Fix Physics angular reference frame.

avinationmerge
Kitto Flora 2010-03-04 16:33:26 -05:00
parent 62dd83f473
commit 87590491b5
3 changed files with 84 additions and 655 deletions

View File

@ -1,630 +0,0 @@
/*
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEDynamics
{
public Vehicle Type
{
get { return m_type; }
}
public IntPtr Body
{
get { return m_body; }
}
private int frcount = 0; // Used to limit dynamics debug output to
// every 100th frame
// private OdeScene m_parentScene = null;
private IntPtr m_body = IntPtr.Zero;
private IntPtr m_jointGroup = IntPtr.Zero;
private IntPtr m_aMotor = IntPtr.Zero;
// Vehicle properties
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
// private bool m_LinearMotorSetLastFrame = false;
// private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero;
private Vector3 m_angularMotorDirectionLASTSET = Vector3.Zero;
private Vector3 m_angularFrictionTimescale = Vector3.Zero;
private float m_angularMotorDecayTimescale = 0;
private float m_angularMotorTimescale = 0;
private Vector3 m_lastAngularVelocityVector = Vector3.Zero;
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 0;
private float m_verticalAttractionTimescale = 0;
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorDecayTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
case Vehicle.HOVER_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_VhoverEfficiency = pValue;
break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorDecayTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.0f) pValue = 0.0f;
if (pValue > 1.0f) pValue = 1.0f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
m_angularMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_angularMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessTypeChange(Vehicle pType)
{
Console.WriteLine("ProcessTypeChange to " + pType);
// Set Defaults For Type
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_VhoverHeight = 0;
m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 1;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1;
m_verticalAttractionTimescale = 10;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 2;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5;
m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1;
m_verticalAttractionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
//Console.WriteLine("Enable m_type=" + m_type + " m_VehicleBuoyancy=" + m_VehicleBuoyancy);
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
//KF: This used to set up the linear and angular joints
}
internal void Step(float pTimestep, OdeScene pParentScene)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
frcount++; // used to limit debug comment output
if (frcount > 100)
frcount = 0;
MoveLinear(pTimestep, pParentScene);
MoveAngular(pTimestep);
}// end Step
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
{
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// add drive to body
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
// This will work temporarily, but we really need to compare speed on an axis
// KF: Limit body velocity to applied velocity?
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
// decay applied velocity
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_linearMotorDirection -= m_linearMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
else
{ // requested is not significant
// if what remains of applied is small, zero it.
if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
m_lastLinearVelocityVector = Vector3.Zero;
}
// convert requested object velocity to world-referenced vector
m_dir = m_lastLinearVelocityVector;
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
m_dir *= rotq; // apply obj rotation to velocity vector
// add Gravity andBuoyancy
// KF: So far I have found no good method to combine a script-requested
// .Z velocity and gravity. Therefore only 0g will used script-requested
// .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
Vector3 grav = Vector3.Zero;
if(m_VehicleBuoyancy < 1.0f)
{
// There is some gravity, make a gravity force vector
// that is applied after object velocity.
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
// Preserve the current Z velocity
d.Vector3 vel_now = d.BodyGetLinearVel(Body);
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
} // else its 1.0, no gravity.
