Merge branch 'master' into connector_plugin

connector_plugin
BlueWall 2012-11-26 06:55:03 -05:00
commit 88f2fbc8f1
14 changed files with 582 additions and 358 deletions

View File

@ -80,10 +80,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
private Quaternion m_referenceFrame = Quaternion.Identity;
// Linear properties
private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
@ -93,6 +93,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
// private int m_angularMotorApply = 0; // application frame counter
private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
@ -152,10 +153,12 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f);
m_angularMotorDecayTimescale = Math.Max(0.01f, Math.Min(pValue,120));
m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
m_angularMotorTimescale = Math.Max(pValue, 0.01f);
m_angularMotor.TimeScale = m_angularMotorTimescale;
break;
case Vehicle.BANKING_EFFICIENCY:
m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f));
@ -185,10 +188,12 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f);
m_linearMotorDecayTimescale = Math.Max(0.01f, Math.Min(pValue,120));
m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
m_linearMotorTimescale = Math.Max(pValue, 0.01f);
m_linearMotor.TimeScale = m_linearMotorTimescale;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f));
@ -201,17 +206,20 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
// m_angularMotorApply = 100;
m_angularMotor.SetTarget(m_angularMotorDirection);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
m_linearMotor.SetTarget(m_linearMotorDirection);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
@ -227,6 +235,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
// Limit requested angular speed to 2 rps= 4 pi rads/sec
@ -234,14 +243,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f));
pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f));
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// m_angularMotorApply = 100;
m_angularMotor.SetTarget(m_angularMotorDirection);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotor.SetTarget(m_linearMotorDirection);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
@ -319,6 +330,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_referenceFrame = Quaternion.Identity;
m_flags = (VehicleFlag)0;
break;
case Vehicle.TYPE_SLED:
@ -351,10 +363,13 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_bankingMix = 1;
m_referenceFrame = Quaternion.Identity;
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
| VehicleFlag.HOVER_TERRAIN_ONLY
| VehicleFlag.HOVER_GLOBAL_HEIGHT
| VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP
| VehicleFlag.LIMIT_ROLL_ONLY
| VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearMotorDirection = Vector3.Zero;
@ -510,6 +525,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
| VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
// Update any physical parameters based on this type.
Refresh();
m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
m_linearMotorDecayTimescale, m_linearFrictionTimescale, 1f);
m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
m_angularMotorDecayTimescale, m_angularFrictionTimescale, 1f);
m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
// m_bankingMotor = new BSVMotor("BankingMotor", ...);
}
// Some of the properties of this prim may have changed.
@ -518,13 +545,25 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{
if (IsActive)
{
m_vehicleMass = Prim.Linkset.LinksetMass;
// Friction effects are handled by this vehicle code
BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f);
BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f);
float friction = 0f;
BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, friction);
// BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f);
// Moderate angular movement introduced by Bullet.
// TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
// Maybe compute linear and angular factor and damping from params.
float angularDamping = PhysicsScene.Params.vehicleAngularDamping;
BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, angularDamping);
VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID);
// DEBUG DEBUG DEBUG: use uniform inertia to smooth movement added by Bullet
// Vector3 localInertia = new Vector3(1f, 1f, 1f);
Vector3 localInertia = new Vector3(m_vehicleMass, m_vehicleMass, m_vehicleMass);
BulletSimAPI.SetMassProps2(Prim.PhysBody.ptr, m_vehicleMass, localInertia);
VDetailLog("{0},BSDynamics.Refresh,frict={1},inert={2},aDamp={3}",
Prim.LocalID, friction, localInertia, angularDamping);
}
}
@ -551,97 +590,38 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{
if (!IsActive) return;
// DEBUG
// Because Bullet does apply forces to the vehicle, our last computed
// linear and angular velocities are not what is happening now.
// Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity;
// m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep;
// m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time
// m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG:
// END DEBUG
m_vehicleMass = Prim.Linkset.LinksetMass;
MoveLinear(pTimestep);
// Commented out for debug
MoveAngular(pTimestep);
// Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG
// Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG
LimitRotation(pTimestep);
// remember the position so next step we can limit absolute movement effects
m_lastPositionVector = Prim.ForcePosition;
VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG
Prim.LocalID,
BulletSimAPI.GetFriction2(Prim.PhysBody.ptr),
BulletSimAPI.GetGravity2(Prim.PhysBody.ptr),
Prim.Inertia,
m_vehicleMass
);
VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity);
}// end Step
}
// Apply the effect of the linear motor.
// Also does hover and float.
private void MoveLinear(float pTimestep)
{
// m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates
// m_lastLinearVelocityVector is the current speed we are moving in that direction
if (m_linearMotorDirection.LengthSquared() > 0.001f)
{
Vector3 origDir = m_linearMotorDirection; // DEBUG
Vector3 origVel = m_lastLinearVelocityVector; // DEBUG
// DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison
Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG
// Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete
Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep;
m_lastLinearVelocityVector += addAmount;
float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep;
m_linearMotorDirection *= (1f - decayFactor);
Vector3 linearMotorContribution = m_linearMotor.Step(pTimestep);
// Rotate new object velocity from vehicle relative to world coordinates
m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation;
// Apply friction for next time
Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep;
