Commit initial version of KittoFlora's vehicle changes

0.6.8-post-fixes
opensim 2009-09-30 18:51:02 +02:00
parent f6410882a5
commit 827b0fb199
12 changed files with 1439 additions and 725 deletions

View File

@ -68,11 +68,15 @@ namespace OpenSim.Region.Examples.SimpleModule
public override void UpdateMovement()
{
UpdateGroupRotation(GroupRotation * m_rotationDirection);
UpdateGroupRotationR(GroupRotation * m_rotationDirection);
base.UpdateMovement();
}
public ComplexObject()
{
}
public ComplexObject(Scene scene, ulong regionHandle, UUID ownerID, uint localID, Vector3 pos)
: base(ownerID, pos, PrimitiveBaseShape.Default)
{

View File

@ -2265,7 +2265,7 @@ namespace OpenSim.Region.Framework.Scenes
group.ClearPartAttachmentData();
}
group.UpdateGroupRotation(rot);
group.UpdateGroupRotationR(rot);
//group.ApplyPhysics(m_physicalPrim);
if (group.RootPart.PhysActor != null && group.RootPart.PhysActor.IsPhysical && vel != Vector3.Zero)

View File

@ -2810,7 +2810,7 @@ namespace OpenSim.Region.Framework.Scenes
// SceneObjectGroup obj = m_sceneGraph.DuplicateObject(localID, pos, target.GetEffectiveObjectFlags(), AgentID, GroupID, worldRot);
m_sceneGraph.DuplicateObject(localID, pos, target.GetEffectiveObjectFlags(), AgentID, GroupID, worldRot);
//obj.Rotation = worldRot;
//obj.UpdateGroupRotation(worldRot);
//obj.UpdateGroupRotationR(worldRot);
}
else
{
@ -4504,7 +4504,7 @@ namespace OpenSim.Region.Framework.Scenes
Quaternion q = trackedBody.RotationOffset * joint.LocalRotation;
jointProxyObject.ParentGroup.UpdateGroupPosition(proxyPos); // schedules the entire group for a terse update
jointProxyObject.ParentGroup.UpdateGroupRotation(q); // schedules the entire group for a terse update
jointProxyObject.ParentGroup.UpdateGroupRotationR(q); // schedules the entire group for a terse update
}
break;
}

View File

@ -1236,7 +1236,7 @@ namespace OpenSim.Region.Framework.Scenes
{
if (m_parentScene.Permissions.CanMoveObject(group.UUID, remoteClient.AgentId))
{
group.UpdateGroupRotation(rot);
group.UpdateGroupRotationR(rot);
}
}
}
@ -1255,7 +1255,7 @@ namespace OpenSim.Region.Framework.Scenes
{
if (m_parentScene.Permissions.CanMoveObject(group.UUID, remoteClient.AgentId))
{
group.UpdateGroupRotation(pos, rot);
group.UpdateGroupRotationPR(pos, rot);
}
}
}
@ -1811,7 +1811,7 @@ namespace OpenSim.Region.Framework.Scenes
if (rot != Quaternion.Identity)
{
copy.UpdateGroupRotation(rot);
copy.UpdateGroupRotationR(rot);
}
copy.CreateScriptInstances(0, false, m_parentScene.DefaultScriptEngine, 0);

View File

@ -367,6 +367,13 @@ namespace OpenSim.Region.Framework.Scenes
#region Constructors
/// <summary>
/// Constructor
/// </summary>
public SceneObjectGroup()
{
}
/// <summary>
/// This constructor creates a SceneObjectGroup using a pre-existing SceneObjectPart.
/// The original SceneObjectPart will be used rather than a copy, preserving
@ -2953,8 +2960,9 @@ namespace OpenSim.Region.Framework.Scenes
///
/// </summary>
/// <param name="rot"></param>
public void UpdateGroupRotation(Quaternion rot)
public void UpdateGroupRotationR(Quaternion rot)
{
m_rootPart.UpdateRotation(rot);
if (m_rootPart.PhysActor != null)
{
@ -2971,7 +2979,7 @@ namespace OpenSim.Region.Framework.Scenes
/// </summary>
/// <param name="pos"></param>
/// <param name="rot"></param>
public void UpdateGroupRotation(Vector3 pos, Quaternion rot)
public void UpdateGroupRotationPR(Vector3 pos, Quaternion rot)
{
m_rootPart.UpdateRotation(rot);
if (m_rootPart.PhysActor != null)
@ -3079,22 +3087,26 @@ namespace OpenSim.Region.Framework.Scenes
int yaxis = 4;
int zaxis = 8;
setX = ((axis & xaxis) != 0) ? true : false;
setY = ((axis & yaxis) != 0) ? true : false;
setZ = ((axis & zaxis) != 0) ? true : false;
float setval = (rotate10 > 0) ? 1f : 0f;
if (setX)
m_rootPart.RotationAxis.X = setval;
if (setY)
m_rootPart.RotationAxis.Y = setval;
if (setZ)
m_rootPart.RotationAxis.Z = setval;
if (setX || setY || setZ)
if (m_rootPart != null)
{
m_rootPart.SetPhysicsAxisRotation();
setX = ((axis & xaxis) != 0) ? true : false;
setY = ((axis & yaxis) != 0) ? true : false;
setZ = ((axis & zaxis) != 0) ? true : false;
float setval = (rotate10 > 0) ? 1f : 0f;
if (setX)
m_rootPart.RotationAxis.X = setval;
if (setY)
m_rootPart.RotationAxis.Y = setval;
if (setZ)
m_rootPart.RotationAxis.Z = setval;
if (setX || setY || setZ)
{
m_rootPart.SetPhysicsAxisRotation();
}
}
}

