missing file for suport of mesh upload cost

avinationmerge
UbitUmarov 2012-09-17 13:39:38 +01:00
parent bc85c1d084
commit 5bbc4fb2a5
1 changed files with 596 additions and 0 deletions

View File

@ -0,0 +1,596 @@
// Proprietary code of Avination Virtual Limited
// (c) 2012 Melanie Thielker, Leal Duarte
//
using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using OpenMetaverse;
using OpenMetaverse.StructuredData;
using OpenSim.Framework;
using OpenSim.Region.Framework;
using OpenSim.Region.Framework.Scenes;
using OpenSim.Framework.Capabilities;
using ComponentAce.Compression.Libs.zlib;
using OSDArray = OpenMetaverse.StructuredData.OSDArray;
using OSDMap = OpenMetaverse.StructuredData.OSDMap;
namespace OpenSim.Region.ClientStack.Linden
{
public class ModelCost
{
float ModelMinCost = 5.0f; // try to favor small meshs versus sculpts
// scale prices relative to basic cost
const float ModelCostScale = 1.0f;
const float primCreationCost = 0.01f; // 256 prims cost extra 2.56
// weigthed size to money convertion
const float bytecost = 1e-4f;
// for mesh upload fees based on compressed data sizes
// not using streaming physics and server costs as SL apparently does ??
const float medSizeWth = 1f; // 2x
const float lowSizeWth = 1.5f; // 2.5x
const float lowestSizeWth = 2f; // 3x
// favor potencial optimized meshs versus automatic decomposition
const float physMeshSizeWth = 6f; // counts 7x
const float physHullSizeWth = 8f; // counts 9x
// price compression to promote complex meshs
const float feeCompressionBase = 50.0f; // transition from linear to log cost
const float feeCompressionScale = 250.0f; // 10000 scales to 1000
// stream cost size factors
const float highLodFactor = 17.36f;
const float midLodFactor = 277.78f;
const float lowLodFactor = 1111.11f;
const int bytesPerCoord = 6; // 3 coords, 2 bytes per each
private class ameshCostParam
{
public int highLODSize;
public int medLODSize;
public int lowLODSize;
public int lowestLODSize;
public float costFee;
public float physicsCost;
}
public bool MeshModelCost(LLSDAssetResource resources, int basicCost, out int totalcost, LLSDAssetUploadResponseData meshcostdata, out string error)
{
totalcost = 0;
error = string.Empty;
if (resources == null ||
resources.instance_list == null ||
resources.instance_list.Array.Count == 0)
{
error = "Unable to upload mesh model. missing information.";
return false;
}
meshcostdata.model_streaming_cost = 0.0;
meshcostdata.simulation_cost = 0.0;
meshcostdata.physics_cost = 0.0;
meshcostdata.resource_cost = 0.0;
meshcostdata.upload_price_breakdown.mesh_instance = 0;
meshcostdata.upload_price_breakdown.mesh_physics = 0;
meshcostdata.upload_price_breakdown.mesh_streaming = 0;
meshcostdata.upload_price_breakdown.model = 0;
int itmp;
// textures cost
if (resources.texture_list != null && resources.texture_list.Array.Count > 0)
{
int textures_cost = resources.texture_list.Array.Count;
textures_cost *= basicCost;
meshcostdata.upload_price_breakdown.texture = textures_cost;
totalcost += textures_cost;
}
float meshsfee = 0;
// meshs assets cost
int numberMeshs = 0;
List<ameshCostParam> meshsCosts = new List<ameshCostParam>();
// a model could have no mesh actually
if (resources.mesh_list != null && resources.mesh_list.Array.Count > 0)
{
numberMeshs = resources.mesh_list.Array.Count;
for (int i = 0; i < numberMeshs; i++)
{
ameshCostParam curCost = new ameshCostParam();
byte[] data = (byte[])resources.mesh_list.Array[i];
if (!MeshCost(data, curCost, out error))
{
return false;
}
meshsCosts.Add(curCost);
meshsfee += curCost.costFee;
}
}
// instances (prims) cost
int numberInstances = resources.instance_list.Array.Count;
int mesh;
for (int i = 0; i < numberInstances; i++)
{
Hashtable inst = (Hashtable)resources.instance_list.Array[i];
// streamming cost
// assume all instances have a mesh
// but in general they can have normal prims
// but for now that seems not suported
// when they do, we will need to inspect pbs information
// and have cost funtions for all prims types
// don't check for shape type none, since
// that could be used to upload meshs with low cost
// changing later inworld
ArrayList ascale = (ArrayList)inst["scale"];
Vector3 scale;
double tmp;
tmp = (double)ascale[0];
scale.X = (float)tmp;
tmp = (double)ascale[1];
scale.Y = (float)tmp;
tmp = (double)ascale[2];
scale.Z = (float)tmp;
float sqdiam = scale.LengthSquared();
mesh = (int)inst["mesh"];
if(mesh >= numberMeshs)
{
error = "Unable to upload mesh model. incoerent information.";
return false;
}
ameshCostParam curCost = meshsCosts[mesh];
float mesh_streaming = streamingCost(curCost, sqdiam);
meshcostdata.model_streaming_cost += mesh_streaming;
meshcostdata.physics_cost += curCost.physicsCost;
// unscripted and static prim server cost
meshcostdata.simulation_cost += 0.5f;
// charge for prims creation
meshsfee += primCreationCost;
}
if (meshcostdata.physics_cost <= meshcostdata.model_streaming_cost)
meshcostdata.resource_cost = meshcostdata.model_streaming_cost;
else
meshcostdata.resource_cost = meshcostdata.physics_cost;
if (meshsfee < ModelMinCost)
meshsfee = ModelMinCost;
meshsfee *= ModelCostScale;
meshsfee += 0.5f; // rounding
totalcost += (int)meshsfee;
// breakdown prices
// don't seem to be in use so removed code for now
return true;
}
private bool MeshCost(byte[] data, ameshCostParam cost, out string error)
{
cost.highLODSize = 0;
cost.medLODSize = 0;
cost.lowLODSize = 0;
cost.lowestLODSize = 0;
cost.physicsCost = 0.0f;
cost.costFee = 0.0f;
error = string.Empty;
if (data == null || data.Length == 0)
{
error = "Unable to upload mesh model. missing information.";
return false;
}
OSD meshOsd = null;
int start = 0;
error = "Unable to upload mesh model. Invalid data";
using (MemoryStream ms = new MemoryStream(data))
{
try
{
OSD osd = OSDParser.DeserializeLLSDBinary(ms);
if (osd is OSDMap)
meshOsd = (OSDMap)osd;
else
return false;
}
catch (Exception e)
{
return false;
}
start = (int)ms.Position;
}
OSDMap map = (OSDMap)meshOsd;
OSDMap tmpmap;
int highlod_size = 0;
int medlod_size = 0;
int lowlod_size = 0;
int lowestlod_size = 0;
int skin_size = 0;
int hulls_size = 0;
int phys_nhulls;
int phys_hullsvertices = 0;
int physmesh_size = 0;
int phys_ntriangles = 0;
int submesh_offset = -1;
if (map.ContainsKey("physics_convex"))
{
tmpmap = (OSDMap)map["physics_convex"];
if (tmpmap.ContainsKey("offset"))
submesh_offset = tmpmap["offset"].AsInteger() + start;
if (tmpmap.ContainsKey("size"))
hulls_size = tmpmap["size"].AsInteger();
}
if (submesh_offset < 0 || hulls_size == 0)
{