m_lastLinearVelocityVector *= (Vector3.One - frictionFactor);
VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}",
Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor,
m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity);
}
else
{
// if what remains of direction is very small, zero it.
m_linearMotorDirection = Vector3.Zero;
m_lastLinearVelocityVector = Vector3.Zero;
m_newVelocity = Vector3.Zero;
VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID);
}
// m_newVelocity is velocity computed from linear motor in world coordinates
linearMotorContribution *= Prim.ForceOrientation;
// ==================================================================
// Gravity and Buoyancy
// There is some gravity, make a gravity force vector that is applied after object velocity.
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
/*
* RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ...
// Preserve the current Z velocity
Vector3 vel_now = m_prim.Velocity;
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
*/
// Current vehicle position
Vector3 pos = Prim.ForcePosition;
// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f);
// ==================================================================
Vector3 terrainHeightContribution = Vector3.Zero;
// If below the terrain, move us above the ground a little.
float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
// Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset.
@ -650,11 +630,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// if (rotatedSize.Z < terrainHeight)
if (pos.Z < terrainHeight)
{
// TODO: correct position by applying force rather than forcing position.
pos.Z = terrainHeight + 2;
Prim.ForcePosition = pos;
VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos);
}
// ==================================================================
Vector3 hoverContribution = Vector3.Zero;
// Check if hovering
// m_VhoverEfficiency: 0=bouncy, 1=totally damped
// m_VhoverTimescale: time to achieve height
@ -694,24 +677,22 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// RA: where does the 50 come from?
float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale);
// Replace Vertical speed with correction figure if significant
if (Math.Abs(verticalError) > 0.01f)
if (verticalError > 0.01f)
{
m_newVelocity.Z += verticalCorrectionVelocity;
hoverContribution = new Vector3(0f, 0f, verticalCorrectionVelocity);
//KF: m_VhoverEfficiency is not yet implemented
}
else if (verticalError < -0.01)
{
m_newVelocity.Z -= verticalCorrectionVelocity;
}
else
{
m_newVelocity.Z = 0f;
hoverContribution = new Vector3(0f, 0f, -verticalCorrectionVelocity);
}
}
VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight);
VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}",
Prim.LocalID, pos, hoverContribution, m_VhoverHeight, m_VhoverTargetHeight);
}
// ==================================================================
Vector3 posChange = pos - m_lastPositionVector;
if (m_BlockingEndPoint != Vector3.Zero)
{
@ -749,70 +730,77 @@ namespace OpenSim.Region.Physics.BulletSPlugin
}
}
#region downForce
Vector3 downForce = Vector3.Zero;
// ==================================================================
Vector3 limitMotorUpContribution = Vector3.Zero;
if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
{
// If the vehicle is motoring into the sky, get it going back down.
// Is this an angular force or both linear and angular??
float distanceAboveGround = pos.Z - terrainHeight;
if (distanceAboveGround > 2f)
if (distanceAboveGround > 1f)
{
// downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
// downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
downForce = new Vector3(0, 0, -distanceAboveGround);
limitMotorUpContribution = new Vector3(0, 0, -distanceAboveGround);
}
// TODO: this calculation is all wrong. From the description at
// (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
// has a decay factor. This says this force should
// be computed with a motor.
VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}",
Prim.LocalID, distanceAboveGround, downForce);
Prim.LocalID, distanceAboveGround, limitMotorUpContribution);
}
#endregion // downForce
// ==================================================================
Vector3 newVelocity = linearMotorContribution
+ terrainHeightContribution
+ hoverContribution
+ limitMotorUpContribution;
// If not changing some axis, reduce out velocity
if ((m_flags & (VehicleFlag.NO_X)) != 0)
m_newVelocity.X = 0;
newVelocity.X = 0;
if ((m_flags & (VehicleFlag.NO_Y)) != 0)
m_newVelocity.Y = 0;
newVelocity.Y = 0;
if ((m_flags & (VehicleFlag.NO_Z)) != 0)
m_newVelocity.Z = 0;
newVelocity.Z = 0;
// ==================================================================
// Clamp REALLY high or low velocities
if (m_newVelocity.LengthSquared() > 1e6f)
float newVelocityLengthSq = newVelocity.LengthSquared();
if (newVelocityLengthSq > 1e6f)
{
m_newVelocity /= m_newVelocity.Length();
m_newVelocity *= 1000f;
newVelocity /= newVelocity.Length();
newVelocity *= 1000f;
}
else if (m_newVelocity.LengthSquared() < 1e-6f)
m_newVelocity = Vector3.Zero;
else if (newVelocityLengthSq < 1e-6f)
newVelocity = Vector3.Zero;
// ==================================================================
// Stuff new linear velocity into the vehicle
Prim.ForceVelocity = m_newVelocity;
Prim.ForceVelocity = newVelocity;
// Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG
Vector3 totalDownForce = downForce + grav;
// Other linear forces are applied as forces.
Vector3 totalDownForce = grav * m_vehicleMass;
if (totalDownForce != Vector3.Zero)
{
Prim.AddForce(totalDownForce * m_vehicleMass, false);
// Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false);
Prim.AddForce(totalDownForce, false);
}
VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}",
Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce);
Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector,
newVelocity, Prim.Velocity, totalDownForce);
} // end MoveLinear()
// =======================================================================
// =======================================================================
// Apply the effect of the angular motor.
private void MoveAngular(float pTimestep)
{
// m_angularMotorDirection // angular velocity requested by LSL motor
// m_angularMotorApply // application frame counter
// m_angularMotorVelocity // current angular motor velocity (ramps up and down)
// m_angularMotorTimescale // motor angular velocity ramp up rate
// m_angularMotorTimescale // motor angular velocity ramp up time
// m_angularMotorDecayTimescale // motor angular velocity decay rate
// m_angularFrictionTimescale // body angular velocity decay rate
// m_lastAngularVelocity // what was last applied to body