View File

@ -415,10 +415,9 @@ namespace OpenSim.Region.Framework.Scenes
set
{
m_name = value;
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.SOPName = value;
PhysActor.SOPName = value;
}
}
}
@ -428,11 +427,10 @@ namespace OpenSim.Region.Framework.Scenes
get { return (byte) m_material; }
set
{
PhysicsActor pa = PhysActor;
m_material = (Material)value;
if (pa != null)
if (PhysActor != null)
{
pa.SetMaterial((int)value);
PhysActor.SetMaterial((int)value);
}
}
}
@ -503,12 +501,11 @@ namespace OpenSim.Region.Framework.Scenes
get
{
// If this is a linkset, we don't want the physics engine mucking up our group position here.
PhysicsActor pa = PhysActor;
if (pa != null && _parentID == 0)
if (PhysActor != null && _parentID == 0)
{
m_groupPosition.X = pa.Position.X;
m_groupPosition.Y = pa.Position.Y;
m_groupPosition.Z = pa.Position.Z;
m_groupPosition.X = PhysActor.Position.X;
m_groupPosition.Y = PhysActor.Position.Y;
m_groupPosition.Z = PhysActor.Position.Z;
}
if (IsAttachment)
@ -528,27 +525,26 @@ namespace OpenSim.Region.Framework.Scenes
m_groupPosition = value;
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
try
{
// Root prim actually goes at Position
if (_parentID == 0)
{
pa.Position = new PhysicsVector(value.X, value.Y, value.Z);
PhysActor.Position = new PhysicsVector(value.X, value.Y, value.Z);
}
else
{
// To move the child prim in respect to the group position and rotation we have to calculate
Vector3 resultingposition = GetWorldPosition();
pa.Position = new PhysicsVector(resultingposition.X, resultingposition.Y, resultingposition.Z);
PhysActor.Position = new PhysicsVector(resultingposition.X, resultingposition.Y, resultingposition.Z);
Quaternion resultingrot = GetWorldRotation();
pa.Orientation = resultingrot;
PhysActor.Orientation = resultingrot;
}
// Tell the physics engines that this prim changed.
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
catch (Exception e)
{
@ -581,16 +577,15 @@ namespace OpenSim.Region.Framework.Scenes
if (ParentGroup != null && !ParentGroup.IsDeleted)
{
PhysicsActor pa = PhysActor;
if (_parentID != 0 && pa != null)
if (_parentID != 0 && PhysActor != null)
{
Vector3 resultingposition = GetWorldPosition();
pa.Position = new PhysicsVector(resultingposition.X, resultingposition.Y, resultingposition.Z);
PhysActor.Position = new PhysicsVector(resultingposition.X, resultingposition.Y, resultingposition.Z);
Quaternion resultingrot = GetWorldRotation();
pa.Orientation = resultingrot;
PhysActor.Orientation = resultingrot;
// Tell the physics engines that this prim changed.
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
}
}
@ -600,14 +595,13 @@ namespace OpenSim.Region.Framework.Scenes
{
get
{
PhysicsActor pa = PhysActor;
// We don't want the physics engine mucking up the rotations in a linkset
if ((_parentID == 0) && (Shape.PCode != 9 || Shape.State == 0) && (pa != null))
if ((_parentID == 0) && (Shape.PCode != 9 || Shape.State == 0) && (PhysActor != null))
{
if (pa.Orientation.X != 0 || pa.Orientation.Y != 0
|| pa.Orientation.Z != 0 || pa.Orientation.W != 0)
if (PhysActor.Orientation.X != 0 || PhysActor.Orientation.Y != 0
|| PhysActor.Orientation.Z != 0 || PhysActor.Orientation.W != 0)
{
m_rotationOffset = pa.Orientation;
m_rotationOffset = PhysActor.Orientation;
}
}
@ -616,28 +610,27 @@ namespace OpenSim.Region.Framework.Scenes
set
{
PhysicsActor pa = PhysActor;
StoreUndoState();
m_rotationOffset = value;
if (pa != null)
if (PhysActor != null)
{
try
{
// Root prim gets value directly
if (_parentID == 0)
{
pa.Orientation = value;
PhysActor.Orientation = value;
//m_log.Info("[PART]: RO1:" + PhysActor.Orientation.ToString());
}
else
{
// Child prim we have to calculate it's world rotationwel
Quaternion resultingrotation = GetWorldRotation();
pa.Orientation = resultingrotation;
PhysActor.Orientation = resultingrotation;
//m_log.Info("[PART]: RO2:" + PhysActor.Orientation.ToString());
}
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
//}
}
catch (Exception ex)
@ -657,14 +650,13 @@ namespace OpenSim.Region.Framework.Scenes
//if (PhysActor.Velocity.X != 0 || PhysActor.Velocity.Y != 0
//|| PhysActor.Velocity.Z != 0)
//{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
if (pa.IsPhysical)
if (PhysActor.IsPhysical)
{
m_velocity.X = pa.Velocity.X;
m_velocity.Y = pa.Velocity.Y;
m_velocity.Z = pa.Velocity.Z;
m_velocity.X = PhysActor.Velocity.X;
m_velocity.Y = PhysActor.Velocity.Y;
m_velocity.Z = PhysActor.Velocity.Z;
}
}
@ -674,13 +666,12 @@ namespace OpenSim.Region.Framework.Scenes
set
{
m_velocity = value;
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
if (pa.IsPhysical)
if (PhysActor.IsPhysical)
{
pa.Velocity = new PhysicsVector(value.X, value.Y, value.Z);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
PhysActor.Velocity = new PhysicsVector(value.X, value.Y, value.Z);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
}
}
@ -697,10 +688,9 @@ namespace OpenSim.Region.Framework.Scenes
{
get
{
PhysicsActor pa = PhysActor;
if ((pa != null) && pa.IsPhysical)
if ((PhysActor != null) && PhysActor.IsPhysical)
{
m_angularVelocity.FromBytes(pa.RotationalVelocity.GetBytes(), 0);
m_angularVelocity.FromBytes(PhysActor.RotationalVelocity.GetBytes(), 0);
}
return m_angularVelocity;
}
@ -719,11 +709,10 @@ namespace OpenSim.Region.Framework.Scenes
get { return m_description; }
set
{
PhysicsActor pa = PhysActor;
m_description = value;
if (pa != null)
if (PhysActor != null)
{
pa.SOPDescription = value;
PhysActor.SOPDescription = value;
}
}
}
@ -817,15 +806,14 @@ namespace OpenSim.Region.Framework.Scenes
if (m_shape != null) {
m_shape.Scale = value;
PhysicsActor pa = PhysActor;
if (pa != null && m_parentGroup != null)
if (PhysActor != null && m_parentGroup != null)
{
if (m_parentGroup.Scene != null)
{
if (m_parentGroup.Scene.PhysicsScene != null)
{
pa.Size = new PhysicsVector(m_shape.Scale.X, m_shape.Scale.Y, m_shape.Scale.Z);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
PhysActor.Size = new PhysicsVector(m_shape.Scale.X, m_shape.Scale.Y, m_shape.Scale.Z);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
}
}
@ -1355,14 +1343,13 @@ if (m_shape != null) {
RigidBody);
// Basic Physics returns null.. joy joy joy.
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.SOPName = this.Name; // save object name and desc into the PhysActor so ODE internals know the joint/body info
pa.SOPDescription = this.Description;
pa.LocalID = LocalId;
PhysActor.SOPName = this.Name; // save object name and desc into the PhysActor so ODE internals know the joint/body info
PhysActor.SOPDescription = this.Description;
PhysActor.LocalID = LocalId;
DoPhysicsPropertyUpdate(RigidBody, true);
pa.SetVolumeDetect(VolumeDetectActive ? 1 : 0);
PhysActor.SetVolumeDetect(VolumeDetectActive ? 1 : 0);
}
}
}
@ -1576,24 +1563,23 @@ if (m_shape != null) {
}
else
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
if (UsePhysics != pa.IsPhysical || isNew)
if (UsePhysics != PhysActor.IsPhysical || isNew)
{
if (pa.IsPhysical) // implies UsePhysics==false for this block
if (PhysActor.IsPhysical) // implies UsePhysics==false for this block
{
if (!isNew)
ParentGroup.Scene.RemovePhysicalPrim(1);
pa.OnRequestTerseUpdate -= PhysicsRequestingTerseUpdate;
pa.OnOutOfBounds -= PhysicsOutOfBounds;
pa.delink();
PhysActor.OnRequestTerseUpdate -= PhysicsRequestingTerseUpdate;
PhysActor.OnOutOfBounds -= PhysicsOutOfBounds;
PhysActor.delink();
if (ParentGroup.Scene.PhysicsScene.SupportsNINJAJoints && (!isNew))
{
// destroy all joints connected to this now deactivated body
m_parentGroup.Scene.PhysicsScene.RemoveAllJointsConnectedToActorThreadLocked(pa);
m_parentGroup.Scene.PhysicsScene.RemoveAllJointsConnectedToActorThreadLocked(PhysActor);
}
// stop client-side interpolation of all joint proxy objects that have just been deleted
@ -1612,7 +1598,7 @@ if (m_shape != null) {
//RotationalVelocity = new Vector3(0, 0, 0);
}
pa.IsPhysical = UsePhysics;
PhysActor.IsPhysical = UsePhysics;
// If we're not what we're supposed to be in the physics scene, recreate ourselves.
@ -1626,19 +1612,19 @@ if (m_shape != null) {
{
ParentGroup.Scene.AddPhysicalPrim(1);
pa.OnRequestTerseUpdate += PhysicsRequestingTerseUpdate;
pa.OnOutOfBounds += PhysicsOutOfBounds;
PhysActor.OnRequestTerseUpdate += PhysicsRequestingTerseUpdate;
PhysActor.OnOutOfBounds += PhysicsOutOfBounds;
if (_parentID != 0 && _parentID != LocalId)
{
if (ParentGroup.RootPart.PhysActor != null)
{
pa.link(ParentGroup.RootPart.PhysActor);
PhysActor.link(ParentGroup.RootPart.PhysActor);
}
}
}
}
}
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
}
}
@ -1704,10 +1690,9 @@ if (m_shape != null) {
public Vector3 GetGeometricCenter()
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
return new Vector3(pa.CenterOfMass.X, pa.CenterOfMass.Y, pa.CenterOfMass.Z);
return new Vector3(PhysActor.CenterOfMass.X, PhysActor.CenterOfMass.Y, PhysActor.CenterOfMass.Z);
}
else
{
@ -1717,10 +1702,9 @@ if (m_shape != null) {
public float GetMass()
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
return pa.Mass;
return PhysActor.Mass;
}
else
{
@ -1730,9 +1714,8 @@ if (m_shape != null) {
public PhysicsVector GetForce()
{
PhysicsActor pa = PhysActor;
if (pa != null)
return pa.Force;
if (PhysActor != null)
return PhysActor.Force;
else
return new PhysicsVector();
}
@ -2111,15 +2094,11 @@ if (m_shape != null) {
public void PhysicsRequestingTerseUpdate()
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
Vector3 newpos = new Vector3(pa.Position.GetBytes(), 0);
Vector3 newpos = new Vector3(PhysActor.Position.GetBytes(), 0);
if (m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.N) |
m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.S) |
m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.E) |
m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.W))
if (m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.N) | m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.S) | m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.E) | m_parentGroup.Scene.TestBorderCross(newpos, Cardinals.W))
{
m_parentGroup.AbsolutePosition = newpos;
return;
@ -2315,15 +2294,14 @@ if (m_shape != null) {
if (texture != null)
m_shape.SculptData = texture.Data;
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
// Tricks physics engine into thinking we've changed the part shape.
PrimitiveBaseShape m_newshape = m_shape.Copy();
pa.Shape = m_newshape;
PhysActor.Shape = m_newshape;
m_shape = m_newshape;
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
}
}
@ -2542,10 +2520,9 @@ if (m_shape != null) {
public void SetBuoyancy(float fvalue)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.Buoyancy = fvalue;
PhysActor.Buoyancy = fvalue;
}
}
@ -2561,62 +2538,56 @@ if (m_shape != null) {
public void SetFloatOnWater(int floatYN)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
if (floatYN == 1)
{
pa.FloatOnWater = true;
PhysActor.FloatOnWater = true;
}
else
{
pa.FloatOnWater = false;
PhysActor.FloatOnWater = false;
}
}
}
public void SetForce(PhysicsVector force)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.Force = force;
PhysActor.Force = force;
}
}
public void SetVehicleType(int type)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.VehicleType = type;
PhysActor.VehicleType = type;
}
}
public void SetVehicleFloatParam(int param, float value)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.VehicleFloatParam(param, value);
PhysActor.VehicleFloatParam(param, value);
}
}
public void SetVehicleVectorParam(int param, PhysicsVector value)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.VehicleVectorParam(param, value);
PhysActor.VehicleVectorParam(param, value);
}
}
public void SetVehicleRotationParam(int param, Quaternion rotation)
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.VehicleRotationParam(param, rotation);
PhysActor.VehicleRotationParam(param, rotation);
}
}
@ -2644,11 +2615,10 @@ if (m_shape != null) {
public void SetPhysicsAxisRotation()
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.LockAngularMotion(RotationAxis);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
PhysActor.LockAngularMotion(RotationAxis);
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
}
@ -3380,9 +3350,8 @@ if (m_shape != null) {
{
IsVD = false; // Switch it of for the course of this routine
VolumeDetectActive = false; // and also permanently
PhysicsActor pa = PhysActor;
if (pa != null)
pa.SetVolumeDetect(0); // Let physics know about it too
if (PhysActor != null)
PhysActor.SetVolumeDetect(0); // Let physics know about it too
}
else
{
@ -3430,21 +3399,18 @@ if (m_shape != null) {
if (IsPhantom || IsAttachment) // note: this may have been changed above in the case of joints
{
AddFlag(PrimFlags.Phantom);
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
m_parentGroup.Scene.PhysicsScene.RemovePrim(pa);
m_parentGroup.Scene.PhysicsScene.RemovePrim(PhysActor);
/// that's not wholesome. Had to make Scene public
pa = null;
PhysActor = null;
}
}
else // Not phantom
{
RemFlag(PrimFlags.Phantom);
// This is NOT safe!!
PhysicsActor pa = PhysActor;
if (pa == null)
if (PhysActor == null)
{
// It's not phantom anymore. So make sure the physics engine get's knowledge of it
PhysActor = m_parentGroup.Scene.PhysicsScene.AddPrimShape(
@ -3455,9 +3421,9 @@ if (m_shape != null) {
RotationOffset,
UsePhysics);
if (pa != null)
if (PhysActor != null)
{
pa.LocalID = LocalId;
PhysActor.LocalID = LocalId;
DoPhysicsPropertyUpdate(UsePhysics, true);
if (m_parentGroup != null)
{
@ -3476,14 +3442,14 @@ if (m_shape != null) {
(CollisionSound != UUID.Zero)
)
{
pa.OnCollisionUpdate += PhysicsCollision;
pa.SubscribeEvents(1000);
PhysActor.OnCollisionUpdate += PhysicsCollision;
PhysActor.SubscribeEvents(1000);
}
}
}
else // it already has a physical representation
{
pa.IsPhysical = UsePhysics;
PhysActor.IsPhysical = UsePhysics;
DoPhysicsPropertyUpdate(UsePhysics, false); // Update physical status. If it's phantom this will remove the prim
if (m_parentGroup != null)
@ -3506,10 +3472,9 @@ if (m_shape != null) {
// Defensive programming calls for a check here.
// Better would be throwing an exception that could be catched by a unit test as the internal
// logic should make sure, this Physactor is always here.
PhysicsActor pa = this.PhysActor;
if (pa != null)
if (this.PhysActor != null)
{
pa.SetVolumeDetect(1);
PhysActor.SetVolumeDetect(1);
AddFlag(PrimFlags.Phantom); // We set this flag also if VD is active
this.VolumeDetectActive = true;
}
@ -3517,11 +3482,10 @@ if (m_shape != null) {
}
else
{ // Remove VolumeDetect in any case. Note, it's safe to call SetVolumeDetect as often as you like
// (mumbles, well, at least if you have infinte CPU powers :-) )
PhysicsActor pa = this.PhysActor;
if (pa != null)
// (mumbles, well, at least if you have infinte CPU powers :-))
if (this.PhysActor != null)
{
pa.SetVolumeDetect(0);
PhysActor.SetVolumeDetect(0);
}
this.VolumeDetectActive = false;
}
@ -3579,11 +3543,10 @@ if (m_shape != null) {
m_shape.PathTaperY = shapeBlock.PathTaperY;
m_shape.PathTwist = shapeBlock.PathTwist;
m_shape.PathTwistBegin = shapeBlock.PathTwistBegin;
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.Shape = m_shape;
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(pa);
PhysActor.Shape = m_shape;
m_parentGroup.Scene.PhysicsScene.AddPhysicsActorTaint(PhysActor);
}
// This is what makes vehicle trailers work
@ -3684,21 +3647,19 @@ if (m_shape != null) {
)
{
// subscribe to physics updates.
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.OnCollisionUpdate += PhysicsCollision;
pa.SubscribeEvents(1000);
PhysActor.OnCollisionUpdate += PhysicsCollision;
PhysActor.SubscribeEvents(1000);
}
}
else
{
PhysicsActor pa = PhysActor;
if (pa != null)
if (PhysActor != null)
{
pa.UnSubscribeEvents();
pa.OnCollisionUpdate -= PhysicsCollision;
PhysActor.UnSubscribeEvents();
PhysActor.OnCollisionUpdate -= PhysicsCollision;
}
}
@ -3801,8 +3762,6 @@ if (m_shape != null) {
lPos = AbsolutePosition;
}
// Causes this thread to dig into the Client Thread Data.
// Remember your locking here!
remoteClient.SendPrimTerseUpdate(m_regionHandle,
(ushort)(m_parentGroup.GetTimeDilation() *
(float)ushort.MaxValue), LocalId, lPos,

