeAngularTurning(float pTimestep) private void ComputeAngularTurning(float pTimestep)
{ {
// The user wants this many radians per second angular change? // The user wants this many radians per second angular change?
Vector3 origVehicleRotationalVelocity = VehicleRotationalVelocity; // DEBUG DEBUG
Vector3 currentAngularV = VehicleRotationalVelocity * Quaternion.Inverse(VehicleOrientation); Vector3 currentAngularV = VehicleRotationalVelocity * Quaternion.Inverse(VehicleOrientation);
Vector3 angularMotorContributionV = m_angularMotor.Step(pTimestep, currentAngularV); Vector3 angularMotorContributionV = m_angularMotor.Step(pTimestep, currentAngularV);
@ -1369,20 +1368,20 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// TODO: This is here because this is where ODE put it but documentation says it // TODO: This is here because this is where ODE put it but documentation says it
// is a linear effect. Where should this check go? // is a linear effect. Where should this check go?
//if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) //if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
// { // {
// angularMotorContributionV.X = 0f; // angularMotorContributionV.X = 0f;
// angularMotorContributionV.Y = 0f; // angularMotorContributionV.Y = 0f;
// } // }
// Reduce any velocity by friction. // Reduce any velocity by friction.
Vector3 frictionFactorW = ComputeFrictionFactor(m_angularFrictionTimescale, pTimestep); Vector3 frictionFactorW = ComputeFrictionFactor(m_angularFrictionTimescale, pTimestep);
angularMotorContributionV -= (currentAngularV * frictionFactorW); angularMotorContributionV -= (currentAngularV * frictionFactorW);
VehicleRotationalVelocity += angularMotorContributionV * VehicleOrientation; Vector3 angularMotorContributionW = angularMotorContributionV * VehicleOrientation;
VehicleRotationalVelocity += angularMotorContributionW;
VDetailLog("{0}, MoveAngular,angularTurning,curAngVelV={1},origVehRotVel={2},vehRotVel={3},frictFact={4}, angContribV={5},angContribW={6}",
ControllingPrim.LocalID, currentAngularV, origVehicleRotationalVelocity, VehicleRotationalVelocity, frictionFactorW, angularMotorContributionV, angularMotorContributionW);
VDetailLog("{0}, MoveAngular,angularTurning,angContribV={1}", ControllingPrim.LocalID, angularMotorContributionV);
} }
// From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial: // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
@ -1409,7 +1408,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// Flipping what was originally a timescale into a speed variable and then multiplying it by 2 // Flipping what was originally a timescale into a speed variable and then multiplying it by 2
// since only computing half the distance between the angles. // since only computing half the distance between the angles.
float VerticalAttractionSpeed = (1 / m_verticalAttractionTimescale) * 2.0f; float verticalAttractionSpeed = (1 / m_verticalAttractionTimescale) * 2.0f;
// Make a prediction of where the up axis will be when this is applied rather then where it is now as // Make a prediction of where the up axis will be when this is applied rather then where it is now as
// this makes for a smoother adjustment and less fighting between the various forces. // this makes for a smoother adjustment and less fighting between the various forces.
@ -1419,12 +1418,13 @@ namespace OpenSim.Region.Physics.BulletSPlugin
Vector3 torqueVector = Vector3.Cross(predictedUp, Vector3.UnitZ); Vector3 torqueVector = Vector3.Cross(predictedUp, Vector3.UnitZ);
// Scale vector by our timescale since it is an acceleration it is r/s^2 or radians a timescale squared // Scale vector by our timescale since it is an acceleration it is r/s^2 or radians a timescale squared
Vector3 vertContributionV = torqueVector * VerticalAttractionSpeed * VerticalAttractionSpeed; Vector3 vertContributionV = torqueVector * verticalAttractionSpeed * verticalAttractionSpeed;
VehicleRotationalVelocity += vertContributionV; VehicleRotationalVelocity += vertContributionV;
VDetailLog("{0}, MoveAngular,verticalAttraction,upAxis={1},PredictedUp={2},torqueVector={3},contrib={4}", VDetailLog("{0}, MoveAngular,verticalAttraction,vertAttrSpeed={1},upAxis={2},PredictedUp={3},torqueVector={4},contrib={5}",
ControllingPrim.LocalID, ControllingPrim.LocalID,
verticalAttractionSpeed,
vehicleUpAxis, vehicleUpAxis,
predictedUp, predictedUp,
torqueVector, torqueVector,
@ -1437,37 +1437,38 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// http://stackoverflow.com/questions/14939657/computing-vector-from-quaternion-works-computing-quaternion-from-vector-does-no // http://stackoverflow.com/questions/14939657/computing-vector-from-quaternion-works-computing-quaternion-from-vector-does-no
// Create a rotation that is only the vehicle's rotation around Z // Create a rotation that is only the vehicle's rotation around Z
Vector3 currentEuler = Vector3.Zero; Vector3 currentEulerW = Vector3.Zero;
VehicleOrientation.GetEulerAngles(out currentEuler.X, out currentEuler.Y, out currentEuler.Z); VehicleOrientation.GetEulerAngles(out currentEulerW.X, out currentEulerW.Y, out currentEulerW.Z);
Quaternion justZOrientation = Quaternion.CreateFromAxisAngle(Vector3.UnitZ, currentEuler.Z); Quaternion justZOrientation = Quaternion.CreateFromAxisAngle(Vector3.UnitZ, currentEulerW.Z);
// Create the axis that is perpendicular to the up vector and the rotated up vector. // Create the axis that is perpendicular to the up vector and the rotated up vector.
Vector3 differenceAxis = Vector3.Cross(Vector3.UnitZ * justZOrientation, Vector3.UnitZ * VehicleOrientation); Vector3 differenceAxisW = Vector3.Cross(Vector3.UnitZ * justZOrientation, Vector3.UnitZ * VehicleOrientation);
// Compute the angle between those to vectors. // Compute the angle between those to vectors.
double differenceAngle = Math.Acos((double)Vector3.Dot(Vector3.UnitZ, Vector3.Normalize(Vector3.UnitZ * VehicleOrientation))); double differenceAngle = Math.Acos((double)Vector3.Dot(Vector3.UnitZ, Vector3.Normalize(Vector3.UnitZ * VehicleOrientation)));
// 'differenceAngle' is the angle to rotate and 'differenceAxis' is the plane to rotate in to get the vehicle vertical // 'differenceAngle' is the angle to rotate and 'differenceAxis' is the plane to rotate in to get the vehicle vertical
// Reduce the change by the time period it is to change in. Timestep is handled when velocity is applied. // Reduce the change by the time period it is to change in. Timestep is handled when velocity is applied.
// TODO: add 'efficiency'. // TODO: add 'efficiency'.
differenceAngle /= m_verticalAttractionTimescale; // differenceAngle /= m_verticalAttractionTimescale;
// Create the quaterian representing the correction angle // Create the quaterian representing the correction angle
Quaternion correctionRotation = Quaternion.CreateFromAxisAngle(differenceAxis, (float)differenceAngle); Quaternion correctionRotationW = Quaternion.CreateFromAxisAngle(differenceAxisW, (float)differenceAngle);
// Turn that quaternion into Euler values to make it into velocities to apply. // Turn that quaternion into Euler values to make it into velocities to apply.
Vector3 vertContributionV = Vector3.Zero; Vector3 vertContributionW = Vector3.Zero;
correctionRotation.GetEulerAngles(out vertContributionV.X, out vertContributionV.Y, out vertContributionV.Z); correctionRotationW.GetEulerAngles(out vertContributionW.X, out vertContributionW.Y, out vertContributionW.Z);
vertContributionV *= -1f; vertContributionW *= -1f;
vertContributionW /= m_verticalAttractionTimescale;
VehicleRotationalVelocity += vertContributionV; VehicleRotationalVelocity += vertContributionW;
VDetailLog("{0}, MoveAngular,verticalAttraction,upAxis={1},diffAxis={2},diffAng={3},corrRot={4},contrib={5}", VDetailLog("{0}, MoveAngular,verticalAttraction,upAxis={1},diffAxis={2},diffAng={3},corrRot={4},contrib={5}",
ControllingPrim.LocalID, ControllingPrim.LocalID,
vehicleUpAxis, vehicleUpAxis,
differenceAxis, differenceAxisW,
differenceAngle, differenceAngle,
correctionRotation, correctionRotationW,
vertContributionV); vertContributionW);
break; break;
} }
case 2: case 2:

View File

@ -309,16 +309,18 @@ public abstract class BSLinkset
} }
); );
} }
public virtual void ComputeLocalInertia(OMV.Vector3 inertiaFactor) public virtual void ComputeAndSetLocalInertia(OMV.Vector3 inertiaFactor, float linksetMass)
{ {
ForEachMember((member) => ForEachMember((member) =>
{ {
if (member.PhysBody.HasPhysicalBody) if (member.PhysBody.HasPhysicalBody)
{ {
OMV.Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(member.PhysShape.physShapeInfo, member.Mass); OMV.Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(member.PhysShape.physShapeInfo, linksetMass);
