* Ported Jos Stam's Navier Stokes algorithm from his GDC2003 Paper to C# and included in libTerrain - May I never have to do that again.
parent
f2b3b9355d
commit
3f8b609831
|
@ -0,0 +1,214 @@
|
|||
/*
|
||||
* Copyright (c) Contributors, http://www.openmetaverse.org/
|
||||
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of the OpenSim Project nor the
|
||||
* names of its contributors may be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS AND ANY
|
||||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Text;
|
||||
|
||||
namespace libTerrain
|
||||
{
|
||||
partial class Channel
|
||||
{
|
||||
// Navier Stokes Algorithms ported from
|
||||
// "Real-Time Fluid Dynamics for Games" by Jos Stam.
|
||||
// presented at GDC 2003.
|
||||
|
||||
// Poorly ported from C++. (I gave up making it properly native somewhere after nsSetBnd)
|
||||
|
||||
private static int nsIX(int i, int j, int N)
|
||||
{
|
||||
return ((i) + (N + 2) * (j));
|
||||
}
|
||||
|
||||
private static void nsSwap(ref double x0, ref double x)
|
||||
{
|
||||
double tmp = x0;
|
||||
x0 = x;
|
||||
x = tmp;
|
||||
}
|
||||
|
||||
private static void nsSwap(ref double[] x0, ref double[] x)
|
||||
{
|
||||
double[] tmp = x0;
|
||||
x0 = x;
|
||||
x = tmp;
|
||||
}
|
||||
|
||||
private void nsAddSource(int N, ref double[] x, ref double[] s, double dt)
|
||||
{
|
||||
int i;
|
||||
int size = (N + 2) * (N + 2);
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
x[i] += dt * s[i];
|
||||
}
|
||||
}
|
||||
|
||||
private void nsSetBnd(int N, int b, ref double[] x)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i <= N; i++)
|
||||
{
|
||||
x[nsIX(0, i, N)] = b == 1 ? -x[nsIX(1, i, N)] : x[nsIX(1, i, N)];
|
||||
x[nsIX(0, N + 1, N)] = b == 1 ? -x[nsIX(N, i, N)] : x[nsIX(N, i, N)];
|
||||
x[nsIX(i, 0, N)] = b == 2 ? -x[nsIX(i, 1, N)] : x[nsIX(i, 1, N)];
|
||||
x[nsIX(i, N + 1, N)] = b == 2 ? -x[nsIX(i, N, N)] : x[nsIX(i, N, N)];
|
||||
}
|
||||
x[nsIX(0, 0, N)] = 0.5f * (x[nsIX(1, 0, N)] + x[nsIX(0, 1, N)]);
|
||||
x[nsIX(0, N + 1, N)] = 0.5f * (x[nsIX(1, N + 1, N)] + x[nsIX(0, N, N)]);
|
||||
x[nsIX(N + 1, 0, N)] = 0.5f * (x[nsIX(N, 0, N)] + x[nsIX(N + 1, 1, N)]);
|
||||
x[nsIX(N + 1, N + 1, N)] = 0.5f * (x[nsIX(N, N + 1, N)] + x[nsIX(N + 1, N, N)]);
|
||||
}
|
||||
|
||||
private void nsLinSolve(int N, int b, ref double[] x, ref double[] x0, double a, double c)
|
||||
{
|
||||
int i, j;
|
||||
for (i = 1; i <= N; i++)
|
||||
{
|
||||
for (j = 1; j <= N; j++)
|
||||
{
|
||||
x[nsIX(i, j, N)] = (x0[nsIX(i, j, N)] + a *
|
||||
(x[nsIX(i - 1, j, N)] +
|
||||
x[nsIX(i + 1, j, N)] +
|
||||
x[nsIX(i, j - 1, N)] + x[nsIX(i, j + 1, N)])
|
||||
) / c;
|
||||
}
|
||||
}
|
||||
|
||||
nsSetBnd(N, b, ref x);
|
||||
}
|
||||
|
||||
private void nsDiffuse(int N, int b, ref double[] x, ref double[] x0, double diff, double dt)
|
||||
{
|
||||
double a = dt * diff * N * N;
|
||||
nsLinSolve(N, b, ref x, ref x0, a, 1 + 4 * a);
|
||||
}
|
||||
|
||||