// Check if hovering
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
d.Vector3 pos = d.BodyGetPosition(Body);
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
{
// If body is aready heigher, use its height as target height
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
// m_VhoverTimescale = 0f; // time to acheive height
// pTimestep is time since last frame,in secs
float herr0 = pos.Z - m_VhoverTargetHeight;
//if(frcount == 0) Console.WriteLine("herr0=" + herr0);
// Replace Vertical speed with correction figure if significant
if(Math.Abs(herr0) > 0.01f )
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
// m_VhoverEfficiency is not yet implemented
}
else
{
m_dir.Z = 0f;
}
}
// Apply velocity
d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
//if(frcount == 0) Console.WriteLine("Move " + Body + ":"+ m_dir.X + " " + m_dir.Y + " " + m_dir.Z);
// apply gravity force
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
//if(frcount == 0) Console.WriteLine("Force " + Body + ":" + grav.X + " " + grav.Y + " " + grav.Z);
// apply friction
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
} // end MoveLinear()
private void MoveAngular(float pTimestep)
{
// m_angularMotorDirection is the latest value from the script, and is decayed here
// m_angularMotorDirectionLASTSET is the latest value from the script
// m_lastAngularVelocityVector is what is being applied to the Body, varied up and down here
if (!m_angularMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// ramp up to new value
Vector3 addAmount = m_angularMotorDirection / (m_angularMotorTimescale / pTimestep);
m_lastAngularVelocityVector += (addAmount * 10f);
//if(frcount == 0) Console.WriteLine("add: " + addAmount);
// limit applied value to what was set by script
// This will work temporarily, but we really need to compare speed on an axis
if (Math.Abs(m_lastAngularVelocityVector.X) > Math.Abs(m_angularMotorDirectionLASTSET.X))
m_lastAngularVelocityVector.X = m_angularMotorDirectionLASTSET.X;
if (Math.Abs(m_lastAngularVelocityVector.Y) > Math.Abs(m_angularMotorDirectionLASTSET.Y))
m_lastAngularVelocityVector.Y = m_angularMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastAngularVelocityVector.Z) > Math.Abs(m_angularMotorDirectionLASTSET.Z))
m_lastAngularVelocityVector.Z = m_angularMotorDirectionLASTSET.Z;
// decay the requested value
Vector3 decayfraction = ((Vector3.One / (m_angularMotorDecayTimescale / pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_angularMotorDirection -= m_angularMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
// KF: m_lastAngularVelocityVector is rotational speed in rad/sec ?
// Vertical attractor section
// d.Mass objMass;
// d.BodyGetMass(Body, out objMass);
// float servo = 100f * objMass.mass * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
float servo = 0.1f * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
// get present body rotation
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
// Error is 0 (no error) to +/- 2 (max error)
// scale it by servo
verterr = verterr * servo;
// rotate to object frame
// verterr = verterr * rotq;
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
m_lastAngularVelocityVector.X += verterr.Y;
m_lastAngularVelocityVector.Y -= verterr.X;
/*
if(frcount == 0)
{
// Console.WriteLine("AngleMotor " + m_lastAngularVelocityVector);
Console.WriteLine(String.Format("VA Body:{0} servo:{1} err:<{2},{3},{4}> VAE:{5}",
Body, servo, verterr.X, verterr.Y, verterr.Z, m_verticalAttractionEfficiency));
}
*/
d.BodySetAngularVel (Body, m_lastAngularVelocityVector.X, m_lastAngularVelocityVector.Y, m_lastAngularVelocityVector.Z);
// apply friction
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
m_lastAngularVelocityVector -= m_lastAngularVelocityVector * decayamount;
} //end MoveAngular
}
}

View File

@ -116,6 +116,8 @@ namespace OpenSim.Region.Physics.OdePlugin
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
// private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity // private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
private Vector3 m_angularLock = Vector3.One;
//Deflection properties //Deflection properties