View File

@ -70,7 +70,7 @@ namespace OpenSim.Region.Framework.Scenes.Tests
grp1.Rotation = (Quaternion.CreateFromEulers(90 * Utils.DEG_TO_RAD, 0, 0));
// <180,0,0>
grp2.UpdateGroupRotation(Quaternion.CreateFromEulers(180 * Utils.DEG_TO_RAD, 0, 0));
grp2.UpdateGroupRotationR(Quaternion.CreateFromEulers(180 * Utils.DEG_TO_RAD, 0, 0));
// Required for linking
grp1.RootPart.UpdateFlag = 0;
@ -154,13 +154,13 @@ namespace OpenSim.Region.Framework.Scenes.Tests
grp1.Rotation = (Quaternion.CreateFromEulers(90 * Utils.DEG_TO_RAD, 0, 0));
// <180,0,0>
grp2.UpdateGroupRotation(Quaternion.CreateFromEulers(180 * Utils.DEG_TO_RAD, 0, 0));
grp2.UpdateGroupRotationR(Quaternion.CreateFromEulers(180 * Utils.DEG_TO_RAD, 0, 0));
// <270,0,0>
grp3.Rotation = (Quaternion.CreateFromEulers(270 * Utils.DEG_TO_RAD, 0, 0));
// <0,90,0>
grp4.UpdateGroupRotation(Quaternion.CreateFromEulers(0, 90 * Utils.DEG_TO_RAD, 0));
grp4.UpdateGroupRotationR(Quaternion.CreateFromEulers(0, 90 * Utils.DEG_TO_RAD, 0));
// Required for linking
grp1.RootPart.UpdateFlag = 0;

View File

@ -1,4 +1,16 @@
/*
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
@ -37,10 +49,10 @@ using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEVehicleSettings
public class ODEDynamics
{
public Vehicle Type
{
{
get { return m_type; }
}
@ -49,49 +61,71 @@ namespace OpenSim.Region.Physics.OdePlugin
get { return m_body; }
}
private int frcount = 0;
// private float frmod = 3.0f;
private int frcount = 0; // Used to limit dynamics debug output to
// every 100th frame
private Vehicle m_type = Vehicle.TYPE_NONE;
// private OdeScene m_parentScene = null;
private IntPtr m_body = IntPtr.Zero;
private IntPtr m_jointGroup = IntPtr.Zero;
private IntPtr m_aMotor = IntPtr.Zero;
private IntPtr m_lMotor1 = IntPtr.Zero;
// private IntPtr m_lMotor2 = IntPtr.Zero;
// private IntPtr m_lMotor3 = IntPtr.Zero;
// Vehicle properties
// private Quaternion m_referenceFrame = Quaternion.Identity;
private Vector3 m_angularFrictionTimescale = Vector3.Zero;
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
// private bool m_LinearMotorSetLastFrame = false;
// private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero;
private Vector3 m_angularMotorDirectionLASTSET = Vector3.Zero;
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private Vector3 m_linearMotorDirection = Vector3.Zero;
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero;
// private Vector3 m_linearMotorOffset = Vector3.Zero;
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
private Vector3 m_angularFrictionTimescale = Vector3.Zero;
private float m_angularMotorDecayTimescale = 0;
private float m_angularMotorTimescale = 0;
private Vector3 m_lastAngularVelocityVector = Vector3.Zero;
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
// private float m_buoyancy = 0;
// private float m_hoverHeight = 0;
// private float m_hoverEfficiency = 0;
// private float m_hoverTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 0;
private float m_verticalAttractionTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
private Vector3 m_lastAngularVelocityVector = Vector3.Zero;
private VehicleFlag m_flags = (VehicleFlag) 0;
// private bool m_LinearMotorSetLastFrame = false;
@ -129,17 +163,21 @@ namespace OpenSim.Region.Physics.OdePlugin
// m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
// m_buoyancy = pValue;
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
case Vehicle.HOVER_EFFICIENCY:
// m_hoverEfficiency = pValue;
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_VhoverEfficiency = pValue;
break;
case Vehicle.HOVER_HEIGHT:
// m_hoverHeight = pValue;
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_hoverTimescale = pValue;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
@ -158,7 +196,8 @@ namespace OpenSim.Region.Physics.OdePlugin
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
if (pValue < 0.0f) pValue = 0.0f;
if (pValue > 1.0f) pValue = 1.0f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
@ -187,8 +226,8 @@ namespace OpenSim.Region.Physics.OdePlugin
break;
}
Reset();
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
{
@ -212,8 +251,8 @@ namespace OpenSim.Region.Physics.OdePlugin
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
Reset();
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
@ -223,113 +262,14 @@ namespace OpenSim.Region.Physics.OdePlugin
// m_referenceFrame = pValue;
break;
}
Reset();
}
}//end ProcessRotationVehicleParam
internal void ProcessTypeChange(Vehicle pType)
{
if (m_type == Vehicle.TYPE_NONE && pType != Vehicle.TYPE_NONE)
{
// Activate whatever it is
SetDefaultsForType(pType);
Reset();
}
else if (m_type != Vehicle.TYPE_NONE && pType != Vehicle.TYPE_NONE)
{
// Set properties
SetDefaultsForType(pType);
// then reset
Reset();
}
else if (m_type != Vehicle.TYPE_NONE && pType == Vehicle.TYPE_NONE)
{
m_type = pType;
Destroy();
}
}
internal void Disable()
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
if (m_aMotor != IntPtr.Zero)
{
}
}
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
// m_parentScene = pParentScene;
if (m_jointGroup == IntPtr.Zero)
m_jointGroup = d.JointGroupCreate(3);
if (pBody != IntPtr.Zero)
{
if (m_lMotor1 == IntPtr.Zero)
{
d.BodySetAutoDisableFlag(Body, false);
m_lMotor1 = d.JointCreateLMotor(pParentScene.world, m_jointGroup);
d.JointSetLMotorNumAxes(m_lMotor1, 1);
d.JointAttach(m_lMotor1, Body, IntPtr.Zero);
}
if (m_aMotor == IntPtr.Zero)
{
m_aMotor = d.JointCreateAMotor(pParentScene.world, m_jointGroup);
d.JointSetAMotorNumAxes(m_aMotor, 3);
d.JointAttach(m_aMotor, Body, IntPtr.Zero);
}
}
}
internal void Reset()
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
}
internal void Destroy()
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
if (m_aMotor != IntPtr.Zero)
{
d.JointDestroy(m_aMotor);
}
if (m_lMotor1 != IntPtr.Zero)
{
d.JointDestroy(m_lMotor1);
}
}
internal void Step(float pTimestep)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
frcount++;
if (frcount > 100)
frcount = 0;
VerticalAttractor(pTimestep);
LinearMotor(pTimestep);
AngularMotor(pTimestep);
}
private void SetDefaultsForType(Vehicle pType)
{
Console.WriteLine("ProcessTypeChange to " + pType);
// Set Defaults For Type
m_type = pType;
switch (pType)
{
@ -342,10 +282,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
// m_hoverHeight = 0;
// m_hoverEfficiency = 10;
// m_hoverTimescale = 10;
// m_buoyancy = 0;
m_VhoverHeight = 0;
m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
@ -368,10 +308,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
// m_hoverHeight = 0;
// // m_hoverEfficiency = 0;
// // m_hoverTimescale = 1000;
// // m_buoyancy = 0;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
@ -395,10 +335,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
// m_hoverHeight = 0;
// m_hoverEfficiency = 0.5f;
// m_hoverTimescale = 2;
// m_buoyancy = 1;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
@ -409,8 +349,9 @@ namespace OpenSim.Region.Physics.OdePlugin
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_UP_ONLY |
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
@ -422,10 +363,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
// m_hoverHeight = 0;
// m_hoverEfficiency = 0.5f;
// m_hoverTimescale = 1000;
// m_buoyancy = 0;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
@ -449,10 +390,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
// m_hoverHeight = 5;
// m_hoverEfficiency = 0.8f;
// m_hoverTimescale = 10;
// m_buoyancy = 1;
m_VhoverHeight = 5;
m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
@ -463,106 +404,165 @@ namespace OpenSim.Region.Physics.OdePlugin
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags = (VehicleFlag)0;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}
private void VerticalAttractor(float pTimestep)
}//end SetDefaultsForType
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
// The purpose of this routine here is to quickly stabilize the Body while it's popped up in the air.
// The amotor needs a few seconds to stabilize so without it, the avatar shoots up sky high when you
// change appearance and when you enter the simulator
// After this routine is done, the amotor stabilizes much quicker
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
//d.BodyGetS
//Console.WriteLine("Enable m_type=" + m_type + " m_VehicleBuoyancy=" + m_VehicleBuoyancy);
if (m_type == Vehicle.TYPE_NONE)
return;
d.Vector3 feet;
d.Vector3 head;
d.BodyGetRelPointPos(m_body, 0.0f, 0.0f, -1.0f, out feet);
d.BodyGetRelPointPos(m_body, 0.0f, 0.0f, 1.0f, out head);
float posture = head.Z - feet.Z;
//Console.WriteLine(String.Format("head: <{0},{1},{2}>, feet:<{3},{4},{5}> diff:<{6},{7},{8}>", head.X, head.Y, head.Z, feet.X,
// feet.Y, feet.Z, head.X - feet.X, head.Y - feet.Y, head.Z - feet.Z));
//Console.WriteLine(String.Format("diff:<{0},{1},{2}>",head.X - feet.X, head.Y - feet.Y, head.Z - feet.Z));
// restoring force proportional to lack of posture:
float servo = (2.5f - posture) * (objMass.mass * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep)) * objMass.mass;
d.BodyAddForceAtRelPos(m_body, 0.0f, 0.0f, servo, 0.0f, 0.0f, 1.0f);
d.BodyAddForceAtRelPos(m_body, 0.0f, 0.0f, -servo, 0.0f, 0.0f, -1.0f);
//d.BodyAddTorque(m_body, (head.X - feet.X) * servo, (head.Y - feet.Y) * servo, (head.Z - feet.Z) * servo);
//d.Matrix3 bodyrotation = d.BodyGetRotation(Body);
//m_log.Info("[PHYSICSAV]: Rotation: " + bodyrotation.M00 + " : " + bodyrotation.M01 + " : " + bodyrotation.M02 + " : " + bodyrotation.M10 + " : " + bodyrotation.M11 + " : " + bodyrotation.M12 + " : " + bodyrotation.M20 + " : " + bodyrotation.M21 + " : " + bodyrotation.M22);
m_body = pBody;
//KF: This used to set up the linear and angular joints
}
private void LinearMotor(float pTimestep)
internal void Step(float pTimestep, OdeScene pParentScene)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
frcount++; // used to limit debug comment output
if (frcount > 100)
frcount = 0;
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
MoveLinear(pTimestep, pParentScene);
MoveAngular(pTimestep);
}// end Step
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
{
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
{
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
m_lastLinearVelocityVector += (addAmount*10);
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// add drive to body
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
// This will work temporarily, but we really need to compare speed on an axis
// KF: Limit body velocity to applied velocity?
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
//Console.WriteLine("add: " + addAmount);
// decay applied velocity
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_linearMotorDirection -= m_linearMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
else
{ // requested is not significant
// if what remains of applied is small, zero it.
if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
m_lastLinearVelocityVector = Vector3.Zero;
}
// convert requested object velocity to world-referenced vector
m_dir = m_lastLinearVelocityVector;
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
m_dir *= rotq; // apply obj rotation to velocity vector
//System.Console.WriteLine(m_linearMotorDirection + " " + m_lastLinearVelocityVector);
// add Gravity andBuoyancy
// KF: So far I have found no good method to combine a script-requested
// .Z velocity and gravity. Therefore only 0g will used script-requested
// .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
Vector3 grav = Vector3.Zero;
if(m_VehicleBuoyancy < 1.0f)
{
// There is some gravity, make a gravity force vector
// that is applied after object velocity.
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
// Preserve the current Z velocity
d.Vector3 vel_now = d.BodyGetLinearVel(Body);
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
} // else its 1.0, no gravity.
// Check if hovering
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
d.Vector3 pos = d.BodyGetPosition(Body);
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
{
// If body is aready heigher, use its height as target height
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
// m_VhoverTimescale = 0f; // time to acheive height
// pTimestep is time since last frame,in secs
float herr0 = pos.Z - m_VhoverTargetHeight;
//if(frcount == 0) Console.WriteLine("herr0=" + herr0);
// Replace Vertical speed with correction figure if significant
if(Math.Abs(herr0) > 0.01f )
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
// m_VhoverEfficiency is not yet implemented
}
else
{
m_dir.Z = 0f;
}
}
// Apply velocity
d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
//if(frcount == 0) Console.WriteLine("Move " + Body + ":"+ m_dir.X + " " + m_dir.Y + " " + m_dir.Z);
// apply gravity force
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
//if(frcount == 0) Console.WriteLine("Force " + Body + ":" + grav.X + " " + grav.Y + " " + grav.Z);
SetLinearMotorProperties();
// apply friction
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
//m_linearMotorDirection *= decayamount;
}
private void SetLinearMotorProperties()
{
Vector3 dirNorm = m_lastLinearVelocityVector;
dirNorm.Normalize();
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
dirNorm *= rotq;
if (m_lMotor1 != IntPtr.Zero)
{
d.JointSetLMotorAxis(m_lMotor1, 0, 1, dirNorm.X, dirNorm.Y, dirNorm.Z);
d.JointSetLMotorParam(m_lMotor1, (int)dParam.Vel, m_lastLinearVelocityVector.Length());
d.JointSetLMotorParam(m_lMotor1, (int)dParam.FMax, 35f * objMass.mass);
}
}
private void AngularMotor(float pTimestep)
} // end MoveLinear()
private void MoveAngular(float pTimestep)
{
// m_angularMotorDirection is the latest value from the script, and is decayed here
// m_angularMotorDirectionLASTSET is the latest value from the script
// m_lastAngularVelocityVector is what is being applied to the Body, varied up and down here
if (!m_angularMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// ramp up to new value
Vector3 addAmount = m_angularMotorDirection / (m_angularMotorTimescale / pTimestep);
m_lastAngularVelocityVector += (addAmount * 10);
m_lastAngularVelocityVector += (addAmount * 10f);
//if(frcount == 0) Console.WriteLine("add: " + addAmount);
// limit applied value to what was set by script
// This will work temporarily, but we really need to compare speed on an axis
if (Math.Abs(m_lastAngularVelocityVector.X) > Math.Abs(m_angularMotorDirectionLASTSET.X))
m_lastAngularVelocityVector.X = m_angularMotorDirectionLASTSET.X;
@ -570,57 +570,61 @@ namespace OpenSim.Region.Physics.OdePlugin
m_lastAngularVelocityVector.Y = m_angularMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastAngularVelocityVector.Z) > Math.Abs(m_angularMotorDirectionLASTSET.Z))
m_lastAngularVelocityVector.Z = m_angularMotorDirectionLASTSET.Z;
//Console.WriteLine("add: " + addAmount);
// decay the requested value
Vector3 decayfraction = ((Vector3.One / (m_angularMotorDecayTimescale / pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_angularMotorDirection -= m_angularMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
//System.Console.WriteLine(m_linearMotorDirection + " " + m_lastLinearVelocityVector);
SetAngularMotorProperties();
// KF: m_lastAngularVelocityVector is rotational speed in rad/sec ?
// Vertical attractor section
// d.Mass objMass;
// d.BodyGetMass(Body, out objMass);
// float servo = 100f * objMass.mass * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
float servo = 0.1f * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
// get present body rotation
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
// Error is 0 (no error) to +/- 2 (max error)
// scale it by servo
verterr = verterr * servo;
// rotate to object frame
// verterr = verterr * rotq;
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
m_lastAngularVelocityVector.X += verterr.Y;
m_lastAngularVelocityVector.Y -= verterr.X;
/*
if(frcount == 0)
{
// Console.WriteLine("AngleMotor " + m_lastAngularVelocityVector);
Console.WriteLine(String.Format("VA Body:{0} servo:{1} err:<{2},{3},{4}> VAE:{5}",
Body, servo, verterr.X, verterr.Y, verterr.Z, m_verticalAttractionEfficiency));
}
*/
d.BodySetAngularVel (Body, m_lastAngularVelocityVector.X, m_lastAngularVelocityVector.Y, m_lastAngularVelocityVector.Z);
// apply friction
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
m_lastAngularVelocityVector -= m_lastAngularVelocityVector * decayamount;
//m_linearMotorDirection *= decayamount;
}
private void SetAngularMotorProperties()
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
//d.Quaternion rot = d.BodyGetQuaternion(Body);
//Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
Vector3 axis0 = Vector3.UnitX;
Vector3 axis1 = Vector3.UnitY;
Vector3 axis2 = Vector3.UnitZ;
//axis0 *= rotq;
//axis1 *= rotq;
//axis2 *= rotq;
if (m_aMotor != IntPtr.Zero)
{
d.JointSetAMotorAxis(m_aMotor, 0, 1, axis0.X, axis0.Y, axis0.Z);
d.JointSetAMotorAxis(m_aMotor, 1, 1, axis1.X, axis1.Y, axis1.Z);
d.JointSetAMotorAxis(m_aMotor, 2, 1, axis2.X, axis2.Y, axis2.Z);
d.JointSetAMotorParam(m_aMotor, (int)dParam.FMax, 30*objMass.mass);
d.JointSetAMotorParam(m_aMotor, (int)dParam.FMax2, 30*objMass.mass);
d.JointSetAMotorParam(m_aMotor, (int)dParam.FMax3, 30 * objMass.mass);
d.JointSetAMotorParam(m_aMotor, (int)dParam.Vel, m_lastAngularVelocityVector.X);
d.JointSetAMotorParam(m_aMotor, (int)dParam.Vel2, m_lastAngularVelocityVector.Y);
d.JointSetAMotorParam(m_aMotor, (int)dParam.Vel3, m_lastAngularVelocityVector.Z);
}
}
} //end MoveAngular
}
}

View File

@ -0,0 +1,658 @@
/*
* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEDynamics
{
public Vehicle Type
{
get { return m_type; }
}
public IntPtr Body
{
get { return m_body; }
}
private int frcount = 0; // Used to limit dynamics debug output to
// every 100th frame
// private OdeScene m_parentScene = null;
private IntPtr m_body = IntPtr.Zero;
private IntPtr m_jointGroup = IntPtr.Zero;
private IntPtr m_aMotor = IntPtr.Zero;
// Vehicle properties
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
// private bool m_LinearMotorSetLastFrame = false;
// private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private int m_angularMotorApply = 0; // application frame counter
private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
// private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 1.0f; // damped
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorDecayTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
case Vehicle.HOVER_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_VhoverEfficiency = pValue;
break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorDecayTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
if (pValue > 1.0f) pValue = 1.0f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
m_angularMotorApply = 10;
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// Limit requested angular speed to 2 rps= 4 pi rads/sec
if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
m_angularMotorApply = 10;
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessTypeChange(Vehicle pType)
{
// Set Defaults For Type
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_VhoverHeight = 0;
m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 1;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 10f;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5f;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2f;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 2;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5;
m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 100f;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
}
internal void Step(float pTimestep, OdeScene pParentScene)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
frcount++; // used to limit debug comment output
if (frcount > 100)
frcount = 0;
MoveLinear(pTimestep, pParentScene);
MoveAngular(pTimestep);
}// end Step
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
{
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// add drive to body
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
// This will work temporarily, but we really need to compare speed on an axis
// KF: Limit body velocity to applied velocity?
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
// decay applied velocity
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
else
{ // requested is not significant
// if what remains of applied is small, zero it.
if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
m_lastLinearVelocityVector = Vector3.Zero;
}
// convert requested object velocity to world-referenced vector
m_dir = m_lastLinearVelocityVector;
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
m_dir *= rotq; // apply obj rotation to velocity vector
// add Gravity andBuoyancy
// KF: So far I have found no good method to combine a script-requested
// .Z velocity and gravity. Therefore only 0g will used script-requested
// .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
Vector3 grav = Vector3.Zero;
if(m_VehicleBuoyancy < 1.0f)
{
// There is some gravity, make a gravity force vector
// that is applied after object velocity.
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
// Preserve the current Z velocity
d.Vector3 vel_now = d.BodyGetLinearVel(Body);
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
} // else its 1.0, no gravity.
// Check if hovering
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
d.Vector3 pos = d.BodyGetPosition(Body);
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
{
// If body is aready heigher, use its height as target height
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
// m_VhoverTimescale = 0f; // time to acheive height
// pTimestep is time since last frame,in secs
float herr0 = pos.Z - m_VhoverTargetHeight;
// Replace Vertical speed with correction figure if significant
if(Math.Abs(herr0) > 0.01f )
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
//KF: m_VhoverEfficiency is not yet implemented
}
else
{
m_dir.Z = 0f;
}
}
// Apply velocity
d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
// apply gravity force
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
// apply friction
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
} // end MoveLinear()
private void MoveAngular(float pTimestep)
{
/*
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private int m_angularMotorApply = 0; // application frame counter
private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down)
private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
*/
// Get what the body is doing, this includes 'external' influences
d.Vector3 angularVelocity = d.BodyGetAngularVel(Body);
// Vector3 angularVelocity = Vector3.Zero;
if (m_angularMotorApply > 0)
{
// ramp up to new value
// current velocity += error / ( time to get there / step interval )
// requested speed - last motor speed
m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep);
m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);
m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected
// velocity may still be acheived.
}
else
{
// no motor recently applied, keep the body velocity
/* m_angularMotorVelocity.X = angularVelocity.X;
m_angularMotorVelocity.Y = angularVelocity.Y;
m_angularMotorVelocity.Z = angularVelocity.Z; */
// and decay the velocity
m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
} // end motor section
// Vertical attractor section
Vector3 vertattr = Vector3.Zero;
if(m_verticalAttractionTimescale < 300)
{
float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep);
// get present body rotation
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
// Error is 0 (no error) to +/- 2 (max error)
// scale it by VAservo
verterr = verterr * VAservo;
//if(frcount == 0) Console.WriteLine("VAerr=" + verterr);
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
vertattr.X = verterr.Y;
vertattr.Y = - verterr.X;
vertattr.Z = 0f;
// scaling appears better usingsquare-law
float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
vertattr.X += bounce * angularVelocity.X;
vertattr.Y += bounce * angularVelocity.Y;
} // else vertical attractor is off
// m_lastVertAttractor = vertattr;
// Bank section tba
// Deflection section tba
// Sum velocities
m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection
if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
}
else
{
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
}
// apply friction
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
// Apply to the body
d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
} //end MoveAngular
}
}

View File

@ -1,4 +1,15 @@
/*
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
@ -72,6 +83,9 @@ namespace OpenSim.Region.Physics.OdePlugin
private float PID_G = 25f;
private bool m_usePID = false;
// KF: These next 7 params apply to llSetHoverHeight(float height, integer water, float tau),
// and are for non-VEHICLES only.
private float m_PIDHoverHeight = 0f;
private float m_PIDHoverTau = 0f;
private bool m_useHoverPID = false;
@ -79,6 +93,7 @@ namespace OpenSim.Region.Physics.OdePlugin
private float m_targetHoverHeight = 0f;
private float m_groundHeight = 0f;
private float m_waterHeight = 0f;
private float m_buoyancy = 0f; //KF: m_buoyancy should be set by llSetBuoyancy() for non-vehicle.
// private float m_tensor = 5f;
private int body_autodisable_frames = 20;
@ -147,8 +162,6 @@ namespace OpenSim.Region.Physics.OdePlugin
public int m_roundsUnderMotionThreshold = 0;
private int m_crossingfailures = 0;
public float m_buoyancy = 0f;
public bool outofBounds = false;
private float m_density = 10.000006836f; // Aluminum g/cm3;
@ -156,7 +169,8 @@ namespace OpenSim.Region.Physics.OdePlugin
private bool m_lastUpdateSent = false;
public IntPtr Body = (IntPtr) 0;
private String m_primName;
public String m_primName;
// private String m_primName;
private PhysicsVector _target_velocity;
public d.Mass pMass;
@ -167,7 +181,7 @@ namespace OpenSim.Region.Physics.OdePlugin
public volatile bool childPrim = false;
private ODEVehicleSettings m_vehicle;
private ODEDynamics m_vehicle;
internal int m_material = (int)Material.Wood;
@ -175,7 +189,7 @@ namespace OpenSim.Region.Physics.OdePlugin
Quaternion rotation, IMesh mesh, PrimitiveBaseShape pbs, bool pisPhysical, CollisionLocker dode)
{
_target_velocity = new PhysicsVector(0, 0, 0);
m_vehicle = new ODEVehicleSettings();
m_vehicle = new ODEDynamics();
//gc = GCHandle.Alloc(prim_geom, GCHandleType.Pinned);
ode = dode;
_velocity = new PhysicsVector();
@ -260,11 +274,6 @@ namespace OpenSim.Region.Physics.OdePlugin
m_localID = value; }
}
public override int GetHashCode()
{
return (int)m_localID;
}
public override bool Grabbed
{
set { return; }
@ -273,6 +282,8 @@ namespace OpenSim.Region.Physics.OdePlugin
public override bool Selected
{
set {
// This only makes the object not collidable if the object
// is physical or the object is modified somehow *IN THE FUTURE*
// without this, if an avatar selects prim, they can walk right
@ -288,6 +299,7 @@ namespace OpenSim.Region.Physics.OdePlugin
m_taintselected = value;
m_isSelected = value;
}
if(m_isSelected) disableBodySoft();
}
}
@ -295,6 +307,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
prev_geom = prim_geom;
prim_geom = geom;
//Console.WriteLine("SetGeom to " + prim_geom + " for " + m_primName);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
@ -306,6 +319,7 @@ namespace OpenSim.Region.Physics.OdePlugin
if (_parent != null && _parent is OdePrim)
{
OdePrim parent = (OdePrim)_parent;
//Console.WriteLine("SetGeom calls ChildSetGeom");
parent.ChildSetGeom(this);
}
}
@ -321,7 +335,8 @@ namespace OpenSim.Region.Physics.OdePlugin
if (m_isphysical && Body != IntPtr.Zero)
{
d.BodyEnable(Body);
m_vehicle.Enable(Body, _parent_scene);
if (m_vehicle.Type != Vehicle.TYPE_NONE)
m_vehicle.Enable(Body, _parent_scene);
}
m_disabled = false;
@ -335,7 +350,6 @@ namespace OpenSim.Region.Physics.OdePlugin
if (m_isphysical && Body != IntPtr.Zero)
{
d.BodyDisable(Body);
m_vehicle.Disable();
}
}
@ -365,6 +379,9 @@ namespace OpenSim.Region.Physics.OdePlugin
d.BodySetAutoDisableFlag(Body, true);
d.BodySetAutoDisableSteps(Body, body_autodisable_frames);
// disconnect from world gravity so we can apply buoyancy
d.BodySetGravityMode (Body, false);
m_interpenetrationcount = 0;
m_collisionscore = 0;
@ -711,13 +728,8 @@ namespace OpenSim.Region.Physics.OdePlugin
break;
}
}
return returnMass;
}
}// end CalculateMass
#endregion
@ -743,7 +755,6 @@ namespace OpenSim.Region.Physics.OdePlugin
if (Body != IntPtr.Zero)
{
_parent_scene.remActivePrim(this);
m_vehicle.Destroy();
m_collisionCategories &= ~CollisionCategories.Body;
m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land);
@ -838,6 +849,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
if (prim_geom == IntPtr.Zero)
{
//Console.WriteLine(" setMesh 1");
SetGeom(d.CreateTriMesh(m_targetSpace, _triMeshData, parent_scene.triCallback, null, null));
}
}
@ -865,19 +877,35 @@ namespace OpenSim.Region.Physics.OdePlugin
public void ProcessTaints(float timestep)
{
//Console.WriteLine("ProcessTaints for " + m_primName );
if (m_taintadd)
{
changeadd(timestep);
}
if (prim_geom != IntPtr.Zero)
{
if (!_position.IsIdentical(m_taintposition,0f))
changemove(timestep);
if (!_position.IsIdentical(m_taintposition,0f))
changemove(timestep);
if (m_taintrot != _orientation)
rotate(timestep);
if (m_taintrot != _orientation)
{
if(childPrim && IsPhysical) // For physical child prim...
{
rotate(timestep);
// KF: ODE will also rotate the parent prim!
// so rotate the root back to where it was
OdePrim parent = (OdePrim)_parent;
parent.rotate(timestep);
}
else
{
//Just rotate the prim
rotate(timestep);
}
}
//
if (m_taintPhysics != m_isphysical && !(m_taintparent != _parent))
changePhysicsStatus(timestep);
//
@ -916,8 +944,7 @@ namespace OpenSim.Region.Physics.OdePlugin
if (!m_angularlock.IsIdentical(m_taintAngularLock,0))
changeAngularLock(timestep);
}
else
{
@ -949,11 +976,6 @@ namespace OpenSim.Region.Physics.OdePlugin
Amotor = IntPtr.Zero;
}
}
if (m_vehicle.Type != Vehicle.TYPE_NONE)
{
m_vehicle.Reset();
}
}
}
// Store this for later in case we get turned into a separate body
@ -971,7 +993,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
OdePrim obj = (OdePrim)m_taintparent;
//obj.disableBody();
//Console.WriteLine("changelink calls ParentPrim");
obj.ParentPrim(this);
/*
@ -989,6 +1011,8 @@ namespace OpenSim.Region.Physics.OdePlugin
// destroy link
else if (_parent != null && m_taintparent == null)
{
//Console.WriteLine(" changelink B");
if (_parent is OdePrim)
{
OdePrim obj = (OdePrim)_parent;
@ -1005,7 +1029,7 @@ namespace OpenSim.Region.Physics.OdePlugin
m_linkJoint = (IntPtr)0;
*/
}
_parent = m_taintparent;
m_taintPhysics = m_isphysical;
}
@ -1014,6 +1038,7 @@ namespace OpenSim.Region.Physics.OdePlugin
// prim is the child
public void ParentPrim(OdePrim prim)
{
//Console.WriteLine("ParentPrim " + m_primName);
if (this.m_localID != prim.m_localID)
{
if (Body == IntPtr.Zero)
@ -1027,6 +1052,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
if (!childrenPrim.Contains(prim))
{
//Console.WriteLine("childrenPrim.Add " + prim);
childrenPrim.Add(prim);
foreach (OdePrim prm in childrenPrim)
@ -1050,6 +1076,7 @@ namespace OpenSim.Region.Physics.OdePlugin
}
foreach (OdePrim prm in childrenPrim)
{
prm.m_collisionCategories |= CollisionCategories.Body;
prm.m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
@ -1058,7 +1085,7 @@ namespace OpenSim.Region.Physics.OdePlugin
m_log.Warn("[PHYSICS]: Unable to link one of the linkset elements. No geom yet");
continue;
}
//Console.WriteLine(" GeomSetCategoryBits 1: " + prm.prim_geom + " - " + (int)prm.m_collisionCategories + " for " + m_primName);
d.GeomSetCategoryBits(prm.prim_geom, (int)prm.m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (int)prm.m_collisionFlags);
@ -1103,11 +1130,12 @@ namespace OpenSim.Region.Physics.OdePlugin
prm.Body = Body;
_parent_scene.addActivePrim(prm);
}
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
//Console.WriteLine("GeomSetCategoryBits 2: " + prim_geom + " - " + (int)m_collisionCategories + " for " + m_primName);
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
//Console.WriteLine(" Post GeomSetCategoryBits 2");
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
@ -1143,7 +1171,7 @@ namespace OpenSim.Region.Physics.OdePlugin
createAMotor(m_angularlock);
}
d.BodySetPosition(Body, Position.X, Position.Y, Position.Z);
m_vehicle.Enable(Body, _parent_scene);
if (m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Enable(Body, _parent_scene);
_parent_scene.addActivePrim(this);
}
}
@ -1180,6 +1208,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
foreach (OdePrim prm in childrenPrim)
{
//Console.WriteLine("ChildSetGeom calls ParentPrim");
ParentPrim(prm);
}
}
@ -1206,6 +1235,7 @@ namespace OpenSim.Region.Physics.OdePlugin
lock (childrenPrim)
{
//Console.WriteLine("childrenPrim.Remove " + odePrim);
childrenPrim.Remove(odePrim);
}
@ -1223,6 +1253,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
foreach (OdePrim prm in childrenPrim)
{
//Console.WriteLine("ChildDelink calls ParentPrim");
ParentPrim(prm);
}
}
@ -1307,7 +1338,7 @@ namespace OpenSim.Region.Physics.OdePlugin
resetCollisionAccounting();
m_isSelected = m_taintselected;
}
}//end changeSelectedStatus
public void ResetTaints()
{
@ -1324,6 +1355,7 @@ namespace OpenSim.Region.Physics.OdePlugin
public void CreateGeom(IntPtr m_targetSpace, IMesh _mesh)
{
//Console.WriteLine("CreateGeom:");
if (_mesh != null)
{
setMesh(_parent_scene, _mesh);
@ -1339,6 +1371,7 @@ namespace OpenSim.Region.Physics.OdePlugin
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
//Console.WriteLine(" CreateGeom 1");
SetGeom(d.CreateSphere(m_targetSpace, _size.X / 2));
}
catch (AccessViolationException)
@ -1353,6 +1386,7 @@ namespace OpenSim.Region.Physics.OdePlugin
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
//Console.WriteLine(" CreateGeom 2");
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
@ -1368,6 +1402,7 @@ namespace OpenSim.Region.Physics.OdePlugin
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
//Console.WriteLine(" CreateGeom 3");
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
@ -1384,6 +1419,7 @@ namespace OpenSim.Region.Physics.OdePlugin
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
//Console.WriteLine(" CreateGeom 4");
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (AccessViolationException)
@ -1420,6 +1456,7 @@ namespace OpenSim.Region.Physics.OdePlugin
lock (_parent_scene.OdeLock)
{
//Console.WriteLine("changeadd 1");
CreateGeom(m_targetSpace, _mesh);
if (prim_geom != IntPtr.Zero)
@ -1475,6 +1512,8 @@ namespace OpenSim.Region.Physics.OdePlugin
OdePrim odParent = (OdePrim)_parent;
if (Body != (IntPtr)0 && odParent.Body != (IntPtr)0 && Body != odParent.Body)
{
// KF: Fixed Joints were removed? Anyway - this Console.WriteLine does not show up, so routine is not used??
Console.WriteLine(" JointCreateFixed");
m_linkJoint = d.JointCreateFixed(_parent_scene.world, _linkJointGroup);
d.JointAttach(m_linkJoint, Body, odParent.Body);
d.JointSetFixed(m_linkJoint);
@ -1528,239 +1567,236 @@ namespace OpenSim.Region.Physics.OdePlugin
float fz = 0;
if (IsPhysical && Body != IntPtr.Zero && !m_isSelected)
if (IsPhysical && (Body != IntPtr.Zero) && !m_isSelected && !childPrim) // KF: Only move root prims.
{
if (d.BodyIsEnabled(Body) && !m_angularlock.IsIdentical(PhysicsVector.Zero, 0.003f))
{
d.Vector3 avel2 = d.BodyGetAngularVel(Body);
if (m_angularlock.X == 1)
avel2.X = 0;
if (m_angularlock.Y == 1)
avel2.Y = 0;
if (m_angularlock.Z == 1)
avel2.Z = 0;
d.BodySetAngularVel(Body, avel2.X, avel2.Y, avel2.Z);
}
//float PID_P = 900.0f;
if (m_vehicle.Type != Vehicle.TYPE_NONE)
{
// 'VEHICLES' are dealt with in ODEDynamics.cs
m_vehicle.Step(timestep, _parent_scene);
}
else
{
// NON-'VEHICLES' are dealt with here
if (d.BodyIsEnabled(Body) && !m_angularlock.IsIdentical(PhysicsVector.Zero, 0.003f))
{
d.Vector3 avel2 = d.BodyGetAngularVel(Body);
if (m_angularlock.X == 1)
avel2.X = 0;
if (m_angularlock.Y == 1)
avel2.Y = 0;
if (m_angularlock.Z == 1)
avel2.Z = 0;
d.BodySetAngularVel(Body, avel2.X, avel2.Y, avel2.Z);
}
//float PID_P = 900.0f;
float m_mass = CalculateMass();
float m_mass = CalculateMass();
fz = 0f;
// fz = 0f;
//m_log.Info(m_collisionFlags.ToString());
if (m_buoyancy != 0)
{
if (m_buoyancy > 0)
{
fz = (((-1 * _parent_scene.gravityz) * m_buoyancy) * m_mass);
//KF: m_buoyancy should be set by llSetBuoyancy() for non-vehicle.
// would come from SceneObjectPart.cs, public void SetBuoyancy(float fvalue) , PhysActor.Buoyancy = fvalue; ??
// m_buoyancy: (unlimited value) <0=Falls fast; 0=1g; 1=0g; >1 = floats up
// gravityz multiplier = 1 - m_buoyancy
fz = _parent_scene.gravityz * (1.0f - m_buoyancy) * m_mass;
//d.Vector3 l_velocity = d.BodyGetLinearVel(Body);
//m_log.Info("Using Buoyancy: " + buoyancy + " G: " + (_parent_scene.gravityz * m_buoyancy) + "mass:" + m_mass + " Pos: " + Position.ToString());
}
else
{
fz = (-1 * (((-1 * _parent_scene.gravityz) * (-1 * m_buoyancy)) * m_mass));
}
}
if (m_usePID)
{
// KF - this is for object move? eg. llSetPos() ?
//if (!d.BodyIsEnabled(Body))
//d.BodySetForce(Body, 0f, 0f, 0f);
// If we're using the PID controller, then we have no gravity
//fz = (-1 * _parent_scene.gravityz) * m_mass; //KF: ?? Prims have no global gravity,so simply...
fz = 0f;
if (m_usePID)
{
//if (!d.BodyIsEnabled(Body))
//d.BodySetForce(Body, 0f, 0f, 0f);
// If we're using the PID controller, then we have no gravity
fz = (-1 * _parent_scene.gravityz) * m_mass;
// no lock; for now it's only called from within Simulate()
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
// no lock; for now it's only called from within Simulate()
if ((m_PIDTau < 1) && (m_PIDTau != 0))
{
//PID_G = PID_G / m_PIDTau;
m_PIDTau = 1;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
//PidStatus = true;
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
// PhysicsVector vec = new PhysicsVector();
d.Vector3 vel = d.BodyGetLinearVel(Body);
if ((m_PIDTau < 1) && (m_PIDTau != 0))
{
//PID_G = PID_G / m_PIDTau;
m_PIDTau = 1;
}
d.Vector3 pos = d.BodyGetPosition(Body);
_target_velocity =
new PhysicsVector(
(m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep)
);
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
//PidStatus = true;
// if velocity is zero, use position control; otherwise, velocity control
// PhysicsVector vec = new PhysicsVector();
d.Vector3 vel = d.BodyGetLinearVel(Body);
if (_target_velocity.IsIdentical(PhysicsVector.Zero,0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
d.Vector3 pos = d.BodyGetPosition(Body);
_target_velocity =
new PhysicsVector(
(m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep)
);
//fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2);
//fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2);
//fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P;
d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z);
d.BodySetLinearVel(Body, 0, 0, 0);
d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
// if velocity is zero, use position control; otherwise, velocity control
// We're flying and colliding with something
fx = ((_target_velocity.X) - vel.X) * (PID_D);
fy = ((_target_velocity.Y) - vel.Y) * (PID_D);
// vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P;
if (_target_velocity.IsIdentical(PhysicsVector.Zero,0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass);
}
} // end if (m_usePID)
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
// Hover PID Controller needs to be mutually exlusive to MoveTo PID controller
if (m_useHoverPID && !m_usePID)
{
// If we're using the PID controller, then we have no gravity
fz = (-1 * _parent_scene.gravityz) * m_mass;
//fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2);
//fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2);
//fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P;
d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z);
d.BodySetLinearVel(Body, 0, 0, 0);
d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
// no lock; for now it's only called from within Simulate()
// We're flying and colliding with something
fx = ((_target_velocity.X) - vel.X) * (PID_D);
fy = ((_target_velocity.Y) - vel.Y) * (PID_D);
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
// vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P;
if ((m_PIDTau < 1))
{
PID_G = PID_G / m_PIDTau;
}
fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass);
}
}
// Hover PID Controller needs to be mutually exlusive to MoveTo PID controller
if (m_useHoverPID && !m_usePID)
{
// If we're using the PID controller, then we have no gravity
fz = (-1 * _parent_scene.gravityz) * m_mass;
// no lock; for now it's only called from within Simulate()
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
if ((m_PIDTau < 1))
{
PID_G = PID_G / m_PIDTau;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
// Where are we, and where are we headed?
d.Vector3 pos = d.BodyGetPosition(Body);
d.Vector3 vel = d.BodyGetLinearVel(Body);
// determine what our target height really is based on HoverType
switch (m_PIDHoverType)
{
case PIDHoverType.Absolute:
m_targetHoverHeight = m_PIDHoverHeight;
break;
case PIDHoverType.Ground:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
break;
case PIDHoverType.GroundAndWater:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_waterHeight = _parent_scene.GetWaterLevel();
if (m_groundHeight > m_waterHeight)
{
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
}
else
{
m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight;
}
break;
case PIDHoverType.Water:
m_waterHeight = _parent_scene.GetWaterLevel();
m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight;
break;
}
// Where are we, and where are we headed?
d.Vector3 pos = d.BodyGetPosition(Body);
d.Vector3 vel = d.BodyGetLinearVel(Body);
_target_velocity =
new PhysicsVector(0.0f, 0.0f,
(m_targetHoverHeight - pos.Z) * ((PID_G - m_PIDHoverTau) * timestep)
);
// Non-Vehicles have a limited set of Hover options.
// determine what our target height really is based on HoverType
switch (m_PIDHoverType)
{
case PIDHoverType.Ground:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
break;
case PIDHoverType.GroundAndWater:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_waterHeight = _parent_scene.GetWaterLevel();
if (m_groundHeight > m_waterHeight)
{
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
}
else
{
m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight;
}
break;
// if velocity is zero, use position control; otherwise, velocity control
} // end switch (m_PIDHoverType)
if (_target_velocity.IsIdentical(PhysicsVector.Zero, 0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
_target_velocity =
new PhysicsVector(0.0f, 0.0f,
(m_targetHoverHeight - pos.Z) * ((PID_G - m_PIDHoverTau) * timestep)
);
d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight);
d.BodySetLinearVel(Body, vel.X, vel.Y, 0);
d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
// if velocity is zero, use position control; otherwise, velocity control
// We're flying and colliding with something
fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass);
}
}
if (_target_velocity.IsIdentical(PhysicsVector.Zero, 0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
fx *= m_mass;
fy *= m_mass;
//fz *= m_mass;
d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight);
d.BodySetLinearVel(Body, vel.X, vel.Y, 0);
d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
fx += m_force.X;
fy += m_force.Y;
fz += m_force.Z;
// We're flying and colliding with something
fz = fz + ((_target_velocity.Z - vel.Z) * (PID_D) * m_mass);
}
}
//m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString());
if (fx != 0 || fy != 0 || fz != 0)
{
//m_taintdisable = true;
//base.RaiseOutOfBounds(Position);
//d.BodySetLinearVel(Body, fx, fy, 0f);
if (!d.BodyIsEnabled(Body))
{
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetForce(Body, 0, 0, 0);
enableBodySoft();
}
fx *= m_mass;
fy *= m_mass;
//fz *= m_mass;
// 35x10 = 350n times the mass per second applied maximum.
float nmax = 35f * m_mass;
float nmin = -35f * m_mass;
fx += m_force.X;
fy += m_force.Y;
fz += m_force.Z;
//m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString());
if (fx != 0 || fy != 0 || fz != 0)
{
//m_taintdisable = true;
//base.RaiseOutOfBounds(Position);
//d.BodySetLinearVel(Body, fx, fy, 0f);
if (!d.BodyIsEnabled(Body))
{
// A physical body at rest on a surface will auto-disable after a while,
// this appears to re-enable it incase the surface it is upon vanishes,
// and the body should fall again.
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetForce(Body, 0, 0, 0);
enableBodySoft();
}
// 35x10 = 350n times the mass per second applied maximum.
float nmax = 35f * m_mass;
float nmin = -35f * m_mass;
if (fx > nmax)
fx = nmax;
if (fx < nmin)
fx = nmin;
if (fy > nmax)
fy = nmax;
if (fy < nmin)
fy = nmin;
d.BodyAddForce(Body, fx, fy, fz);
}
if (m_vehicle.Body == IntPtr.Zero && m_vehicle.Type != Vehicle.TYPE_NONE)
m_vehicle.Enable(Body, _parent_scene);
m_vehicle.Step(timestep);
if (fx > nmax)
fx = nmax;
if (fx < nmin)
fx = nmin;
if (fy > nmax)
fy = nmax;
if (fy < nmin)
fy = nmin;
d.BodyAddForce(Body, fx, fy, fz);
}
}
}
else
{
// _zeroPosition = d.BodyGetPosition(Body);
{ // is not physical, or is not a body or is selected
// _zeroPosition = d.BodyGetPosition(Body);
return;
}
}
@ -1774,14 +1810,22 @@ namespace OpenSim.Region.Physics.OdePlugin
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
if (m_isphysical && Body != IntPtr.Zero)
if (Body != IntPtr.Zero)
{
// KF: If this is a root prim do BodySet
d.BodySetQuaternion(Body, ref myrot);
if (!m_angularlock.IsIdentical(new PhysicsVector(1, 1, 1), 0))
createAMotor(m_angularlock);
if (m_isphysical)
{
if (!m_angularlock.IsIdentical(new PhysicsVector(1, 1, 1), 0))
createAMotor(m_angularlock);
}
}
else
{
// daughter prim, do Geom set
d.GeomSetQuaternion(prim_geom, ref myrot);
}
resetCollisionAccounting();
m_taintrot = _orientation;
}
@ -1843,7 +1887,7 @@ namespace OpenSim.Region.Physics.OdePlugin
m_log.Error("[PHYSICS]: PrimGeom dead");
}
}
//Console.WriteLine("changePhysicsStatus for " + m_primName );
changeadd(2f);
}
if (childPrim)
@ -1921,7 +1965,7 @@ namespace OpenSim.Region.Physics.OdePlugin
mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical);
//IMesh mesh = _parent_scene.mesher.CreateMesh(oldname, _pbs, _size, meshlod, IsPhysical);
//Console.WriteLine("changesize 1");
CreateGeom(m_targetSpace, mesh);
@ -1929,6 +1973,7 @@ namespace OpenSim.Region.Physics.OdePlugin
else
{
_mesh = null;
//Console.WriteLine("changesize 2");
CreateGeom(m_targetSpace, _mesh);
}
@ -2035,6 +2080,7 @@ namespace OpenSim.Region.Physics.OdePlugin
else
{
_mesh = null;
//Console.WriteLine("changeshape");
CreateGeom(m_targetSpace, null);
}
@ -2376,7 +2422,9 @@ namespace OpenSim.Region.Physics.OdePlugin
set
{
if (QuaternionIsFinite(value))
{
_orientation = value;
}
else
m_log.Warn("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object");
@ -2595,12 +2643,16 @@ namespace OpenSim.Region.Physics.OdePlugin
//outofBounds = true;
}
float Adiff = 1.0f - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation));
//Console.WriteLine("Adiff " + m_primName + " = " + Adiff);
if ((Math.Abs(m_lastposition.X - l_position.X) < 0.02)
&& (Math.Abs(m_lastposition.Y - l_position.Y) < 0.02)
&& (Math.Abs(m_lastposition.Z - l_position.Z) < 0.02)
&& (1.0 - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation)) < 0.01))
// && (1.0 - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation)) < 0.01))
&& (1.0 - Math.Abs(Quaternion.Dot(m_lastorientation, l_orientation)) < 0.0001)) // KF 0.01 is far to large
{
_zeroFlag = true;
//Console.WriteLine("ZFT 2");
m_throttleUpdates = false;
}
else