@ -836,18 +824,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_angularMotorVelocity = Vector3.Zero;
}
#region Vertical attactor
Vector3 vertattr = Vector3.Zero;
Vector3 deflection = Vector3.Zero;
Vector3 banking = Vector3.Zero;
Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep);
// ==================================================================
Vector3 verticalAttractionContribution = Vector3.Zero;
// If vertical attaction timescale is reasonable and we applied an angular force last time...
if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
{
float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale;
if (Prim.IsColliding)
VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale);
VAservo = pTimestep * 0.05f / m_verticalAttractionTimescale;
VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
@ -871,24 +857,23 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y
// then .X increases, so change Body angular velocity X based on Y, and Y based on X.
// Z is not changed.
vertattr.X = verticalError.Y;
vertattr.Y = - verticalError.X;
vertattr.Z = 0f;
verticalAttractionContribution.X = verticalError.Y;
verticalAttractionContribution.Y = - verticalError.X;
verticalAttractionContribution.Z = 0f;
// scaling appears better usingsquare-law
Vector3 angularVelocity = Prim.ForceRotationalVelocity;
float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
vertattr.X += bounce * angularVelocity.X;
vertattr.Y += bounce * angularVelocity.Y;
verticalAttractionContribution.X += bounce * angularVelocity.X;
verticalAttractionContribution.Y += bounce * angularVelocity.Y;
VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}",
Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr);
Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, verticalAttractionContribution);
}
#endregion // Vertical attactor
#region Deflection
// ==================================================================
Vector3 deflectionContribution = Vector3.Zero;
if (m_angularDeflectionEfficiency != 0)
{
// Compute a scaled vector that points in the preferred axis (X direction)
@ -899,18 +884,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
// Scale by efficiency and timescale
deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
deflectionContribution = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
Prim.LocalID, preferredAxisOfMotion, deflection);
Prim.LocalID, preferredAxisOfMotion, deflectionContribution);
// This deflection computation is not correct.
deflection = Vector3.Zero;
deflectionContribution = Vector3.Zero;
}
#endregion
#region Banking
// ==================================================================
Vector3 bankingContribution = Vector3.Zero;
if (m_bankingEfficiency != 0)
{
Vector3 dir = Vector3.One * Prim.ForceOrientation;
@ -925,6 +908,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
float mix = Math.Abs(m_bankingMix);
if (m_angularMotorVelocity.X == 0)
{
// The vehicle is stopped
/*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
{
Vector3 axisAngle;
@ -938,9 +922,12 @@ namespace OpenSim.Region.Physics.BulletSPlugin
}*/
}
else
banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4;
if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
{
bankingContribution.Z += (effSquared * (mult * mix)) * (m_angularMotorVelocity.X) * 4;
}
//If they are colliding, we probably shouldn't shove the prim around... probably
if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
{
float angVelZ = m_angularMotorVelocity.X*-1;
/*if(angVelZ > mix)
@ -954,22 +941,23 @@ namespace OpenSim.Region.Physics.BulletSPlugin
else if (bankingRot.X < -3)
bankingRot.X = -3;
bankingRot *= Prim.ForceOrientation;
banking += bankingRot;
bankingContribution += bankingRot;
}
m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}",
Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking);
VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},effSq={3},mult={4},mix={5},banking={6}",
Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, effSquared, mult, mix, bankingContribution);
}
#endregion
m_lastVertAttractor = vertattr;
// ==================================================================
m_lastVertAttractor = verticalAttractionContribution;
// Sum velocities
m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection;
#region Linear Motor Offset
m_lastAngularVelocity = angularMotorContribution
+ verticalAttractionContribution
+ bankingContribution
+ deflectionContribution;
// ==================================================================
//Offset section
if (m_linearMotorOffset != Vector3.Zero)
{
@ -985,8 +973,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
//
// The torque created is the linear velocity crossed with the offset
// NOTE: this computation does should be in the linear section
// because there we know the impulse being applied.
// TODO: this computation should be in the linear section
// because that is where we know the impulse being applied.
Vector3 torqueFromOffset = Vector3.Zero;
// torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
if (float.IsNaN(torqueFromOffset.X))
@ -1000,8 +988,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
}
#endregion
// ==================================================================
// NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
{
m_lastAngularVelocity.X = 0;
@ -1009,6 +997,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
}
// ==================================================================
if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
{
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
@ -1021,18 +1010,20 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// The above calculates the absolute angular velocity needed. Angular velocity is massless.
// Since we are stuffing the angular velocity directly into the object, the computed
// velocity needs to be scaled by the timestep.
Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity);
// Also remove any motion that is on the object so added motion is only from vehicle.
Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep)
- Prim.ForceRotationalVelocity);
Prim.ForceRotationalVelocity = applyAngularForce;
// Decay the angular movement for next time
Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep;
m_lastAngularVelocity *= Vector3.One - decayamount;
VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}",
Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity);
VDetailLog("{0},MoveAngular,done,newRotVel={1},lastAngular={2}",
Prim.LocalID, applyAngularForce, m_lastAngularVelocity);
}
}
} //end MoveAngular
// This is from previous instantiations of XXXDynamics.cs.
// Applies roll reference frame.
// TODO: is this the right way to separate the code to do this operation?
// Should this be in MoveAngular()?
internal void LimitRotation(float timestep)
{
Quaternion rotq = Prim.ForceOrientation;