// private float m_angularDeflectionEfficiency = 0; // private float m_angularDeflectionEfficiency = 0;
@ -296,6 +298,11 @@ namespace OpenSim.Region.Physics.OdePlugin
}//end ProcessRotationVehicleParam }//end ProcessRotationVehicleParam
internal void SetAngularLock(Vector3 pValue)
{
m_angularLock = pValue;
}
internal void ProcessFlagsVehicleSet(int flags) internal void ProcessFlagsVehicleSet(int flags)
{ {
m_flags |= (VehicleFlag)flags; m_flags |= (VehicleFlag)flags;
@ -649,8 +656,13 @@ namespace OpenSim.Region.Physics.OdePlugin
//if(frcount == 0) Console.WriteLine("MoveAngular "); //if(frcount == 0) Console.WriteLine("MoveAngular ");
// Get what the body is doing, this includes 'external' influences // Get what the body is doing, this includes 'external' influences
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
Quaternion irotq = Quaternion.Inverse(rotq);
d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body); d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body);
Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z); Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z);
angObjectVel = angObjectVel * irotq; // ============ Converts to LOCAL rotation
//if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel); //if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel);
// Vector3 FrAaccel = m_lastAngularVelocity - angObjectVel; // Vector3 FrAaccel = m_lastAngularVelocity - angObjectVel;
// Vector3 initavel = angObjectVel; // Vector3 initavel = angObjectVel;
@ -694,8 +706,8 @@ namespace OpenSim.Region.Physics.OdePlugin
{ {
float VAservo = 1.0f / (m_verticalAttractionTimescale * pTimestep); float VAservo = 1.0f / (m_verticalAttractionTimescale * pTimestep);
// get present body rotation // get present body rotation
d.Quaternion rot = d.BodyGetQuaternion(Body); // d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
// make a vector pointing up // make a vector pointing up
Vector3 verterr = Vector3.Zero; Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f; verterr.Z = 1.0f;
@ -706,7 +718,7 @@ namespace OpenSim.Region.Physics.OdePlugin
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f) if (verterr.Z < 0.0f)
{ // Defelction from vertical exceeds 90-degrees. This method will ensure stable return to { // Deflection from vertical exceeds 90-degrees. This method will ensure stable return to
// vertical, BUT for some reason a z-rotation is imparted to the object. TBI. // vertical, BUT for some reason a z-rotation is imparted to the object. TBI.
//Console.WriteLine("InvertFlip"); //Console.WriteLine("InvertFlip");
verterr.X = 2.0f - verterr.X; verterr.X = 2.0f - verterr.X;
@ -781,9 +793,22 @@ namespace OpenSim.Region.Physics.OdePlugin
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
} }
*/ */
//if(frcount == 0) Console.WriteLine("angularLock {0}", m_angularLock);
if (!m_angularLock.ApproxEquals(Vector3.One, 0.003f))
{
if (m_angularLock.X == 0)
m_lastAngularVelocity.X = 0f;
if (m_angularLock.Y == 0)
m_lastAngularVelocity.Y = 0f;
if (m_angularLock.Z == 0)
m_lastAngularVelocity.Z = 0f;
}
// Apply to the body // Apply to the body
// Vector3 aInc = m_lastAngularVelocity - initavel; // Vector3 aInc = m_lastAngularVelocity - initavel;
//if(frcount == 0) Console.WriteLine("Inc {0}", aInc); //if(frcount == 0) Console.WriteLine("Inc {0}", aInc);
m_lastAngularVelocity = m_lastAngularVelocity * rotq; // ================ Converts to WORLD rotation
d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
//if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity); //if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity);

View File

@ -85,8 +85,10 @@ namespace OpenSim.Region.Physics.OdePlugin
private Vector3 m_taintVelocity; private Vector3 m_taintVelocity;
private Vector3 m_taintTorque; private Vector3 m_taintTorque;
private Quaternion m_taintrot; private Quaternion m_taintrot;
private Vector3 m_angularlock = Vector3.One; private Vector3 m_angularlock = Vector3.One; // Current setting
private Vector3 m_taintAngularLock = Vector3.One; private Vector3 m_taintAngularLock = Vector3.One; // Request from LSL
private IntPtr Amotor = IntPtr.Zero; private IntPtr Amotor = IntPtr.Zero;
private Vector3 m_PIDTarget; private Vector3 m_PIDTarget;
