* Adding CrytoGridAssetClient support - allows encrypting assets that are stored on a potentially hostile grid. This is not DRM, not should be relied on until after it's been security audited. I'll write a blog post on this explaining how/why/when you should use this, and what it does.
parent
180e3de50f
commit
54d7be8a49
|
@ -0,0 +1,527 @@
|
|||
/*
|
||||
* Copyright (c) Contributors, http://www.openmetaverse.org/
|
||||
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of the OpenSim Project nor the
|
||||
* names of its contributors may be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
|
||||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
/*
|
||||
* This file includes content derived from Obviex.
|
||||
* Copyright (C) 2002 Obviex(TM). All rights reserved.
|
||||
* http://www.obviex.com/samples/Encryption.aspx
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.IO;
|
||||
using System.Reflection;
|
||||
using System.Text;
|
||||
using System.Xml.Serialization;
|
||||
using log4net;
|
||||
using OpenSim.Framework.Servers;
|
||||
using System.Security.Cryptography;
|
||||
|
||||
namespace OpenSim.Framework.Communications.Cache
|
||||
{
|
||||
public class CryptoGridAssetClient : AssetServerBase
|
||||
{
|
||||
#region Keyfile Classes
|
||||
[Serializable]
|
||||
private class RjinKeyfile
|
||||
{
|
||||
public string Secret;
|
||||
public string AlsoKnownAs;
|
||||
public int Keysize;
|
||||
public string IVBytes;
|
||||
public string Description = "OpenSim Key";
|
||||
|
||||
private static string SHA1Hash(byte[] bytes)
|
||||
{
|
||||
SHA1 sha1 = SHA1CryptoServiceProvider.Create();
|
||||
byte[] dataMd5 = sha1.ComputeHash(bytes);
|
||||
StringBuilder sb = new StringBuilder();
|
||||
for (int i = 0; i < dataMd5.Length; i++)
|
||||
sb.AppendFormat("{0:x2}", dataMd5[i]);
|
||||
return sb.ToString();
|
||||
}
|
||||
|
||||
public void GenerateRandom()
|
||||
{
|
||||
RNGCryptoServiceProvider Gen = new RNGCryptoServiceProvider();
|
||||
|
||||
byte[] genSec = new byte[32];
|
||||
byte[] genAKA = new byte[32];
|
||||
byte[] genIV = new byte[32];
|
||||
|
||||
Gen.GetBytes(genSec);
|
||||
Gen.GetBytes(genAKA);
|
||||
Gen.GetBytes(genIV);
|
||||
|
||||
Secret = SHA1Hash(genSec);
|
||||
AlsoKnownAs = SHA1Hash(genAKA);
|
||||
IVBytes = SHA1Hash(genIV).Substring(0, 16);
|
||||
Keysize = 256;
|
||||
}
|
||||
}
|
||||
#endregion
|
||||
|
||||
#region Rjindael
|
||||
/// <summary>
|
||||
/// This class uses a symmetric key algorithm (Rijndael/AES) to encrypt and
|
||||
/// decrypt data. As long as encryption and decryption routines use the same
|
||||
/// parameters to generate the keys, the keys are guaranteed to be the same.
|
||||
/// The class uses static functions with duplicate code to make it easier to
|
||||
/// demonstrate encryption and decryption logic. In a real-life application,
|
||||
/// this may not be the most efficient way of handling encryption, so - as
|
||||
/// soon as you feel comfortable with it - you may want to redesign this class.
|
||||
/// </summary>
|
||||
private class UtilRijndael
|
||||
{
|
||||
/// <summary>
|
||||
/// Encrypts specified plaintext using Rijndael symmetric key algorithm
|
||||
/// and returns a base64-encoded result.
|
||||
/// </summary>
|
||||
/// <param name="plainText">
|
||||
/// Plaintext value to be encrypted.
|
||||
/// </param>
|
||||
/// <param name="passPhrase">
|
||||
/// Passphrase from which a pseudo-random password will be derived. The
|
||||
/// derived password will be used to generate the encryption key.
|
||||
/// Passphrase can be any string. In this example we assume that this
|
||||
/// passphrase is an ASCII string.
|
||||
/// </param>
|
||||
/// <param name="saltValue">
|
||||
/// Salt value used along with passphrase to generate password. Salt can
|
||||
/// be any string. In this example we assume that salt is an ASCII string.
|
||||
/// </param>
|
||||
/// <param name="hashAlgorithm">
|
||||
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
|
||||
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
|
||||
/// </param>
|
||||
/// <param name="passwordIterations">
|
||||
/// Number of iterations used to generate password. One or two iterations
|
||||
/// should be enough.