error = "Unable to upload mesh model. missing physics_convex block";
return false;
}
if (!hulls(data, submesh_offset, hulls_size, out phys_hullsvertices, out phys_nhulls))
{
error = "Unable to upload mesh model. bad physics_convex block";
return false;
}
submesh_offset = -1;
// only look for LOD meshs sizes
if (map.ContainsKey("high_lod"))
{
tmpmap = (OSDMap)map["high_lod"];
// see at least if there is a offset for this one
if (tmpmap.ContainsKey("offset"))
submesh_offset = tmpmap["offset"].AsInteger() + start;
if (tmpmap.ContainsKey("size"))
highlod_size = tmpmap["size"].AsInteger();
}
if (submesh_offset < 0 || highlod_size <= 0)
{
error = "Unable to upload mesh model. missing high_lod";
return false;
}
bool haveprev = true;
if (map.ContainsKey("medium_lod"))
{
tmpmap = (OSDMap)map["medium_lod"];
if (tmpmap.ContainsKey("size"))
medlod_size = tmpmap["size"].AsInteger();
else
haveprev = false;
}
if (haveprev && map.ContainsKey("low_lod"))
{
tmpmap = (OSDMap)map["low_lod"];
if (tmpmap.ContainsKey("size"))
lowlod_size = tmpmap["size"].AsInteger();
else
haveprev = false;
}
if (haveprev && map.ContainsKey("lowest_lod"))
{
tmpmap = (OSDMap)map["lowest_lod"];
if (tmpmap.ContainsKey("size"))
lowestlod_size = tmpmap["size"].AsInteger();
}
if (map.ContainsKey("skin"))
{
tmpmap = (OSDMap)map["skin"];
if (tmpmap.ContainsKey("size"))
skin_size = tmpmap["size"].AsInteger();
}
cost.highLODSize = highlod_size;
cost.medLODSize = medlod_size;
cost.lowLODSize = lowlod_size;
cost.lowestLODSize = lowestlod_size;
submesh_offset = -1;
if (map.ContainsKey("physics_mesh"))
{
tmpmap = (OSDMap)map["physics_mesh"];
if (tmpmap.ContainsKey("offset"))
submesh_offset = tmpmap["offset"].AsInteger() + start;
if (tmpmap.ContainsKey("size"))
physmesh_size = tmpmap["size"].AsInteger();
if (submesh_offset >= 0 || physmesh_size > 0)
{
if (!submesh(data, submesh_offset, physmesh_size, out phys_ntriangles))
{
error = "Unable to upload mesh model. parsing error";
return false;
}
}
}
// upload is done in convex shape type so only one hull
phys_hullsvertices++;
cost.physicsCost = 0.04f * phys_hullsvertices;
float sfee;
sfee = data.Length; // start with total compressed data size
// penalize lod meshs that should be more builder optimized
sfee += medSizeWth * medlod_size;
sfee += lowSizeWth * lowlod_size;
sfee += lowestSizeWth * lowlod_size;
// physics
// favor potencial optimized meshs versus automatic decomposition
if (physmesh_size != 0)
sfee += physMeshSizeWth * (physmesh_size + hulls_size / 4); // reduce cost of mandatory convex hull
else
sfee += physHullSizeWth * hulls_size;
// bytes to money
sfee *= bytecost;
// fee compression
if (sfee > feeCompressionBase)
{
sfee -= feeCompressionBase;
sfee = feeCompressionScale * (float)Math.Log10((double)sfee);
sfee += feeCompressionBase;
}
cost.costFee = sfee;
return true;
}
private bool submesh(byte[] data, int offset, int size, out int ntriangles)
{
ntriangles = 0;
OSD decodedMeshOsd = new OSD();
byte[] meshBytes = new byte[size];
System.Buffer.BlockCopy(data, offset, meshBytes, 0, size);
try
{
using (MemoryStream inMs = new MemoryStream(meshBytes))
{
using (MemoryStream outMs = new MemoryStream())
{
using (ZOutputStream zOut = new ZOutputStream(outMs))
{
byte[] readBuffer = new byte[4096];
int readLen = 0;