View File

@ -238,7 +238,8 @@ namespace OpenSim.Region.Physics.OdePlugin
private readonly HashSet<OdeCharacter> _characters = new HashSet<OdeCharacter>();
private readonly HashSet<OdePrim> _prims = new HashSet<OdePrim>();
private readonly HashSet<OdePrim> _activeprims = new HashSet<OdePrim>();
private readonly HashSet<OdePrim> _taintedPrim = new HashSet<OdePrim>();
private readonly HashSet<OdePrim> _taintedPrimH = new HashSet<OdePrim>();
private readonly List<OdePrim> _taintedPrimL = new List<OdePrim>();
private readonly HashSet<OdeCharacter> _taintedActors = new HashSet<OdeCharacter>();
private readonly List<d.ContactGeom> _perloopContact = new List<d.ContactGeom>();
private readonly List<PhysicsActor> _collisionEventPrim = new List<PhysicsActor>();
@ -2112,6 +2113,7 @@ namespace OpenSim.Region.Physics.OdePlugin
/// <param name="prim"></param>
public void RemovePrimThreadLocked(OdePrim prim)
{
//Console.WriteLine("RemovePrimThreadLocked " + prim.m_primName);
lock (prim)
{
remCollisionEventReporting(prim);
@ -2559,11 +2561,15 @@ namespace OpenSim.Region.Physics.OdePlugin
if (prim is OdePrim)
{
OdePrim taintedprim = ((OdePrim) prim);
lock (_taintedPrim)
lock (_taintedPrimH)
{
if (!(_taintedPrim.Contains(taintedprim)))
_taintedPrim.Add(taintedprim);
}
if (!(_taintedPrimH.Contains(taintedprim)))
{
//Console.WriteLine("AddPhysicsActorTaint to " + taintedprim.m_primName);
_taintedPrimH.Add(taintedprim); // HashSet for searching
_taintedPrimL.Add(taintedprim); // List for ordered readout
}
}
return;
}
else if (prim is OdeCharacter)
@ -2599,7 +2605,7 @@ namespace OpenSim.Region.Physics.OdePlugin
float fps = 0;
//m_log.Info(timeStep.ToString());
step_time += timeStep;
// If We're loaded down by something else,
// or debugging with the Visual Studio project on pause
// skip a few frames to catch up gracefully.
@ -2679,16 +2685,20 @@ namespace OpenSim.Region.Physics.OdePlugin
// Modify other objects in the scene.
processedtaints = false;
lock (_taintedPrim)
lock (_taintedPrimL)
{
foreach (OdePrim prim in _taintedPrim)
foreach (OdePrim prim in _taintedPrimL)
{
if (prim.m_taintremove)
{
//Console.WriteLine("Simulate calls RemovePrimThreadLocked");
RemovePrimThreadLocked(prim);
}
else
{
//Console.WriteLine("Simulate calls ProcessTaints");
prim.ProcessTaints(timeStep);
}
processedtaints = true;
@ -2878,7 +2888,9 @@ namespace OpenSim.Region.Physics.OdePlugin
}
if (processedtaints)
_taintedPrim.Clear();
//Console.WriteLine("Simulate calls Clear of _taintedPrim list");
_taintedPrimH.Clear();
_taintedPrimL.Clear();
}
// Move characters
@ -3488,7 +3500,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
if (geom == localGround)
{
//localHeightfield = TerrainHeightFieldHeights[geom];
localHeightfield = TerrainHeightFieldHeights[geom];
proceed = true;
}
else
@ -3510,7 +3522,7 @@ namespace OpenSim.Region.Physics.OdePlugin
// memory corruption
if (TerrainHeightFieldHeights.ContainsKey(g))
{
//float[] removingHeightField = TerrainHeightFieldHeights[g];
float[] removingHeightField = TerrainHeightFieldHeights[g];
TerrainHeightFieldHeights.Remove(g);
if (RegionTerrain.ContainsKey(g))
@ -3519,17 +3531,27 @@ namespace OpenSim.Region.Physics.OdePlugin
}
d.GeomDestroy(g);
//removingHeightField = new float[0];
}
removingHeightField = new float[0];
}
}
}
else
{
m_log.Warn("[PHYSICS]: Couldn't proceed with UnCombine. Region has inconsistant data.");
}
}
}
}
}
}
public override void SetWaterLevel(float baseheight)
{

View File

@ -96,17 +96,21 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
m_localID = localID;
m_itemID = itemID;
m_ScriptDelayFactor = m_ScriptEngine.Config.GetFloat("ScriptDelayFactor", 1.0f);
m_ScriptDistanceFactor = m_ScriptEngine.Config.GetFloat("ScriptDistanceLimitFactor", 1.0f);
m_MinTimerInterval = m_ScriptEngine.Config.GetFloat("MinTimerInterval", 0.5f);
m_automaticLinkPermission = m_ScriptEngine.Config.GetBoolean("AutomaticLinkPermission", false);
m_scriptConsoleChannel = m_ScriptEngine.Config.GetInt("ScriptConsoleChannel", 0);
m_scriptConsoleChannelEnabled = (m_scriptConsoleChannel != 0);
m_notecardLineReadCharsMax = m_ScriptEngine.Config.GetInt("NotecardLineReadCharsMax", 255);
m_ScriptDelayFactor =
m_ScriptEngine.Config.GetFloat("ScriptDelayFactor", 1.0f);
m_ScriptDistanceFactor =
m_ScriptEngine.Config.GetFloat("ScriptDistanceLimitFactor", 1.0f);
m_MinTimerInterval =
m_ScriptEngine.Config.GetFloat("MinTimerInterval", 0.5f);
m_automaticLinkPermission =
m_ScriptEngine.Config.GetBoolean("AutomaticLinkPermission", false);
m_notecardLineReadCharsMax =
m_ScriptEngine.Config.GetInt("NotecardLineReadCharsMax", 255);
if (m_notecardLineReadCharsMax > 65535)
m_notecardLineReadCharsMax = 65535;
m_TransferModule = m_ScriptEngine.World.RequestModuleInterface<IMessageTransferModule>();
m_TransferModule =
m_ScriptEngine.World.RequestModuleInterface<IMessageTransferModule>();
m_UrlModule = m_ScriptEngine.World.RequestModuleInterface<IUrlModule>();
if (m_UrlModule != null)
{
@ -1969,7 +1973,9 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
{
part.UpdateRotation(rot);
// Update rotation does not move the object in the physics scene if it's a linkset.
part.ParentGroup.AbsolutePosition = part.ParentGroup.AbsolutePosition;
//KF: Do NOT use this next line if using ODE physics engine. This need a switch based on .ini Phys Engine type
// part.ParentGroup.AbsolutePosition = part.ParentGroup.AbsolutePosition;
}
/// <summary>
@ -6747,15 +6753,12 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
// try to let this work as in SL...
if (part.ParentID == 0)
{
// special case: If we are root, rotate
// complete SOG to new rotation
// special case: If we are root, rotate complete SOG to new rotation
SetRot(part, Rot2Quaternion(q));
}
else
{
// we are a child. The rotation values
// will be set to the one of root modified
// by rot, as in SL. Don't ask.
// we are a child. The rotation values will be set to the one of root modified by rot, as in SL. Don't ask.
SceneObjectGroup group = part.ParentGroup;
if (group != null) // a bit paranoid, maybe
{