View File

@ -0,0 +1,191 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Text;
using System.Reflection;
using Nini.Config;
namespace OpenSim.Region.Physics.BulletSPlugin
{
public struct MaterialAttributes
{
// Material type values that correspond with definitions for LSL
public enum Material : int
{
Stone = 0,
Metal,
Glass,
Wood,
Flesh,
Plastic,
Rubber,
Light,
// Hereafter are BulletSim additions
Avatar,
NumberOfTypes // the count of types in the enum.
}
// Names must be in the order of the above enum.
public static string[] MaterialNames = { "Stone", "Metal", "Glass", "Wood",
"Flesh", "Plastic", "Rubber", "Light", "Avatar" };
public static string[] MaterialAttribs = { "Density", "Friction", "Restitution",
"ccdMotionThreshold", "ccdSweptSphereRadius" };
public MaterialAttributes(string t, float d, float f, float r, float ccdM, float ccdS)
{
type = t;
density = d;
friction = f;
restitution = r;
ccdMotionThreshold = ccdM;
ccdSweptSphereRadius = ccdS;
}
public string type;
public float density;
public float friction;
public float restitution;
public float ccdMotionThreshold;
public float ccdSweptSphereRadius;
}
public static class BSMaterials
{
public static MaterialAttributes[] Attributes;
static BSMaterials()
{
// Attribute sets for both the non-physical and physical instances of materials.
Attributes = new MaterialAttributes[(int)MaterialAttributes.Material.NumberOfTypes * 2];
}
// This is where all the default material attributes are defined.
public static void InitializeFromDefaults(ConfigurationParameters parms)
{
// public static string[] MaterialNames = { "Stone", "Metal", "Glass", "Wood",
// "Flesh", "Plastic", "Rubber", "Light", "Avatar" };
float dFriction = parms.defaultFriction;
float dRestitution = parms.defaultRestitution;
float dDensity = parms.defaultDensity;
float dCcdM = parms.ccdMotionThreshold;
float dCcdS = parms.ccdSweptSphereRadius;
Attributes[(int)MaterialAttributes.Material.Stone] =
new MaterialAttributes("stone",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Metal] =
new MaterialAttributes("metal",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Glass] =
new MaterialAttributes("glass",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Wood] =
new MaterialAttributes("wood",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Flesh] =
new MaterialAttributes("flesh",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Plastic] =
new MaterialAttributes("plastic",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Rubber] =
new MaterialAttributes("rubber",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Light] =
new MaterialAttributes("light",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Avatar] =
new MaterialAttributes("avatar",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Stone + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("stonePhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Metal + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("metalPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Glass + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("glassPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Wood + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("woodPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Flesh + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("fleshPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Plastic + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("plasticPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Rubber + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("rubberPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Light + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("lightPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
Attributes[(int)MaterialAttributes.Material.Avatar + (int)MaterialAttributes.Material.NumberOfTypes] =
new MaterialAttributes("avatarPhysical",dDensity,dFriction,dRestitution, dCcdM, dCcdS);
}
// Under the [BulletSim] section, one can change the individual material
// attribute values. The format of the configuration parameter is:
// <materialName><Attribute>["Physical"] = floatValue
// For instance:
// [BulletSim]
// StoneFriction = 0.2
// FleshRestitutionPhysical = 0.8
// Materials can have different parameters for their static and
// physical instantiations. When setting the non-physical value,
// both values are changed. Setting the physical value only changes
// the physical value.
public static void InitializefromParameters(IConfig pConfig)
{
int matType = 0;
foreach (string matName in MaterialAttributes.MaterialNames)
{
foreach (string attribName in MaterialAttributes.MaterialAttribs)
{
string paramName = matName + attribName;
if (pConfig.Contains(paramName))
{
float paramValue = pConfig.GetFloat(paramName);
SetAttributeValue(matType, attribName, paramValue);
// set the physical value also
SetAttributeValue(matType + (int)MaterialAttributes.Material.NumberOfTypes, attribName, paramValue);
}
paramName += "Physical";
if (pConfig.Contains(paramName))
{
float paramValue = pConfig.GetFloat(paramName);
SetAttributeValue(matType + (int)MaterialAttributes.Material.NumberOfTypes, attribName, paramValue);
}
}
matType++;
}
}
private static void SetAttributeValue(int matType, string attribName, float val)
{
MaterialAttributes thisAttrib = Attributes[matType];
FieldInfo fieldInfo = thisAttrib.GetType().GetField(attribName);
if (fieldInfo != null)
{
fieldInfo.SetValue(thisAttrib, val);
Attributes[matType] = thisAttrib;
}
}
public static MaterialAttributes GetAttributes(MaterialAttributes.Material type, bool isPhysical)
{
int ind = (int)type;
if (isPhysical) ind += (int)MaterialAttributes.Material.NumberOfTypes;
return Attributes[ind];
}
}
}

View File

@ -1,4 +1,4 @@
using System;
using System;
using System.Collections.Generic;
using System.Text;
using OpenMetaverse;
@ -7,8 +7,27 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{
public abstract class BSMotor
{
public BSMotor(string useName)
{
UseName = useName;
PhysicsScene = null;
}
public virtual void Reset() { }
public virtual void Zero() { }
public string UseName { get; private set; }
// Used only for outputting debug information. Might not be set so check for null.
public BSScene PhysicsScene { get; set; }
protected void MDetailLog(string msg, params Object[] parms)
{
if (PhysicsScene != null)
{
if (PhysicsScene.VehicleLoggingEnabled)
{
PhysicsScene.DetailLog(msg, parms);
}
}
}
}
// Can all the incremental stepping be replaced with motor classes?
public class BSVMotor : BSMotor
@ -18,20 +37,27 @@ public class BSVMotor : BSMotor
public float TimeScale { get; set; }
public float TargetValueDecayTimeScale { get; set; }
public Vector3 CurrentValueReductionTimescale { get; set; }
public Vector3 FrictionTimescale { get; set; }
public float Efficiency { get; set; }
public Vector3 TargetValue { get; private set; }
public Vector3 CurrentValue { get; private set; }
BSVMotor(float timeScale, float decayTimeScale, Vector3 frictionTimeScale, float efficiency)
public BSVMotor(string useName)
: base(useName)
{
TimeScale = TargetValueDecayTimeScale = Efficiency = 1f;
FrictionTimescale = Vector3.Zero;
CurrentValue = TargetValue = Vector3.Zero;
}
public BSVMotor(string useName, float timeScale, float decayTimeScale, Vector3 frictionTimeScale, float efficiency)
: this(useName)
{
TimeScale = timeScale;
TargetValueDecayTimeScale = decayTimeScale;
CurrentValueReductionTimescale = frictionTimeScale;
FrictionTimescale = frictionTimeScale;
Efficiency = efficiency;
CurrentValue = TargetValue = Vector3.Zero;
}
public void SetCurrent(Vector3 current)
{
@ -43,30 +69,50 @@ public class BSVMotor : BSMotor
}
public Vector3 Step(float timeStep)
{
if (CurrentValue.LengthSquared() > 0.001f)
Vector3 returnCurrent = Vector3.Zero;
if (!CurrentValue.ApproxEquals(TargetValue, 0.01f))
{
// Vector3 origDir = Target; // DEBUG
// Vector3 origVel = CurrentValue; // DEBUG
Vector3 origTarget = TargetValue; // DEBUG
Vector3 origCurrVal = CurrentValue; // DEBUG
// Add (desiredVelocity - currentAppliedVelocity) / howLongItShouldTakeToComplete
Vector3 addAmount = (TargetValue - CurrentValue)/(TargetValue) * timeStep;
// Addition = (desiredVector - currentAppliedVector) / secondsItShouldTakeToComplete
Vector3 addAmount = (TargetValue - CurrentValue)/TimeScale * timeStep;
CurrentValue += addAmount;
returnCurrent = CurrentValue;
// The desired value reduces to zero when also reduces the difference with current.
float decayFactor = (1.0f / TargetValueDecayTimeScale) * timeStep;
TargetValue *= (1f - decayFactor);
Vector3 frictionFactor = (Vector3.One / CurrentValueReductionTimescale) * timeStep;
Vector3 frictionFactor = Vector3.Zero;
frictionFactor = (Vector3.One / FrictionTimescale) * timeStep;
CurrentValue *= (Vector3.One - frictionFactor);
MDetailLog("{0},BSVMotor.Step,nonZero,{1},origTarget={2},origCurr={3},timeStep={4},timeScale={5},addAmnt={6},targetDecay={7},decayFact={8},fricTS={9},frictFact={10}",
BSScene.DetailLogZero, UseName, origTarget, origCurrVal,
timeStep, TimeScale, addAmount,
TargetValueDecayTimeScale, decayFactor,
FrictionTimescale, frictionFactor);
MDetailLog("{0},BSVMotor.Step,nonZero,{1},curr={2},target={3},add={4},decay={5},frict={6},ret={7}",
BSScene.DetailLogZero, UseName, TargetValue, CurrentValue,
addAmount, decayFactor, frictionFactor, returnCurrent);
}
else
{
// if what remains of direction is very small, zero it.
TargetValue = Vector3.Zero;
// Difference between what we have and target is small. Motor is done.
CurrentValue = Vector3.Zero;
TargetValue = Vector3.Zero;
MDetailLog("{0},BSVMotor.Step,zero,{1},curr={2},target={3},ret={4}",
BSScene.DetailLogZero, UseName, TargetValue, CurrentValue, returnCurrent);
// VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID);
}
return CurrentValue;
return returnCurrent;
}
public override string ToString()
{
return String.Format("<{0},curr={1},targ={2},decayTS={3},frictTS={4}>",
UseName, CurrentValue, TargetValue, TargetValueDecayTimeScale, FrictionTimescale);
}
}
@ -80,7 +126,8 @@ public class BSFMotor : BSMotor
public float Target { get; private set; }
public float CurrentValue { get; private set; }
BSFMotor(float timeScale, float decayTimescale, float friction, float efficiency)
public BSFMotor(string useName, float timeScale, float decayTimescale, float friction, float efficiency)
: base(useName)
{
}
public void SetCurrent(float target)
@ -97,7 +144,8 @@ public class BSFMotor : BSMotor
public class BSPIDMotor : BSMotor
{
// TODO: write and use this one
BSPIDMotor()
public BSPIDMotor(string useName)
: base(useName)
{
}
}

View File

@ -342,13 +342,12 @@ public sealed class BSPrim : BSPhysObject
// TODO: check for out of bounds
// The above code computes a force to apply to correct any out-of-bounds problems. Apply same.
// TODO: This should be intergrated with a geneal physics action mechanism.
// TODO: This should be moderated with PID'ness.
if (ret)
{
PhysicsScene.TaintedObject(inTaintTime, "BSPrim.PositionSanityCheck:belowTerrain", delegate()
{
// Apply upforce and overcome gravity.
ForceVelocity = ForceVelocity + upForce - PhysicsScene.DefaultGravity;
});
AddForce(upForce - PhysicsScene.DefaultGravity, false, inTaintTime);
}
return ret;
}

View File

@ -39,23 +39,10 @@ using log4net;
using OpenMetaverse;
// TODOs for BulletSim (for BSScene, BSPrim, BSCharacter and BulletSim)
// Test sculpties (verified that they don't work)
// Compute physics FPS reasonably
// Based on material, set density and friction
// Don't use constraints in linksets of non-physical objects. Means having to move children manually.
// Four states of prim: Physical, regular, phantom and selected. Are we modeling these correctly?
// In SL one can set both physical and phantom (gravity, does not effect others, makes collisions with ground)
// At the moment, physical and phantom causes object to drop through the terrain
// Physical phantom objects and related typing (collision options )
// Check out llVolumeDetect. Must do something for that.
// Use collision masks for collision with terrain and phantom objects
// More efficient memory usage when passing hull information from BSPrim to BulletSim
// Should prim.link() and prim.delink() membership checking happen at taint time?
// Mesh sharing. Use meshHash to tell if we already have a hull of that shape and only create once.
// Do attachments need to be handled separately? Need collision events. Do not collide with VolumeDetect
// Implement LockAngularMotion
// Decide if clearing forces is the right thing to do when setting position (BulletSim::SetObjectTranslation)
// Remove mesh and Hull stuff. Use mesh passed to bullet and use convexdecom from bullet.
// Add PID movement operations. What does ScenePresence.MoveToTarget do?
// Check terrain size. 128 or 127?
// Raycast
@ -234,6 +221,7 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
if (m_physicsLoggingEnabled)
{
PhysicsLogging = new Logging.LogWriter(m_physicsLoggingDir, m_physicsLoggingPrefix, m_physicsLoggingFileMinutes);
PhysicsLogging.ErrorLogger = m_log; // for DEBUG. Let's the logger output error messages.
}
else
{
@ -308,6 +296,13 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
// Do any replacements in the parameters
m_physicsLoggingPrefix = m_physicsLoggingPrefix.Replace("%REGIONNAME%", RegionName);
}
// The material characteristics.
BSMaterials.InitializeFromDefaults(Params);
if (pConfig != null)
{
BSMaterials.InitializefromParameters(pConfig);
}
}
}
@ -1069,7 +1064,7 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
(s,p,l,v) => { s.PID_P = v; } ),
new ParameterDefn("DefaultFriction", "Friction factor used on new objects",
0.5f,
0.2f,
(s,cf,p,v) => { s.m_params[0].defaultFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].defaultFriction; },
(s,p,l,v) => { s.m_params[0].defaultFriction = v; } ),
@ -1084,7 +1079,7 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
(s) => { return s.m_params[0].defaultRestitution; },
(s,p,l,v) => { s.m_params[0].defaultRestitution = v; } ),
new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)",
0f,
0.04f,
(s,cf,p,v) => { s.m_params[0].collisionMargin = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].collisionMargin; },
(s,p,l,v) => { s.m_params[0].collisionMargin = v; } ),
@ -1151,7 +1146,7 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
(s) => { return s.m_params[0].terrainImplementation; },
(s,p,l,v) => { s.m_params[0].terrainImplementation = v; } ),
new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" ,
0.5f,
0.3f,
(s,cf,p,v) => { s.m_params[0].terrainFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].terrainFriction; },
(s,p,l,v) => { s.m_params[0].terrainFriction = v; /* TODO: set on real terrain */} ),
@ -1165,13 +1160,19 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
(s,cf,p,v) => { s.m_params[0].terrainRestitution = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].terrainRestitution; },
(s,p,l,v) => { s.m_params[0].terrainRestitution = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" ,
0.04f,
(s,cf,p,v) => { s.m_params[0].terrainCollisionMargin = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].terrainCollisionMargin; },
(s,p,l,v) => { s.m_params[0].terrainCollisionMargin = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.",
0.2f,
(s,cf,p,v) => { s.m_params[0].avatarFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarFriction; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarFriction, p, l, v); } ),
new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.",
10f,
0.99f,
(s,cf,p,v) => { s.m_params[0].avatarStandingFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarStandingFriction; },
(s,p,l,v) => { s.m_params[0].avatarStandingFriction = v; } ),
@ -1206,6 +1207,11 @@ public sealed class BSScene : PhysicsScene, IPhysicsParameters
(s) => { return s.m_params[0].avatarContactProcessingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarContactProcessingThreshold, p, l, v); } ),
new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)",
0.95f,
(s,cf,p,v) => { s.m_params[0].vehicleAngularDamping = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].vehicleAngularDamping; },
(s,p,l,v) => { s.m_params[0].vehicleAngularDamping = v; } ),
new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)",
0f,

View File

@ -93,7 +93,7 @@ public sealed class BSTerrainHeightmap : BSTerrainPhys
{
m_mapInfo.Ptr = BulletSimAPI.CreateHeightMapInfo2(PhysicsScene.World.ptr, m_mapInfo.ID,
m_mapInfo.minCoords, m_mapInfo.maxCoords,
m_mapInfo.heightMap, BSTerrainManager.TERRAIN_COLLISION_MARGIN);
m_mapInfo.heightMap, PhysicsScene.Params.terrainCollisionMargin);
// Create the terrain shape from the mapInfo
m_mapInfo.terrainShape = new BulletShape(BulletSimAPI.CreateTerrainShape2(m_mapInfo.Ptr),

View File

@ -80,8 +80,6 @@ public sealed class BSTerrainManager
// amount to make sure that a bounding box is built for the terrain.
public const float HEIGHT_EQUAL_FUDGE = 0.2f;
public const float TERRAIN_COLLISION_MARGIN = 0.0f;
// Until the whole simulator is changed to pass us the region size, we rely on constants.
public Vector3 DefaultRegionSize = new Vector3(Constants.RegionSize, Constants.RegionSize, Constants.RegionHeight);
@ -129,7 +127,8 @@ public sealed class BSTerrainManager
{
// The ground plane is here to catch things that are trying to drop to negative infinity
BulletShape groundPlaneShape = new BulletShape(
BulletSimAPI.CreateGroundPlaneShape2(BSScene.GROUNDPLANE_ID, 1f, TERRAIN_COLLISION_MARGIN),
BulletSimAPI.CreateGroundPlaneShape2(BSScene.GROUNDPLANE_ID, 1f,
PhysicsScene.Params.terrainCollisionMargin),
BSPhysicsShapeType.SHAPE_GROUNDPLANE);
m_groundPlane = new BulletBody(BSScene.GROUNDPLANE_ID,
BulletSimAPI.CreateBodyWithDefaultMotionState2(groundPlaneShape.ptr, BSScene.GROUNDPLANE_ID,
@ -164,6 +163,8 @@ public sealed class BSTerrainManager
// Release all the terrain we have allocated
public void ReleaseTerrain()
{
lock (m_terrains)
{
foreach (KeyValuePair<Vector3, BSTerrainPhys> kvp in m_terrains)
{
@ -171,11 +172,14 @@ public sealed class BSTerrainManager
}
m_terrains.Clear();
}
}
// The simulator wants to set a new heightmap for the terrain.
public void SetTerrain(float[] heightMap) {
float[] localHeightMap = heightMap;
PhysicsScene.TaintedObject("TerrainManager.SetTerrain", delegate()
// If there are multiple requests for changes to the same terrain between ticks,
// only do that last one.
PhysicsScene.PostTaintObject("TerrainManager.SetTerrain-"+ m_worldOffset.ToString(), 0, delegate()
{
if (m_worldOffset != Vector3.Zero && MegaRegionParentPhysicsScene != null)
{
@ -211,6 +215,7 @@ public sealed class BSTerrainManager
// terrain shape is created and added to the body.
// This call is most often used to update the heightMap and parameters of the terrain.
// (The above does suggest that some simplification/refactoring is in order.)
// Called during taint-time.
private void UpdateTerrain(uint id, float[] heightMap,
Vector3 minCoords, Vector3 maxCoords, bool inTaintTime)
{
@ -220,7 +225,7 @@ public sealed class BSTerrainManager
// Find high and low points of passed heightmap.
// The min and max passed in is usually the area objects can be in (maximum
// object height, for instance). The terrain wants the bounding box for the
// terrain so we replace passed min and max Z with the actual terrain min/max Z.
// terrain so replace passed min and max Z with the actual terrain min/max Z.
float minZ = float.MaxValue;
float maxZ = float.MinValue;
foreach (float height in heightMap)
@ -238,6 +243,8 @@ public sealed class BSTerrainManager
Vector3 terrainRegionBase = new Vector3(minCoords.X, minCoords.Y, 0f);
lock (m_terrains)
{
BSTerrainPhys terrainPhys;
if (m_terrains.TryGetValue(terrainRegionBase, out terrainPhys))
{
@ -245,8 +252,6 @@ public sealed class BSTerrainManager
DetailLog("{0},UpdateTerrain:UpdateExisting,call,id={1},base={2},minC={3},maxC={4}",
BSScene.DetailLogZero, id, terrainRegionBase, minCoords, minCoords);
PhysicsScene.TaintedObject(inTaintTime, "BSScene.UpdateTerrain:UpdateExisting", delegate()
{
// Remove old terrain from the collection
m_terrains.Remove(terrainRegionBase);
// Release any physical memory it may be using.
@ -271,7 +276,6 @@ public sealed class BSTerrainManager
// I hate doing this, but just bail
return;
}
});
}
else
{
@ -283,23 +287,13 @@ public sealed class BSTerrainManager
if (newTerrainID >= BSScene.CHILDTERRAIN_ID)
newTerrainID = ++m_terrainCount;
float[] heightMapX = heightMap;
Vector3 minCoordsX = minCoords;
Vector3 maxCoordsX = maxCoords;
DetailLog("{0},UpdateTerrain:NewTerrain,call,id={1}, minC={2}, maxC={3}",
DetailLog("{0},UpdateTerrain:NewTerrain,taint,newID={1},minCoord={2},maxCoord={3}",
BSScene.DetailLogZero, newTerrainID, minCoords, minCoords);
// Code that must happen at taint-time
PhysicsScene.TaintedObject(inTaintTime, "BSScene.UpdateTerrain:NewTerrain", delegate()
{
DetailLog("{0},UpdateTerrain:NewTerrain,taint,baseX={1},baseY={2}",
BSScene.DetailLogZero, minCoordsX.X, minCoordsX.Y);
BSTerrainPhys newTerrainPhys = BuildPhysicalTerrain(terrainRegionBase, id, heightMap, minCoords, maxCoords);
m_terrains.Add(terrainRegionBase, newTerrainPhys);
m_terrainModified = true;
});
}
}
}
@ -349,6 +343,7 @@ public sealed class BSTerrainManager
// with the same parameters as last time.
if (!m_terrainModified && lastHeightTX == tX && lastHeightTY == tY)
return lastHeight;
m_terrainModified = false;
lastHeightTX = tX;
lastHeightTY = tY;
@ -358,19 +353,19 @@ public sealed class BSTerrainManager
int offsetY = ((int)(tY / (int)DefaultRegionSize.Y)) * (int)DefaultRegionSize.Y;
Vector3 terrainBaseXYZ = new Vector3(offsetX, offsetY, 0f);
lock (m_terrains)
{
BSTerrainPhys physTerrain;
if (m_terrains.TryGetValue(terrainBaseXYZ, out physTerrain))
{
ret = physTerrain.GetHeightAtXYZ(loc - terrainBaseXYZ);
DetailLog("{0},BSTerrainManager.GetTerrainHeightAtXYZ,loc={1},base={2},height={3}",
BSScene.DetailLogZero, loc, terrainBaseXYZ, ret);
}
else
{
PhysicsScene.Logger.ErrorFormat("{0} GetTerrainHeightAtXY: terrain not found: region={1}, x={2}, y={3}",
LogHeader, PhysicsScene.RegionName, tX, tY);
}
m_terrainModified = false;
}
lastHeight = ret;
return ret;
}

View File

@ -217,8 +217,6 @@ public sealed class BSTerrainMesh : BSTerrainPhys
}
}
verticesCount = verticesCount / 3;
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh,completeVerts,verCount={1}",
BSScene.DetailLogZero, verticesCount);
for (int yy = 0; yy < sizeY; yy++)
{
@ -235,8 +233,6 @@ public sealed class BSTerrainMesh : BSTerrainPhys
indicesCount += 6;
}
}
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh,completeIndices,indCount={1}", // DEEBUG DEBUG DEBUG
LogHeader, indicesCount); // DEBUG
ret = true;
}
catch (Exception e)

View File

@ -287,6 +287,8 @@ public struct ConfigurationParameters
public float terrainFriction;
public float terrainHitFraction;
public float terrainRestitution;
public float terrainCollisionMargin;
public float avatarFriction;
public float avatarStandingFriction;
public float avatarDensity;
@ -296,6 +298,8 @@ public struct ConfigurationParameters
public float avatarCapsuleHeight;
public float avatarContactProcessingThreshold;
public float vehicleAngularDamping;
public float maxPersistantManifoldPoolSize;
public float maxCollisionAlgorithmPoolSize;
public float shouldDisableContactPoolDynamicAllocation;
@ -481,6 +485,9 @@ public static extern IntPtr BuildNativeShape2(IntPtr world, ShapeData shapeData)
[DllImport("BulletSim", CallingConvention = CallingConvention.Cdecl), SuppressUnmanagedCodeSecurity]
public static extern bool IsNativeShape2(IntPtr shape);
[DllImport("BulletSim", CallingConvention = CallingConvention.Cdecl), SuppressUnmanagedCodeSecurity]
public static extern void SetShapeCollisionMargin(IntPtr shape, float margin);
[DllImport("BulletSim", CallingConvention = CallingConvention.Cdecl), SuppressUnmanagedCodeSecurity]
public static extern IntPtr BuildCapsuleShape2(IntPtr world, float radius, float height, Vector3 scale);

View File

@ -221,10 +221,10 @@
; to false if you have compatibility problems.
;CacheSculptMaps = true
; Choose one of the physics engines below
; OpenDynamicsEngine is by some distance the most developed physics engine
; basicphysics effectively does not model physics at all, making all objects phantom
; Choose one of the physics engines below.
; OpenDynamicsEngine is by some distance the most developed physics engine.
; BulletSim is a high performance, up-and-coming physics engine.
; basicphysics effectively does not model physics at all, making all objects phantom.
physics = OpenDynamicsEngine
;physics = basicphysics
;physics = POS
@ -908,15 +908,18 @@
[BulletSim]
; World parameters
DefaultFriction = 0.50
DefaultFriction = 0.20
DefaultDensity = 10.000006836
DefaultRestitution = 0.0
Gravity = -9.80665
TerrainFriction = 0.50
TerrainHitFriction = 0.8
TerrainFriction = 0.30
TerrainHitFraction = 0.8
TerrainRestitution = 0
TerrainCollisionMargin = 0.04
AvatarFriction = 0.2
AvatarStandingFriction = 0.99
AvatarRestitution = 0.0
AvatarDensity = 60.0
AvatarCapsuleWidth = 0.6
@ -930,27 +933,15 @@
LinearDamping = 0.0
AngularDamping = 0.0
DeactivationTime = 0.2
LinearSleepingThreshold = 0.8
AngularSleepingThreshold = 1.0
CcdMotionThreshold = 0.0
CcdSweptSphereRadius = 0.0
ContactProcessingThreshold = 0.1
; If setting a pool size, also disable dynamic allocation (default pool size is 4096 with dynamic alloc)
MaxPersistantManifoldPoolSize = 0
ShouldDisableContactPoolDynamicAllocation = False
ShouldForceUpdateAllAabbs = False
ShouldRandomizeSolverOrder = True
ShouldSplitSimulationIslands = True
ShouldEnableFrictionCaching = False
NumberOfSolverIterations = 0
CollisionMargin = 0.04
; Linkset constraint parameters
LinkImplementation = 1 ; 0=constraint, 1=compound
LinkConstraintUseFrameOffset = False
LinkConstraintEnableTransMotor = True
LinkConstraintTransMotorMaxVel = 5.0
LinkConstraintTransMotorMaxForce = 0.1
; Whether to mesh sculpties
MeshSculptedPrim = true

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.