member.Inertia = inertia * inertiaFactor; member.Inertia = inertia * inertiaFactor;
m_physicsScene.PE.SetMassProps(member.PhysBody, member.Mass, member.Inertia); m_physicsScene.PE.SetMassProps(member.PhysBody, linksetMass, member.Inertia);
m_physicsScene.PE.UpdateInertiaTensor(member.PhysBody); m_physicsScene.PE.UpdateInertiaTensor(member.PhysBody);
DetailLog("{0},BSLinkset.ComputeAndSetLocalInertia,m.mass={1}, inertia={2}", member.LocalID, linksetMass, member.Inertia);
} }
return false; // 'false' says to continue looping return false; // 'false' says to continue looping
} }
@ -334,6 +336,16 @@ public abstract class BSLinkset
} }
); );
} }
public virtual void AddToPhysicalCollisionFlags(CollisionFlags collFlags)
{
ForEachMember((member) =>
{
if (member.PhysBody.HasPhysicalBody)
m_physicsScene.PE.AddToCollisionFlags(member.PhysBody, collFlags);
return false; // 'false' says to continue looping
}
);
}
public virtual void RemoveFromPhysicalCollisionFlags(CollisionFlags collFlags) public virtual void RemoveFromPhysicalCollisionFlags(CollisionFlags collFlags)
{ {
ForEachMember((member) => ForEachMember((member) =>

View File

@ -61,11 +61,11 @@ public sealed class BSLinksetCompound : BSLinkset
if (LinksetRoot.PhysBody.HasPhysicalBody) if (LinksetRoot.PhysBody.HasPhysicalBody)
m_physicsScene.PE.SetGravity(LinksetRoot.PhysBody, gravity); m_physicsScene.PE.SetGravity(LinksetRoot.PhysBody, gravity);
} }
public override void ComputeLocalInertia(OMV.Vector3 inertiaFactor) public override void ComputeAndSetLocalInertia(OMV.Vector3 inertiaFactor, float linksetMass)
{ {
OMV.Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(LinksetRoot.PhysShape.physShapeInfo, LinksetRoot.Mass); OMV.Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(LinksetRoot.PhysShape.physShapeInfo, linksetMass);
LinksetRoot.Inertia = inertia * inertiaFactor; LinksetRoot.Inertia = inertia * inertiaFactor;
m_physicsScene.PE.SetMassProps(LinksetRoot.PhysBody, LinksetRoot.Mass, LinksetRoot.Inertia); m_physicsScene.PE.SetMassProps(LinksetRoot.PhysBody, linksetMass, LinksetRoot.Inertia);
m_physicsScene.PE.UpdateInertiaTensor(LinksetRoot.PhysBody); m_physicsScene.PE.UpdateInertiaTensor(LinksetRoot.PhysBody);
} }
public override void SetPhysicalCollisionFlags(CollisionFlags collFlags) public override void SetPhysicalCollisionFlags(CollisionFlags collFlags)
@ -73,6 +73,11 @@ public sealed class BSLinksetCompound : BSLinkset
if (LinksetRoot.PhysBody.HasPhysicalBody) if (LinksetRoot.PhysBody.HasPhysicalBody)
m_physicsScene.PE.SetCollisionFlags(LinksetRoot.PhysBody, collFlags); m_physicsScene.PE.SetCollisionFlags(LinksetRoot.PhysBody, collFlags);
} }
public override void AddToPhysicalCollisionFlags(CollisionFlags collFlags)
{
if (LinksetRoot.PhysBody.HasPhysicalBody)
m_physicsScene.PE.AddToCollisionFlags(LinksetRoot.PhysBody, collFlags);
}
public override void RemoveFromPhysicalCollisionFlags(CollisionFlags collFlags) public override void RemoveFromPhysicalCollisionFlags(CollisionFlags collFlags)
{ {
if (LinksetRoot.PhysBody.HasPhysicalBody) if (LinksetRoot.PhysBody.HasPhysicalBody)