@ -405,10 +407,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_disabled = false; m_disabled = false;
// The body doesn't already have a finite rotation mode set here // The body doesn't already have a finite rotation mode set here
if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0.0f)) && _parent == null) /* ### if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0.0f)) && _parent == null)
{ {
createAMotor(m_angularlock); createAMotor(m_angularlock);
} } */
if (m_vehicle.Type != Vehicle.TYPE_NONE) if (m_vehicle.Type != Vehicle.TYPE_NONE)
{ {
m_vehicle.Enable(Body, _parent_scene); m_vehicle.Enable(Body, _parent_scene);
@ -958,8 +960,10 @@ namespace OpenSim.Region.Physics.OdePlugin
if (m_taintCollidesWater != m_collidesWater) if (m_taintCollidesWater != m_collidesWater)
changefloatonwater(timestep); changefloatonwater(timestep);
// ##*
if (!m_angularlock.ApproxEquals(m_taintAngularLock,0f)) if (!m_angularlock.ApproxEquals(m_taintAngularLock,0f))
//Console.WriteLine("ALchange req {0} is {1}", m_taintAngularLock, m_angularlock);
changeAngularLock(timestep); changeAngularLock(timestep);
} }
@ -970,15 +974,21 @@ namespace OpenSim.Region.Physics.OdePlugin
} }
private void changeAngularLock(float timestep) private void changeAngularLock(float timestep) // ##*
{ {
// do we have a Physical object? // do we have a Physical object?
if (Body != IntPtr.Zero) // if (Body != IntPtr.Zero)
{ // {
//Check that we have a Parent //Check that we have a Parent
//If we have a parent then we're not authorative here //If we have a parent then we're not authorative here
if (_parent == null) if (_parent == null)
{ {
//Console.WriteLine("Alock changed to {0}", m_taintAngularLock);
m_angularlock = m_taintAngularLock;
m_vehicle.SetAngularLock(m_angularlock);
/*
if (!m_taintAngularLock.ApproxEquals(Vector3.One, 0f)) if (!m_taintAngularLock.ApproxEquals(Vector3.One, 0f))
{ {
//d.BodySetFiniteRotationMode(Body, 0); //d.BodySetFiniteRotationMode(Body, 0);
@ -997,7 +1007,9 @@ namespace OpenSim.Region.Physics.OdePlugin
} }
// Store this for later in case we get turned into a separate body // Store this for later in case we get turned into a separate body
m_angularlock = m_taintAngularLock; m_angularlock = m_taintAngularLock;
m_vehicle.SetAngularLock(m_angularlock);
} */
}
} }
private void changelink(float timestep) private void changelink(float timestep)
@ -1140,10 +1152,10 @@ namespace OpenSim.Region.Physics.OdePlugin
prm.m_disabled = false; prm.m_disabled = false;
// The body doesn't already have a finite rotation mode set here // The body doesn't already have a finite rotation mode set here
if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0f)) && _parent == null) /* ### if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0f)) && _parent == null)
{ {
prm.createAMotor(m_angularlock); prm.createAMotor(m_angularlock);
} } */
prm.Body = Body; prm.Body = Body;
_parent_scene.addActivePrim(prm); _parent_scene.addActivePrim(prm);
} }
@ -1183,10 +1195,10 @@ namespace OpenSim.Region.Physics.OdePlugin
m_disabled = false; m_disabled = false;
// The body doesn't already have a finite rotation mode set here // The body doesn't already have a finite rotation mode set here
if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0f)) && _parent == null) /* ### if ((!m_angularlock.ApproxEquals(Vector3.Zero, 0f)) && _parent == null)
{ {
createAMotor(m_angularlock); createAMotor(m_angularlock);
} } */
d.BodySetPosition(Body, Position.X, Position.Y, Position.Z); d.BodySetPosition(Body, Position.X, Position.Y, Position.Z);
if (m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Enable(Body, _parent_scene); if (m_vehicle.Type != Vehicle.TYPE_NONE) m_vehicle.Enable(Body, _parent_scene);
_parent_scene.addActivePrim(this); _parent_scene.addActivePrim(this);
@ -1600,14 +1612,17 @@ Console.WriteLine(" JointCreateFixed");
{ {
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); // KF add 161009 if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); // KF add 161009
// NON-'VEHICLES' are dealt with here // NON-'VEHICLES' are dealt with here
if (d.BodyIsEnabled(Body) && !m_angularlock.ApproxEquals(Vector3.Zero, 0.003f)) // m_angularlock = <1,1,1> means no lock. a 0 on axis means locked.
// NB this may be wrong - may lock global axis! Should be LOCAL axis!
if (d.BodyIsEnabled(Body) && !m_angularlock.ApproxEquals(Vector3.One, 0.003f))
{ {
d.Vector3 avel2 = d.BodyGetAngularVel(Body); d.Vector3 avel2 = d.BodyGetAngularVel(Body);
if (m_angularlock.X == 1) if (m_angularlock.X == 0)
avel2.X = 0; avel2.X = 0;
if (m_angularlock.Y == 1) if (m_angularlock.Y == 0)
avel2.Y = 0; avel2.Y = 0;
if (m_angularlock.Z == 1) if (m_angularlock.Z == 0)
avel2.Z = 0; avel2.Z = 0;
d.BodySetAngularVel(Body, avel2.X, avel2.Y, avel2.Z); d.BodySetAngularVel(Body, avel2.X, avel2.Y, avel2.Z);
} }
@ -1808,6 +1823,17 @@ Console.WriteLine(" JointCreateFixed");
// d.BodyAddRelTorque(Body, rotforce.X, rotforce.Y, rotforce.Z); // d.BodyAddRelTorque(Body, rotforce.X, rotforce.Y, rotforce.Z);
RLAservo = timestep / m_APIDStrength * scaler; RLAservo = timestep / m_APIDStrength * scaler;
rotforce = rotforce * RLAservo * diff_angle ; rotforce = rotforce * RLAservo * diff_angle ;
if (m_angularlock.X == 0)
rotforce.X = 0;
if (m_angularlock.Y == 0)
rotforce.Y = 0;
if (m_angularlock.Z == 0)
rotforce.Z = 0;
d.BodySetAngularVel (Body, rotforce.X, rotforce.Y, rotforce.Z); d.BodySetAngularVel (Body, rotforce.X, rotforce.Y, rotforce.Z);
//Console.WriteLine("axis= " + diff_axis + " angle= " + diff_angle + "servo= " + RLAservo); //Console.WriteLine("axis= " + diff_axis + " angle= " + diff_angle + "servo= " + RLAservo);
} }
@ -1878,11 +1904,11 @@ Console.WriteLine(" JointCreateFixed");
{ {
// KF: If this is a root prim do BodySet // KF: If this is a root prim do BodySet
d.BodySetQuaternion(Body, ref myrot); d.BodySetQuaternion(Body, ref myrot);
if (m_isphysical) /* ### if (m_isphysical)
{ {
if (!m_angularlock.ApproxEquals(Vector3.One, 0f)) if (!m_angularlock.ApproxEquals(Vector3.One, 0f))
createAMotor(m_angularlock); createAMotor(m_angularlock);
} } */
} }
else else
{ {
@ -2508,7 +2534,14 @@ Console.WriteLine(" JointCreateFixed");
} }
} }
} }
/*
public Vector3 AngularLock
{
get { return m_angularlock; }
set { }
}
*/
public override float CollisionScore public override float CollisionScore
{ {
get { return m_collisionscore; } get { return m_collisionscore; }
@ -2914,8 +2947,9 @@ Console.WriteLine(" JointCreateFixed");
public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } } public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } }
public override float PIDHoverTau { set { m_PIDHoverTau = value; } } public override float PIDHoverTau { set { m_PIDHoverTau = value; } }
private void createAMotor(Vector3 axis) private void createAMotor(Vector3 axis) // ##*
{ {
Console.WriteLine(" createAMotor called! ----------------------------");
if (Body == IntPtr.Zero) if (Body == IntPtr.Zero)
return; return;