Add AverageUDPProcessTime stat to try and get a handle on how long we're taking on the initial processing of a UDP packet.

If we're not receiving packets with multiple threads (m_asyncPacketHandling) then this is critical since it will limit the number of incoming UDP requests that the region can handle and affects packet loss.
If m_asyncPacketHandling then this is less critical though a long process will increase the scope for threads to race.
This is an experimental stat which may be changed.
cpu-performance
Justin Clark-Casey (justincc) 2013-07-22 23:30:09 +01:00
parent 37337a4de9
commit 7f0f3cc011
2 changed files with 56 additions and 2 deletions

View File

@ -70,8 +70,8 @@ namespace OpenSim.Region.ClientStack.LindenUDP
StatsManager.RegisterStat(
new Stat(
"IncomingPacketsProcessedCount",
"Number of inbound UDP packets processed",
"Number of inbound UDP packets processed",
"Number of inbound LL protocol packets processed",
"Number of inbound LL protocol packets processed",
"",
"clientstack",
scene.Name,
@ -79,6 +79,21 @@ namespace OpenSim.Region.ClientStack.LindenUDP
MeasuresOfInterest.AverageChangeOverTime,
stat => stat.Value = m_udpServer.IncomingPacketsProcessed,
StatVerbosity.Debug));
StatsManager.RegisterStat(
new Stat(
"AverageUDPProcessTime",
"Average number of milliseconds taken to process each incoming UDP packet in a sample.",
"This is for initial receive processing which is separate from the later client LL packet processing stage.",
"ms",
"clientstack",
scene.Name,
StatType.Pull,
MeasuresOfInterest.None,
stat => stat.Value = m_udpServer.AverageReceiveTicksForLastSamplePeriod / TimeSpan.TicksPerMillisecond,
// stat =>
// stat.Value = Math.Round(m_udpServer.AverageReceiveTicksForLastSamplePeriod / TimeSpan.TicksPerMillisecond, 7),
StatVerbosity.Debug));
}
public bool HandlesRegion(Location x)

View File

@ -77,6 +77,26 @@ namespace OpenMetaverse
/// <remarks>If IsRunningOut = false, then any request to send a packet is simply dropped.</remarks>
public bool IsRunningOutbound { get; private set; }
/// <summary>
/// Number of receives over which to establish a receive time average.
/// </summary>
private readonly static int s_receiveTimeSamples = 500;
/// <summary>
/// Current number of samples taken to establish a receive time average.
/// </summary>
private int m_currentReceiveTimeSamples;
/// <summary>
/// Cumulative receive time for the sample so far.
/// </summary>
private int m_receiveTicksInCurrentSamplePeriod;
/// <summary>
/// The average time taken for each require receive in the last sample.
/// </summary>
public float AverageReceiveTicksForLastSamplePeriod { get; private set; }
/// <summary>
/// Default constructor
/// </summary>
@ -286,6 +306,8 @@ namespace OpenMetaverse
try
{
int startTick = Util.EnvironmentTickCount();
// get the length of data actually read from the socket, store it with the
// buffer
buffer.DataLength = m_udpSocket.EndReceiveFrom(iar, ref buffer.RemoteEndPoint);
@ -293,6 +315,23 @@ namespace OpenMetaverse
// call the abstract method PacketReceived(), passing the buffer that
// has just been filled from the socket read.
PacketReceived(buffer);
// If more than one thread can be calling AsyncEndReceive() at once (e.g. if m_asyncPacketHandler)
// then a particular stat may be inaccurate due to a race condition. We won't worry about this
// since this should be rare and won't cause a runtime problem.
if (m_currentReceiveTimeSamples >= s_receiveTimeSamples)
{
AverageReceiveTicksForLastSamplePeriod
= (float)m_receiveTicksInCurrentSamplePeriod / s_receiveTimeSamples;
m_receiveTicksInCurrentSamplePeriod = 0;
m_currentReceiveTimeSamples = 0;
}
else
{
m_receiveTicksInCurrentSamplePeriod += Util.EnvironmentTickCountSubtract(startTick);
m_currentReceiveTimeSamples++;
}
}
catch (SocketException) { }
catch (ObjectDisposedException) { }