while ((readLen = inMs.Read(readBuffer, 0, readBuffer.Length)) > 0)
{
zOut.Write(readBuffer, 0, readLen);
}
zOut.Flush();
outMs.Seek(0, SeekOrigin.Begin);
byte[] decompressedBuf = outMs.GetBuffer();
decodedMeshOsd = OSDParser.DeserializeLLSDBinary(decompressedBuf);
}
}
}
}
catch (Exception e)
{
return false;
}
OSDArray decodedMeshOsdArray = null;
if ((!decodedMeshOsd is OSDArray))
return false;
byte[] dummy;
decodedMeshOsdArray = (OSDArray)decodedMeshOsd;
foreach (OSD subMeshOsd in decodedMeshOsdArray)
{
if (subMeshOsd is OSDMap)
{
OSDMap subtmpmap = (OSDMap)subMeshOsd;
if (subtmpmap.ContainsKey("NoGeometry") && ((OSDBoolean)subtmpmap["NoGeometry"]))
continue;
if (!subtmpmap.ContainsKey("Position"))
return false;
if (subtmpmap.ContainsKey("TriangleList"))
{
dummy = subtmpmap["TriangleList"].AsBinary();
ntriangles += dummy.Length / bytesPerCoord;
}
else
return false;
}
}
return true;
}
private bool hulls(byte[] data, int offset, int size, out int nvertices, out int nhulls)
{
nvertices = 0;
nhulls = 1;
OSD decodedMeshOsd = new OSD();
byte[] meshBytes = new byte[size];
System.Buffer.BlockCopy(data, offset, meshBytes, 0, size);
try
{
using (MemoryStream inMs = new MemoryStream(meshBytes))
{
using (MemoryStream outMs = new MemoryStream())
{
using (ZOutputStream zOut = new ZOutputStream(outMs))
{
byte[] readBuffer = new byte[4096];
int readLen = 0;
while ((readLen = inMs.Read(readBuffer, 0, readBuffer.Length)) > 0)
{
zOut.Write(readBuffer, 0, readLen);
}
zOut.Flush();
outMs.Seek(0, SeekOrigin.Begin);
byte[] decompressedBuf = outMs.GetBuffer();
decodedMeshOsd = OSDParser.DeserializeLLSDBinary(decompressedBuf);
}
}
}
}
catch (Exception e)
{
return false;
}
OSDMap cmap = (OSDMap)decodedMeshOsd;
if (cmap == null)
return false;
byte[] dummy;
// must have one of this
if (cmap.ContainsKey("BoundingVerts"))
{
dummy = cmap["BoundingVerts"].AsBinary();
nvertices = dummy.Length / bytesPerCoord;
}
else
return false;
/* upload is done with convex shape type
if (cmap.ContainsKey("HullList"))
{
dummy = cmap["HullList"].AsBinary();
nhulls += dummy.Length;
}
if (cmap.ContainsKey("Positions"))
{
dummy = cmap["Positions"].AsBinary();
nvertices = dummy.Length / bytesPerCoord;
}
*/
return true;
}
private float streamingCost(ameshCostParam curCost, float sqdiam)
{
// compute efective areas
float ma = 262144f;
float mh = sqdiam * highLodFactor;
if (mh > ma)
mh = ma;
float mm = sqdiam * midLodFactor;
if (mm > ma)
mm = ma;
float ml = sqdiam * lowLodFactor;
if (ml > ma)
ml = ma;
float mlst = ma;
mlst -= ml;
ml -= mm;
mm -= mh;
if (mlst < 1.0f)
mlst = 1.0f;
if (ml < 1.0f)
ml = 1.0f;
if (mm < 1.0f)
mm = 1.0f;
if (mh < 1.0f)
mh = 1.0f;
ma = mlst + ml + mm + mh;
// get LODs compressed sizes
// giving 384 bytes bonus
int lst = curCost.lowestLODSize - 384;
int l = curCost.lowLODSize - 384;
int m = curCost.medLODSize - 384;
int h = curCost.highLODSize - 384;
// use previus higher LOD size on missing ones
if (m <= 0)
m = h;
if (l <= 0)
l = m;
if (lst <= 0)
lst = l;
// force minumum sizes
if (lst < 16)
lst = 16;
if (l < 16)
l = 16;
if (m < 16)
m = 16;
if (h < 16)
h = 16;
// compute cost weighted by relative effective areas
float cost = (float)lst * mlst + (float)l * ml + (float)m * mm + (float)h * mh;
cost /= ma;
cost *= 0.004f; // overall tunning parameter
return cost;
}
}
}