|
||||
/// </param>
|
||||
/// <param name="initVector">
|
||||
/// Initialization vector (or IV). This value is required to encrypt the
|
||||
/// first block of plaintext data. For RijndaelManaged class IV must be
|
||||
/// exactly 16 ASCII characters long.
|
||||
/// </param>
|
||||
/// <param name="keySize">
|
||||
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
|
||||
/// Longer keys are more secure than shorter keys.
|
||||
/// </param>
|
||||
/// <returns>
|
||||
/// Encrypted value formatted as a base64-encoded string.
|
||||
/// </returns>
|
||||
public static byte[] Encrypt(byte[] plainText,
|
||||
string passPhrase,
|
||||
string saltValue,
|
||||
string hashAlgorithm,
|
||||
int passwordIterations,
|
||||
string initVector,
|
||||
int keySize)
|
||||
{
|
||||
// Convert strings into byte arrays.
|
||||
// Let us assume that strings only contain ASCII codes.
|
||||
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
|
||||
// encoding.
|
||||
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
|
||||
byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
|
||||
|
||||
// Convert our plaintext into a byte array.
|
||||
// Let us assume that plaintext contains UTF8-encoded characters.
|
||||
byte[] plainTextBytes = plainText;
|
||||
|
||||
// First, we must create a password, from which the key will be derived.
|
||||
// This password will be generated from the specified passphrase and
|
||||
// salt value. The password will be created using the specified hash
|
||||
// algorithm. Password creation can be done in several iterations.
|
||||
PasswordDeriveBytes password = new PasswordDeriveBytes(
|
||||
passPhrase,
|
||||
saltValueBytes,
|
||||
hashAlgorithm,
|
||||
passwordIterations);
|
||||
|
||||
// Use the password to generate pseudo-random bytes for the encryption
|
||||
// key. Specify the size of the key in bytes (instead of bits).
|
||||
byte[] keyBytes = password.GetBytes(keySize / 8);
|
||||
|
||||
// Create uninitialized Rijndael encryption object.
|
||||
RijndaelManaged symmetricKey = new RijndaelManaged();
|
||||
|
||||
// It is reasonable to set encryption mode to Cipher Block Chaining
|
||||
// (CBC). Use default options for other symmetric key parameters.
|
||||
symmetricKey.Mode = CipherMode.CBC;
|
||||
|
||||
// Generate encryptor from the existing key bytes and initialization
|
||||
// vector. Key size will be defined based on the number of the key
|
||||
// bytes.
|
||||
ICryptoTransform encryptor = symmetricKey.CreateEncryptor(
|
||||
keyBytes,
|
||||
initVectorBytes);
|
||||
|
||||
// Define memory stream which will be used to hold encrypted data.
|
||||
MemoryStream memoryStream = new MemoryStream();
|
||||
|
||||
// Define cryptographic stream (always use Write mode for encryption).
|
||||
CryptoStream cryptoStream = new CryptoStream(memoryStream,
|
||||
encryptor,
|
||||
CryptoStreamMode.Write);
|
||||
// Start encrypting.
|
||||
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
|
||||
|
||||
// Finish encrypting.
|
||||
cryptoStream.FlushFinalBlock();
|
||||
|
||||
// Convert our encrypted data from a memory stream into a byte array.
|
||||
byte[] cipherTextBytes = memoryStream.ToArray();
|
||||
|
||||
// Close both streams.
|
||||
memoryStream.Close();
|
||||
cryptoStream.Close();
|
||||
|
||||
// Return encrypted string.
|
||||
return cipherTextBytes;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
|
||||
/// </summary>
|
||||
/// <param name="cipherText">
|
||||
/// Base64-formatted ciphertext value.
|
||||
/// </param>
|
||||
/// <param name="passPhrase">
|
||||
/// Passphrase from which a pseudo-random password will be derived. The
|
||||
/// derived password will be used to generate the encryption key.
|
||||
/// Passphrase can be any string. In this example we assume that this
|
||||
/// passphrase is an ASCII string.
|
||||
/// </param>
|
||||
/// <param name="saltValue">
|
||||
/// Salt value used along with passphrase to generate password. Salt can
|
||||
/// be any string. In this example we assume that salt is an ASCII string.
|
||||
/// </param>
|
||||
/// <param name="hashAlgorithm">
|
||||
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
|
||||
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
|
||||
/// </param>
|
||||
/// <param name="passwordIterations">
|
||||
/// Number of iterations used to generate password. One or two iterations
|
||||
/// should be enough.
|
||||
/// </param>
|
||||
/// <param name="initVector">
|
||||
/// Initialization vector (or IV). This value is required to encrypt the
|
||||
/// first block of plaintext data. For RijndaelManaged class IV must be
|
||||
/// exactly 16 ASCII characters long.
|
||||
/// </param>
|
||||
/// <param name="keySize">
|
||||
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
|
||||
/// Longer keys are more secure than shorter keys.
|
||||
/// </param>
|
||||
/// <returns>
|
||||
/// Decrypted string value.
|
||||
/// </returns>
|
||||
/// <remarks>
|
||||
/// Most of the logic in this function is similar to the Encrypt
|
||||
/// logic. In order for decryption to work, all parameters of this function
|
||||
/// - except cipherText value - must match the corresponding parameters of
|
||||
/// the Encrypt function which was called to generate the
|
||||
/// ciphertext.
|
||||
/// </remarks>
|
||||
public static byte[] Decrypt(byte[] cipherText,
|
||||
string passPhrase,
|
||||
string saltValue,
|
||||
string hashAlgorithm,
|
||||
int passwordIterations,
|
||||
string initVector,
|
||||
int keySize)
|
||||
{
|
||||
// Convert strings defining encryption key characteristics into byte
|
||||
// arrays. Let us assume that strings only contain ASCII codes.
|
||||
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
|
||||
// encoding.
|
||||
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
|
||||
byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
|
||||
|
||||
// Convert our ciphertext into a byte array.
|
||||
byte[] cipherTextBytes = cipherText;
|
||||
|
||||
// First, we must create a password, from which the key will be
|
||||
// derived. This password will be generated from the specified
|
||||
// passphrase and salt value. The password will be created using
|
||||
// the specified hash algorithm. Password creation can be done in
|
||||
// several iterations.
|
||||
PasswordDeriveBytes password = new PasswordDeriveBytes(
|
||||
passPhrase,
|
||||
saltValueBytes,
|
||||
hashAlgorithm,
|
||||
passwordIterations);
|
||||
|
||||
// Use the password to generate pseudo-random bytes for the encryption
|
||||
// key. Specify the size of the key in bytes (instead of bits).
|
||||
byte[] keyBytes = password.GetBytes(keySize / 8);
|
||||
|
||||
// Create uninitialized Rijndael encryption object.
|
||||
RijndaelManaged symmetricKey = new RijndaelManaged();
|
||||
|
||||
// It is reasonable to set encryption mode to Cipher Block Chaining
|
||||
// (CBC). Use default options for other symmetric key parameters.
|
||||
symmetricKey.Mode = CipherMode.CBC;
|
||||
|
||||
// Generate decryptor from the existing key bytes and initialization
|
||||
// vector. Key size will be defined based on the number of the key
|
||||
// bytes.
|
||||
ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
|
||||
keyBytes,
|
||||
initVectorBytes);
|
||||
|
||||
// Define memory stream which will be used to hold encrypted data.
|
||||
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
|
||||
|
||||
// Define cryptographic stream (always use Read mode for encryption).
|
||||
CryptoStream cryptoStream = new CryptoStream(memoryStream,
|
||||
decryptor,
|
||||
CryptoStreamMode.Read);
|
||||
|
||||
// Since at this point we don't know what the size of decrypted data
|
||||
// will be, allocate the buffer long enough to hold ciphertext;
|
||||
// plaintext is never longer than ciphertext.
|
||||
byte[] plainTextBytes = new byte[cipherTextBytes.Length];
|
||||
|
||||
// Start decrypting.
|
||||
int decryptedByteCount = cryptoStream.Read(plainTextBytes,
|
||||
0,
|
||||
plainTextBytes.Length);
|
||||
|
||||
// Close both streams.
|
||||
memoryStream.Close();
|
||||
cryptoStream.Close();
|
||||
|
||||
byte[] plainText = new byte[decryptedByteCount];
|
||||
int i;
|
||||
for (i = 0; i < decryptedByteCount; i++)
|
||||
plainText[i] = plainTextBytes[i];
|
||||
|
||||
// Return decrypted string.
|
||||
return plainText;
|
||||
}
|
||||
}
|
||||
#endregion
|
||||
|
||||
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
|
||||
|
||||
private readonly string _assetServerUrl;
|
||||
private readonly bool m_encryptOnUpload;
|
||||
private readonly RjinKeyfile m_encryptKey;
|
||||
private readonly Dictionary<string,RjinKeyfile> m_keyfiles = new Dictionary<string, RjinKeyfile>();
|
||||
|
||||
public CryptoGridAssetClient(string serverUrl, string keydir, bool decOnly)
|
||||
{
|
||||
_assetServerUrl = serverUrl;
|
||||
|
||||
string[] keys = Directory.GetFiles(keydir, "*.deckey");
|
||||
foreach (string key in keys)
|
||||
{
|
||||
XmlSerializer xs = new XmlSerializer(typeof (RjinKeyfile));
|
||||
FileStream file = new FileStream(key, FileMode.Open, FileAccess.Read);
|
||||
|
||||
RjinKeyfile rjkey = (RjinKeyfile) xs.Deserialize(file);
|
||||
|
||||
file.Close();
|
||||
|
||||
m_keyfiles.Add(rjkey.AlsoKnownAs, rjkey);
|
||||
}
|
||||
|
||||
|
||||
keys = Directory.GetFiles(keydir, "*.enckey");
|
||||
if (keys.Length == 1)
|
||||
{
|
||||
string Ekey = keys[0];
|
||||
XmlSerializer Exs = new XmlSerializer(typeof (RjinKeyfile));
|
||||
FileStream Efile = new FileStream(Ekey, FileMode.Open, FileAccess.Read);
|
||||
|
||||
RjinKeyfile Erjkey = (RjinKeyfile) Exs.Deserialize(Efile);
|
||||
|
||||
Efile.Close();
|
||||
|
||||
m_keyfiles.Add(Erjkey.AlsoKnownAs, Erjkey);
|
||||
|
||||
m_encryptKey = Erjkey;
|
||||
} else
|
||||
{
|
||||
if (keys.Length > 1)
|
||||
throw new Exception(
|
||||
"You have more than one asset *encryption* key. (You should never have more than one)," +
|
||||
"If you downloaded this key from someone, rename it to <filename>.deckey to convert it to" +
|
||||
"a decryption-only key.");
|
||||
|
||||
m_log.Warn("No encryption key found, generating a new one for you...");
|
||||
RjinKeyfile encKey = new RjinKeyfile();
|
||||
encKey.GenerateRandom();
|
||||
|
||||
m_encryptKey = encKey;
|
||||
|
||||
FileStream encExportFile = new FileStream("mysecretkey_rename_me.enckey",FileMode.CreateNew);
|
||||
XmlSerializer xs = new XmlSerializer(typeof(RjinKeyfile));
|
||||
xs.Serialize(encExportFile, encKey);
|
||||
encExportFile.Flush();
|
||||
encExportFile.Close();
|
||||
|
||||
m_log.Info(
|
||||
"Encryption file generated, please rename 'mysecretkey_rename_me.enckey' to something more appropriate (however preserve the file extension).");
|
||||
}
|
||||
|
||||
// If Decrypt-Only, dont encrypt on upload
|
||||
m_encryptOnUpload = !decOnly;
|
||||
}
|
||||
|
||||
private static void EncryptAssetBase(AssetBase x, RjinKeyfile file)
|
||||
{
|
||||
// Make a salt
|
||||
RNGCryptoServiceProvider RandomGen = new RNGCryptoServiceProvider();
|
||||
byte[] rand = new byte[32];
|
||||
RandomGen.GetBytes(rand);
|
||||
|
||||
string salt = Convert.ToBase64String(rand);
|
||||
|
||||
x.Data = UtilRijndael.Encrypt(x.Data, file.Secret, salt, "SHA1", 2, file.IVBytes, file.Keysize);
|
||||
x.Description = String.Format("ENCASS#:~:#{0}#:~:#{1}#:~:#{2}#:~:#{3}",
|
||||
"OPENSIM_AES_AF1",
|
||||
file.AlsoKnownAs,
|
||||
salt,
|
||||
x.Description);
|
||||
}
|
||||
|
||||
private bool DecryptAssetBase(AssetBase x)
|
||||
{
|
||||
// Check it's encrypted first.
|
||||
if (!x.Description.Contains("ENCASS"))
|
||||
return true;
|
||||
|
||||
// ENCASS:ALG:AKA:SALT:Description
|
||||
// 0 1 2 3 4
|
||||
string[] splitchars = new string[1];
|
||||
splitchars[0] = "#:~:#";
|
||||
|
||||
string[] meta = x.Description.Split(splitchars, StringSplitOptions.None);
|
||||
if (meta.Length < 5)
|
||||
{
|
||||
m_log.Warn("[ENCASSETS] Recieved Encrypted Asset, but header is corrupt");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if we have a matching key
|
||||
if (m_keyfiles.ContainsKey(meta[2]))
|
||||
{
|
||||
RjinKeyfile deckey = m_keyfiles[meta[2]];
|
||||
x.Description = meta[4];
|
||||
switch (meta[1])
|
||||
{
|
||||
case "OPENSIM_AES_AF1":
|
||||
x.Data = UtilRijndael.Decrypt(x.Data,
|
||||
deckey.Secret,
|
||||
meta[3],
|
||||
"SHA1",
|
||||
2,
|
||||
deckey.IVBytes,
|
||||
deckey.Keysize);
|
||||
// Decrypted Successfully
|
||||
return true;
|
||||
default:
|
||||
m_log.Warn(
|
||||
"[ENCASSETS] Recieved Encrypted Asset, but we dont know how to decrypt '" + meta[1] + "'.");
|
||||
// We dont understand this encryption scheme
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
m_log.Warn("[ENCASSETS] Recieved Encrypted Asset, but we do not have the decryption key.");
|
||||
return false;
|
||||
}
|
||||
|
||||
#region IAssetServer Members
|
||||
|
||||
protected override AssetBase GetAsset(AssetRequest req)
|
||||
{
|
||||
#if DEBUG
|
||||
//m_log.DebugFormat("[GRID ASSET CLIENT]: Querying for {0}", req.AssetID.ToString());
|
||||
#endif
|
||||
|
||||
RestClient rc = new RestClient(_assetServerUrl);
|
||||
rc.AddResourcePath("assets");
|
||||
rc.AddResourcePath(req.AssetID.ToString());
|
||||
if (req.IsTexture)
|
||||
rc.AddQueryParameter("texture");
|
||||
|
||||
rc.RequestMethod = "GET";
|
||||
|
||||
Stream s = rc.Request();
|
||||
|
||||
if (s == null)
|
||||
return null;
|
||||
|
||||
if (s.Length > 0)
|
||||
{
|
||||
XmlSerializer xs = new XmlSerializer(typeof(AssetBase));
|
||||
|
||||
AssetBase encAsset = (AssetBase)xs.Deserialize(s);
|
||||
|
||||
// Try decrypt it
|
||||
if (DecryptAssetBase(encAsset))
|
||||
return encAsset;
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
public override void UpdateAsset(AssetBase asset)
|
||||
{
|
||||
throw new Exception("The method or operation is not implemented.");
|
||||
}
|
||||
|
||||
public override void StoreAsset(AssetBase asset)
|
||||
{
|
||||
if (m_encryptOnUpload)
|
||||
EncryptAssetBase(asset, m_encryptKey);
|
||||
|
||||
try
|
||||
{
|
||||
string assetUrl = _assetServerUrl + "/assets/";
|
||||
|
||||
m_log.InfoFormat("[CRYPTO GRID ASSET CLIENT]: Sending store request for asset {0}", asset.FullID);
|
||||
|
||||
RestObjectPoster.BeginPostObject<AssetBase>(assetUrl, asset);
|
||||
}
|
||||
catch (Exception e)
|
||||
{
|
||||
m_log.ErrorFormat("[CRYPTO GRID ASSET CLIENT]: {0}", e);
|
||||
}
|
||||
}
|
||||
|
||||
public override void Close()
|
||||
{
|
||||
throw new Exception("The method or operation is not implemented.");
|
||||
}
|
||||
|
||||
#endregion
|
||||
}
|
||||
}
|
|
@ -418,6 +418,16 @@ namespace OpenSim
|
|||
{
|
||||
assetServer = new GridAssetClient(m_networkServersInfo.AssetURL);
|
||||
}
|
||||
else if (m_assetStorage == "cryptogrid") // Decrypt-Only
|
||||
{
|
||||
assetServer = new CryptoGridAssetClient(m_networkServersInfo.AssetURL,
|
||||
Environment.CurrentDirectory, true);
|
||||
}
|
||||
else if (m_assetStorage == "cryptogrid_eou") // Encrypts All Assets
|
||||
{
|
||||
assetServer = new CryptoGridAssetClient(m_networkServersInfo.AssetURL,
|
||||
Environment.CurrentDirectory, false);
|
||||
}
|
||||
else if (m_assetStorage == "file")
|
||||
{
|
||||
assetServer = new FileAssetClient(m_networkServersInfo.AssetURL);
|
||||
|
|
Loading…
Reference in New Issue