private void nsAdvect(int N, int b, ref double[] d, ref double[] d0, ref double[] u, ref double[] v, double dt)
|
||||
{
|
||||
int i, j, i0, j0, i1, j1;
|
||||
double x, y, s0, t0, s1, t1, dt0;
|
||||
|
||||
dt0 = dt * N;
|
||||
|
||||
for (i = 1; i <= N; i++)
|
||||
{
|
||||
for (j = 1; j <= N; j++)
|
||||
{
|
||||
x = i - dt0 * u[nsIX(i, j, N)];
|
||||
y = j - dt0 * v[nsIX(i, j, N)];
|
||||
|
||||
if (x < 0.5)
|
||||
x = 0.5;
|
||||
if (x > N + 0.5)
|
||||
x = N + 0.5;
|
||||
i0 = (int)x;
|
||||
i1 = i0 + 1;
|
||||
|
||||
if (y < 0.5)
|
||||
y = 0.5;
|
||||
if (y > N + 0.5)
|
||||
y = N + 0.5;
|
||||
j0 = (int)y;
|
||||
j1 = j0 + 1;
|
||||
|
||||
s1 = x - i0;
|
||||
s0 = 1 - s1;
|
||||
t1 = y - j0;
|
||||
t0 = 1 - t1;
|
||||
|
||||
d[nsIX(i, j, N)] = s0 * (t0 * d0[nsIX(i0, j0, N)] + t1 * d0[nsIX(i0, j1, N)]) +
|
||||
s1 * (t0 * d0[nsIX(i1, j0, N)] + t1 * d0[nsIX(i1, j1, N)]);
|
||||
}
|
||||
}
|
||||
|
||||
nsSetBnd(N, b, ref d);
|
||||
}
|
||||
|
||||
public void nsProject(int N, ref double[] u, ref double[] v, ref double[] p, ref double[] div)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
for (i = 1; i <= N; i++)
|
||||
{
|
||||
for (j = 1; j <= N; j++)
|
||||
{
|
||||
div[nsIX(i, j, N)] = -0.5 * (u[nsIX(i + 1, j, N)] - u[nsIX(i - 1, j, N)] + v[nsIX(i, j + 1, N)] - v[nsIX(i, j - 1, N)]) / N;
|
||||
p[nsIX(i, j, N)] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
nsSetBnd(N, 0, ref div);
|
||||
nsSetBnd(N, 0, ref p);
|
||||
|
||||
nsLinSolve(N, 0, ref p, ref div, 1, 4);
|
||||
|
||||
for (i = 1; i <= N; i++)
|
||||
{
|
||||
for (j = 1; j <= N; j++)
|
||||
{
|
||||
u[nsIX(i, j, N)] -= 0.5 * N * (p[nsIX(i + 1, j, N)] - p[nsIX(i - 1, j, N)]);
|
||||
v[nsIX(i, j, N)] -= 0.5 * N * (p[nsIX(i, j + 1, N)] - p[nsIX(i, j - 1, N)]);
|
||||
}
|
||||
}
|
||||
|
||||
nsSetBnd(N, 1, ref u);
|
||||
nsSetBnd(N, 2, ref v);
|
||||
}
|
||||
|
||||
private void nsDensStep(int N, ref double[] x, ref double[] x0, ref double[] u, ref double[] v, double diff, double dt)
|
||||
{
|
||||
nsAddSource(N, ref x, ref x0, dt);
|
||||
nsSwap(ref x0, ref x);
|
||||
nsDiffuse(N, 0, ref x, ref x0, diff, dt);
|
||||
nsSwap(ref x0, ref x);
|
||||
nsAdvect(N, 0, ref x, ref x0, ref u, ref v, dt);
|
||||
}
|
||||
|
||||
private void nsVelStep(int N, ref double[] u, ref double[] v, ref double[] u0, ref double[] v0, double visc, double dt)
|
||||
{
|
||||
nsAddSource(N, ref u, ref u0, dt);
|
||||
nsAddSource(N, ref v, ref v0, dt);
|
||||
nsSwap(ref u0, ref u);
|
||||
nsDiffuse(N, 1, ref u, ref u0, visc, dt);
|
||||
nsSwap(ref v0, ref v);
|
||||
nsDiffuse(N, 2, ref v, ref v0, visc, dt);
|
||||
nsProject(N, ref u, ref v, ref u0, ref v0);
|
||||
nsSwap(ref u0, ref u);
|
||||
nsSwap(ref v0, ref v);
|
||||
nsAdvect(N, 1, ref u, ref u0, ref u0, ref v0, dt);
|
||||
nsAdvect(N, 2, ref v, ref v0, ref u0, ref v0, dt);
|
||||
nsProject(N, ref u, ref v, ref u0, ref v0);
|
||||
}
|
||||
|
||||
public void navierSimulate()
|
||||
{
|
||||
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue