Merge branch 'careminster' into careminster-presence-refactor

avinationmerge
Melanie 2010-03-15 17:12:08 +00:00
commit 898fa637c3
19 changed files with 1669 additions and 2754 deletions

View File

@ -383,8 +383,10 @@ namespace OpenSim.Region.Framework.Scenes
}
foreach (SceneObjectPart part in m_parts.Values)
{
part.GroupPosition = val;
}
lockPartsForRead(false);
//if (m_rootPart.PhysActor != null)
@ -1914,13 +1916,40 @@ namespace OpenSim.Region.Framework.Scenes
}
}
public void rotLookAt(Quaternion target, float strength, float damping)
{
SceneObjectPart rootpart = m_rootPart;
if (rootpart != null)
{
if (IsAttachment)
{
/*
ScenePresence avatar = m_scene.GetScenePresence(rootpart.AttachedAvatar);
if (avatar != null)
{
Rotate the Av?
} */
}
else
{
if (rootpart.PhysActor != null)
{ // APID must be implemented in your physics system for this to function.
rootpart.PhysActor.APIDTarget = new Quaternion(target.X, target.Y, target.Z, target.W);
rootpart.PhysActor.APIDStrength = strength;
rootpart.PhysActor.APIDDamping = damping;
rootpart.PhysActor.APIDActive = true;
}
}
}
}
public void stopLookAt()
{
SceneObjectPart rootpart = m_rootPart;
if (rootpart != null)
{
if (rootpart.PhysActor != null)
{
{ // APID must be implemented in your physics system for this to function.
rootpart.PhysActor.APIDActive = false;
}
}
@ -3345,22 +3374,21 @@ namespace OpenSim.Region.Framework.Scenes
}
lockPartsForRead(true);
foreach (SceneObjectPart prim in m_parts.Values)
{
foreach (SceneObjectPart prim in m_parts.Values)
if (prim.UUID != m_rootPart.UUID)
{
if (prim.UUID != m_rootPart.UUID)
{
prim.IgnoreUndoUpdate = true;
Vector3 axPos = prim.OffsetPosition;
axPos *= oldParentRot;
axPos *= Quaternion.Inverse(axRot);
prim.OffsetPosition = axPos;
Quaternion primsRot = prim.RotationOffset;
Quaternion newRot = primsRot * oldParentRot;
newRot *= Quaternion.Inverse(axRot);
prim.RotationOffset = newRot;
prim.ScheduleTerseUpdate();
}
prim.IgnoreUndoUpdate = true;
Vector3 axPos = prim.OffsetPosition;
axPos *= oldParentRot;
axPos *= Quaternion.Inverse(axRot);
prim.OffsetPosition = axPos;
Quaternion primsRot = prim.RotationOffset;
Quaternion newRot = primsRot * oldParentRot;
newRot *= Quaternion.Inverse(axRot);
prim.RotationOffset = newRot;
prim.ScheduleTerseUpdate();
}
}

View File

@ -818,7 +818,16 @@ namespace OpenSim.Region.Framework.Scenes
/// <summary></summary>
public Vector3 Acceleration
{
get { return m_acceleration; }
get
{
PhysicsActor actor = PhysActor;
if (actor != null)
{
m_acceleration = actor.Acceleration;
}
return m_acceleration;
}
set { m_acceleration = value; }
}
@ -2696,38 +2705,7 @@ namespace OpenSim.Region.Framework.Scenes
public void RotLookAt(Quaternion target, float strength, float damping)
{
rotLookAt(target, strength, damping);
}
public void rotLookAt(Quaternion target, float strength, float damping)
{
if (IsAttachment)
{
/*
ScenePresence avatar = m_scene.GetScenePresence(rootpart.AttachedAvatar);
if (avatar != null)
{
Rotate the Av?
} */
}
else
{
APIDDamp = damping;
APIDStrength = strength;
APIDTarget = target;
}
}
public void startLookAt(Quaternion rot, float damp, float strength)
{
APIDDamp = damp;
APIDStrength = strength;
APIDTarget = rot;
}
public void stopLookAt()
{
APIDTarget = Quaternion.Identity;
m_parentGroup.rotLookAt(target, strength, damping); // This calls method in SceneObjectGroup.
}
/// <summary>
@ -3225,22 +3203,6 @@ namespace OpenSim.Region.Framework.Scenes
PhysActor.VehicleRotationParam(param, rotation);
}
}
public void SetVehicleFlags(int flags)
{
if (PhysActor != null)
{
PhysActor.VehicleFlagsSet(flags);
}
}
public void RemoveVehicleFlags(int flags)
{
if (PhysActor != null)
{
PhysActor.VehicleFlagsRemove(flags);
}
}
/// <summary>
/// Set the color of prim faces
@ -3494,7 +3456,7 @@ namespace OpenSim.Region.Framework.Scenes
public void StopLookAt()
{
m_parentGroup.stopLookAt();
m_parentGroup.stopLookAt(); // This calls method in SceneObjectGroup.
m_parentGroup.ScheduleGroupForTerseUpdate();
}

View File

@ -878,7 +878,7 @@ namespace OpenSim.Region.Framework.Scenes
if (land != null)
{
//Don't restrict gods, estate managers, or land owners to the TP point. This behaviour mimics agni.
if (land.LandData.LandingType == (byte)1 && land.LandData.UserLocation != Vector3.Zero && m_godlevel < 200 && !m_scene.RegionInfo.EstateSettings.IsEstateManager(m_uuid) && land.LandData.OwnerID != m_uuid)
if (land.LandData.LandingType == (byte)1 && land.LandData.UserLocation != Vector3.Zero && m_godLevel < 200 && !m_scene.RegionInfo.EstateSettings.IsEstateManager(m_uuid) && land.LandData.OwnerID != m_uuid)
{
pos = land.LandData.UserLocation;
}

View File

@ -184,17 +184,7 @@ namespace OpenSim.Region.Physics.BasicPhysicsPlugin
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{

View File

@ -361,17 +361,7 @@ namespace OpenSim.Region.Physics.BulletDotNETPlugin
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{

View File

@ -396,17 +396,7 @@ namespace OpenSim.Region.Physics.BulletDotNETPlugin
{
//TODO:
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{

View File

@ -995,23 +995,13 @@ namespace OpenSim.Region.Physics.BulletXPlugin
public override void VehicleRotationParam(int param, OpenMetaverse.Quaternion rotation)
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{
}
public override void SetVolumeDetect(int param)
{

View File

@ -738,16 +738,6 @@ namespace OpenSim.Region.Physics.OdePlugin
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void SetVolumeDetect(int param)
{

View File

@ -1,630 +0,0 @@
/*
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEDynamics
{
public Vehicle Type
{
get { return m_type; }
}
public IntPtr Body
{
get { return m_body; }
}
private int frcount = 0; // Used to limit dynamics debug output to
// every 100th frame
// private OdeScene m_parentScene = null;
private IntPtr m_body = IntPtr.Zero;
private IntPtr m_jointGroup = IntPtr.Zero;
private IntPtr m_aMotor = IntPtr.Zero;
// Vehicle properties
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
// private bool m_LinearMotorSetLastFrame = false;
// private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero;
private Vector3 m_angularMotorDirectionLASTSET = Vector3.Zero;
private Vector3 m_angularFrictionTimescale = Vector3.Zero;
private float m_angularMotorDecayTimescale = 0;
private float m_angularMotorTimescale = 0;
private Vector3 m_lastAngularVelocityVector = Vector3.Zero;
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 0;
private float m_verticalAttractionTimescale = 0;
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorDecayTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
case Vehicle.HOVER_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_VhoverEfficiency = pValue;
break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorDecayTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.0f) pValue = 0.0f;
if (pValue > 1.0f) pValue = 1.0f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
m_angularMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_angularMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessTypeChange(Vehicle pType)
{
Console.WriteLine("ProcessTypeChange to " + pType);
// Set Defaults For Type
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_VhoverHeight = 0;
m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 1;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1;
m_verticalAttractionTimescale = 10;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 2;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5;
m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1;
m_verticalAttractionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
//Console.WriteLine("Enable m_type=" + m_type + " m_VehicleBuoyancy=" + m_VehicleBuoyancy);
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
//KF: This used to set up the linear and angular joints
}
internal void Step(float pTimestep, OdeScene pParentScene)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
frcount++; // used to limit debug comment output
if (frcount > 100)
frcount = 0;
MoveLinear(pTimestep, pParentScene);
MoveAngular(pTimestep);
}// end Step
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
{
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// add drive to body
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
// This will work temporarily, but we really need to compare speed on an axis
// KF: Limit body velocity to applied velocity?
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
// decay applied velocity
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_linearMotorDirection -= m_linearMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
else
{ // requested is not significant
// if what remains of applied is small, zero it.
if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
m_lastLinearVelocityVector = Vector3.Zero;
}
// convert requested object velocity to world-referenced vector
m_dir = m_lastLinearVelocityVector;
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
m_dir *= rotq; // apply obj rotation to velocity vector
// add Gravity andBuoyancy
// KF: So far I have found no good method to combine a script-requested
// .Z velocity and gravity. Therefore only 0g will used script-requested
// .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
Vector3 grav = Vector3.Zero;
if(m_VehicleBuoyancy < 1.0f)
{
// There is some gravity, make a gravity force vector
// that is applied after object velocity.
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
// Preserve the current Z velocity
d.Vector3 vel_now = d.BodyGetLinearVel(Body);
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
} // else its 1.0, no gravity.
// Check if hovering
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
d.Vector3 pos = d.BodyGetPosition(Body);
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
{
// If body is aready heigher, use its height as target height
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
// m_VhoverTimescale = 0f; // time to acheive height
// pTimestep is time since last frame,in secs
float herr0 = pos.Z - m_VhoverTargetHeight;
//if(frcount == 0) Console.WriteLine("herr0=" + herr0);
// Replace Vertical speed with correction figure if significant
if(Math.Abs(herr0) > 0.01f )
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
// m_VhoverEfficiency is not yet implemented
}
else
{
m_dir.Z = 0f;
}
}
// Apply velocity
d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
//if(frcount == 0) Console.WriteLine("Move " + Body + ":"+ m_dir.X + " " + m_dir.Y + " " + m_dir.Z);
// apply gravity force
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
//if(frcount == 0) Console.WriteLine("Force " + Body + ":" + grav.X + " " + grav.Y + " " + grav.Z);
// apply friction
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
} // end MoveLinear()
private void MoveAngular(float pTimestep)
{
// m_angularMotorDirection is the latest value from the script, and is decayed here
// m_angularMotorDirectionLASTSET is the latest value from the script
// m_lastAngularVelocityVector is what is being applied to the Body, varied up and down here
if (!m_angularMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
// ramp up to new value
Vector3 addAmount = m_angularMotorDirection / (m_angularMotorTimescale / pTimestep);
m_lastAngularVelocityVector += (addAmount * 10f);
//if(frcount == 0) Console.WriteLine("add: " + addAmount);
// limit applied value to what was set by script
// This will work temporarily, but we really need to compare speed on an axis
if (Math.Abs(m_lastAngularVelocityVector.X) > Math.Abs(m_angularMotorDirectionLASTSET.X))
m_lastAngularVelocityVector.X = m_angularMotorDirectionLASTSET.X;
if (Math.Abs(m_lastAngularVelocityVector.Y) > Math.Abs(m_angularMotorDirectionLASTSET.Y))
m_lastAngularVelocityVector.Y = m_angularMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastAngularVelocityVector.Z) > Math.Abs(m_angularMotorDirectionLASTSET.Z))
m_lastAngularVelocityVector.Z = m_angularMotorDirectionLASTSET.Z;
// decay the requested value
Vector3 decayfraction = ((Vector3.One / (m_angularMotorDecayTimescale / pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_angularMotorDirection -= m_angularMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
// KF: m_lastAngularVelocityVector is rotational speed in rad/sec ?
// Vertical attractor section
// d.Mass objMass;
// d.BodyGetMass(Body, out objMass);
// float servo = 100f * objMass.mass * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
float servo = 0.1f * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
// get present body rotation
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
// Error is 0 (no error) to +/- 2 (max error)
// scale it by servo
verterr = verterr * servo;
// rotate to object frame
// verterr = verterr * rotq;
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
m_lastAngularVelocityVector.X += verterr.Y;
m_lastAngularVelocityVector.Y -= verterr.X;
/*
if(frcount == 0)
{
// Console.WriteLine("AngleMotor " + m_lastAngularVelocityVector);
Console.WriteLine(String.Format("VA Body:{0} servo:{1} err:<{2},{3},{4}> VAE:{5}",
Body, servo, verterr.X, verterr.Y, verterr.Z, m_verticalAttractionEfficiency));
}
*/
d.BodySetAngularVel (Body, m_lastAngularVelocityVector.X, m_lastAngularVelocityVector.Y, m_lastAngularVelocityVector.Z);
// apply friction
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
m_lastAngularVelocityVector -= m_lastAngularVelocityVector * decayamount;
} //end MoveAngular
}
}

View File

@ -1,792 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*
*/
/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEDynamics
{
public Vehicle Type
{
get { return m_type; }
}
public IntPtr Body
{
get { return m_body; }
}
private int frcount = 0; // Used to limit dynamics debug output to
// every 100th frame
// private OdeScene m_parentScene = null;
private IntPtr m_body = IntPtr.Zero;
// private IntPtr m_jointGroup = IntPtr.Zero;
// private IntPtr m_aMotor = IntPtr.Zero;
// Vehicle properties
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity
//requested by LSL
private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL
private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL
private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL
private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor
private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity
private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL
private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
// private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
//Deflection properties
// private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0;
//Banking properties
// private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0;
// private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
// private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 1.0f; // damped
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorDecayTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
// case Vehicle.HOVER_EFFICIENCY:
// if (pValue < 0f) pValue = 0f;
// if (pValue > 1f) pValue = 1f;
// m_VhoverEfficiency = pValue;
// break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
// m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorDecayTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
if (pValue > 1.0f) pValue = 1.0f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
if (pValue > 30f) pValue = 30f;
if (pValue < 0.1f) pValue = 0.1f;
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
UpdateAngDecay();
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
UpdateLinDecay();
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
if (pValue.X > 30f) pValue.X = 30f;
if (pValue.X < 0.1f) pValue.X = 0.1f;
if (pValue.Y > 30f) pValue.Y = 30f;
if (pValue.Y < 0.1f) pValue.Y = 0.1f;
if (pValue.Z > 30f) pValue.Z = 30f;
if (pValue.Z < 0.1f) pValue.Z = 0.1f;
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// Limit requested angular speed to 2 rps= 4 pi rads/sec
if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
UpdateAngDecay();
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting
UpdateLinDecay();
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessFlagsVehicleSet(int flags)
{
m_flags |= (VehicleFlag)flags;
}
internal void ProcessFlagsVehicleRemove(int flags)
{
m_flags &= ~((VehicleFlag)flags);
}
internal void ProcessTypeChange(Vehicle pType)
{
// Set Defaults For Type
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(30, 30, 30);
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0;
// m_bankingMix = 1;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(30, 30, 30); // was 1000, but sl max frict time is 30.
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2;
// // m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 10f;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 0.5f;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5f;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f;
// m_bankingTimescale = 1;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
// m_lLinMotorVel = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3;
// m_angularDeflectionEfficiency = 1;
// m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2f;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 2;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5;
// m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5;
// m_angularDeflectionEfficiency = 0;
// m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 100f;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f;
// m_bankingTimescale = 5;
// m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
}
internal void Step(float pTimestep, OdeScene pParentScene)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
frcount++; // used to limit debug comment output
if (frcount > 24)
frcount = 0;
MoveLinear(pTimestep, pParentScene);
MoveAngular(pTimestep);
}// end Step
internal void Halt()
{ // Kill all motions, when non-physical
m_linearMotorDirection = Vector3.Zero;
m_lLinMotorDVel = Vector3.Zero;
m_lLinObjectVel = Vector3.Zero;
m_wLinObjectVel = Vector3.Zero;
m_angularMotorDirection = Vector3.Zero;
m_lastAngularVelocity = Vector3.Zero;
m_angularMotorDVel = Vector3.Zero;
}
private void UpdateLinDecay()
{
if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X;
if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y;
if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z;
} // else let the motor decay on its own
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
{
Vector3 acceleration = new Vector3(0f, 0f, 0f);
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
Quaternion irotq = Quaternion.Inverse(rotq);
d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame
Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z);
acceleration = vel_now - m_wLinObjectVel;
m_lLinObjectVel = vel_now * irotq;
if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate
{
if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f)
{
float decayfactor = m_linearMotorDecayTimescale/pTimestep;
Vector3 decayAmount = (m_lLinMotorDVel/decayfactor);
m_lLinMotorDVel -= decayAmount;
}
else
{
float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale)));
Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep;
m_lLinMotorDVel -= decel;
}
if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
{
m_lLinMotorDVel = Vector3.Zero;
}
else
{
if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X;
if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y;
if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z;
}
}
if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) )
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
if (m_linearMotorTimescale < 300.0f)
{
Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel;
float linfactor = m_linearMotorTimescale/pTimestep;
Vector3 attackAmount = (attack_error/linfactor) * 1.3f;
m_lLinObjectVel += attackAmount;
}
if (m_linearFrictionTimescale.X < 300.0f)
{
float fricfactor = m_linearFrictionTimescale.X / pTimestep;
float fricX = m_lLinObjectVel.X / fricfactor;
m_lLinObjectVel.X -= fricX;
}
if (m_linearFrictionTimescale.Y < 300.0f)
{
float fricfactor = m_linearFrictionTimescale.Y / pTimestep;
float fricY = m_lLinObjectVel.Y / fricfactor;
m_lLinObjectVel.Y -= fricY;
}
if (m_linearFrictionTimescale.Z < 300.0f)
{
float fricfactor = m_linearFrictionTimescale.Z / pTimestep;
//if(frcount == 0) Console.WriteLine("Zfric={0}", fricfactor);
float fricZ = m_lLinObjectVel.Z / fricfactor;
m_lLinObjectVel.Z -= fricZ;
}
}
m_wLinObjectVel = m_lLinObjectVel * rotq;
// Add Gravity and Buoyancy
Vector3 grav = Vector3.Zero;
if(m_VehicleBuoyancy < 1.0f)
{
// There is some gravity, make a gravity force vector
// that is applied after object velocity.
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force
} // else its 1.0, no gravity.
// Check if hovering
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{
// We should hover, get the target height
d.Vector3 pos = d.BodyGetPosition(Body);
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
{
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
}
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
{
m_VhoverTargetHeight = m_VhoverHeight;
}
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
{
// If body is aready heigher, use its height as target height
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
}
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
// m_VhoverTimescale = 0f; // time to acheive height
// pTimestep is time since last frame,in secs
float herr0 = pos.Z - m_VhoverTargetHeight;
// Replace Vertical speed with correction figure if significant
if(Math.Abs(herr0) > 0.01f )
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
//KF: m_VhoverEfficiency is not yet implemented
}
else
{
m_wLinObjectVel.Z = 0f;
}
}
else
{ // not hovering, Gravity rules
m_wLinObjectVel.Z = vel_now.Z;
//if(frcount == 0) Console.WriteLine(" Z {0} a.Z {1}", m_wLinObjectVel.Z, acceleration.Z);
}
// Apply velocity
d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z);
// apply gravity force
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
//if(frcount == 0) Console.WriteLine("Grav {0}", grav);
} // end MoveLinear()
private void UpdateAngDecay()
{
if (Math.Abs(m_angularMotorDirection.X) > Math.Abs(m_angularMotorDVel.X)) m_angularMotorDVel.X = m_angularMotorDirection.X;
if (Math.Abs(m_angularMotorDirection.Y) > Math.Abs(m_angularMotorDVel.Y)) m_angularMotorDVel.Y = m_angularMotorDirection.Y;
if (Math.Abs(m_angularMotorDirection.Z) > Math.Abs(m_angularMotorDVel.Z)) m_angularMotorDVel.Z = m_angularMotorDirection.Z;
} // else let the motor decay on its own
private void MoveAngular(float pTimestep)
{
/*
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL
private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
private Vector3 m_angObjectVel = Vector3.Zero; // what was last applied to body
*/
//if(frcount == 0) Console.WriteLine("MoveAngular ");
// Get what the body is doing, this includes 'external' influences
d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body);
Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z);
//if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel);
// Vector3 FrAaccel = m_lastAngularVelocity - angObjectVel;
// Vector3 initavel = angObjectVel;
// Decay Angular Motor 1. In SL this also depends on attack rate! decay ~= 23/Attack.
float atk_decayfactor = 23.0f / (m_angularMotorTimescale * pTimestep);
m_angularMotorDVel -= m_angularMotorDVel / atk_decayfactor;
// Decay Angular Motor 2.
if (m_angularMotorDecayTimescale < 300.0f)
{
//####
if ( Vector3.Mag(m_angularMotorDVel) < 1.0f)
{
float decayfactor = (m_angularMotorDecayTimescale)/pTimestep;
Vector3 decayAmount = (m_angularMotorDVel/decayfactor);
m_angularMotorDVel -= decayAmount;
}
else
{
Vector3 decel = Vector3.Normalize(m_angularMotorDVel) * pTimestep / m_angularMotorDecayTimescale;
m_angularMotorDVel -= decel;
}
if (m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
{
m_angularMotorDVel = Vector3.Zero;
}
else
{
if (Math.Abs(m_angularMotorDVel.X) < Math.Abs(angObjectVel.X)) angObjectVel.X = m_angularMotorDVel.X;
if (Math.Abs(m_angularMotorDVel.Y) < Math.Abs(angObjectVel.Y)) angObjectVel.Y = m_angularMotorDVel.Y;
if (Math.Abs(m_angularMotorDVel.Z) < Math.Abs(angObjectVel.Z)) angObjectVel.Z = m_angularMotorDVel.Z;
}
} // end decay angular motor
//if(frcount == 0) Console.WriteLine("MotorDvel {0} Obj {1}", m_angularMotorDVel, angObjectVel);
//if(frcount == 0) Console.WriteLine("VA = {0}", angObjectVel);
// Vertical attractor section
Vector3 vertattr = Vector3.Zero;
if(m_verticalAttractionTimescale < 300)
{
float VAservo = 1.0f / (m_verticalAttractionTimescale * pTimestep);
// get present body rotation
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
// make a vector pointing up
Vector3 verterr = Vector3.Zero;
verterr.Z = 1.0f;
// rotate it to Body Angle
verterr = verterr * rotq;
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
if (verterr.Z < 0.0f)
{ // Defelction from vertical exceeds 90-degrees. This method will ensure stable return to
// vertical, BUT for some reason a z-rotation is imparted to the object. TBI.
//Console.WriteLine("InvertFlip");
verterr.X = 2.0f - verterr.X;
verterr.Y = 2.0f - verterr.Y;
}
verterr *= 0.5f;
// verterror is 0 (no error) to +/- 1 (max error at 180-deg tilt)
if ((!angObjectVel.ApproxEquals(Vector3.Zero, 0.001f)) || (verterr.Z < 0.49f))
{
//if(frcount == 0)
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
vertattr.X = verterr.Y;
vertattr.Y = - verterr.X;
vertattr.Z = 0f;
//if(frcount == 0) Console.WriteLine("VAerr=" + verterr);
// scaling appears better usingsquare-law
float damped = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency;
float bounce = 1.0f - damped;
// 0 = crit damp, 1 = bouncy
float oavz = angObjectVel.Z; // retain z velocity
angObjectVel = (angObjectVel + (vertattr * VAservo * 0.0333f)) * bounce; // The time-scaled correction, which sums, therefore is bouncy
angObjectVel = angObjectVel + (vertattr * VAservo * 0.0667f * damped); // damped, good @ < 90.
angObjectVel.Z = oavz;
//if(frcount == 0) Console.WriteLine("VA+");
//Console.WriteLine("VAttr {0} OAvel {1}", vertattr, angObjectVel);
}
else
{
// else error is very small
angObjectVel.X = 0f;
angObjectVel.Y = 0f;
//if(frcount == 0) Console.WriteLine("VA0");
}
} // else vertical attractor is off
//if(frcount == 0) Console.WriteLine("V1 = {0}", angObjectVel);
if ( (! m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! angObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) )
{ // if motor or object have motion
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
if (m_angularMotorTimescale < 300.0f)
{
Vector3 attack_error = m_angularMotorDVel - angObjectVel;
float angfactor = m_angularMotorTimescale/pTimestep;
Vector3 attackAmount = (attack_error/angfactor);
angObjectVel += attackAmount;
//if(frcount == 0) Console.WriteLine("Accel {0} Attk {1}",FrAaccel, attackAmount);
//if(frcount == 0) Console.WriteLine("V2+= {0}", angObjectVel);
}
angObjectVel.X -= angObjectVel.X / (m_angularFrictionTimescale.X * 0.7f / pTimestep);
angObjectVel.Y -= angObjectVel.Y / (m_angularFrictionTimescale.Y * 0.7f / pTimestep);
angObjectVel.Z -= angObjectVel.Z / (m_angularFrictionTimescale.Z * 0.7f / pTimestep);
} // else no signif. motion
//if(frcount == 0) Console.WriteLine("Dmotor {0} Obj {1}", m_angularMotorDVel, angObjectVel);
// Bank section tba
// Deflection section tba
//if(frcount == 0) Console.WriteLine("V3 = {0}", angObjectVel);
m_lastAngularVelocity = angObjectVel;
/*
if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.0001f))
{
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
}
else
{
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
}
*/
// Apply to the body
// Vector3 aInc = m_lastAngularVelocity - initavel;
//if(frcount == 0) Console.WriteLine("Inc {0}", aInc);
d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
//if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity);
} //end MoveAngular
}
}

File diff suppressed because it is too large Load Diff

View File

@ -208,8 +208,6 @@ namespace OpenSim.Region.Physics.Manager
public abstract void VehicleFloatParam(int param, float value);
public abstract void VehicleVectorParam(int param, Vector3 value);
public abstract void VehicleRotationParam(int param, Quaternion rotation);
public abstract void VehicleFlagsSet(int flags);
public abstract void VehicleFlagsRemove(int flags);
public abstract void VehicleFlags(int param, bool remove);
public abstract void SetVolumeDetect(int param); // Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more
@ -354,17 +352,7 @@ namespace OpenSim.Region.Physics.Manager
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{

View File

@ -733,17 +733,7 @@ namespace OpenSim.Region.Physics.OdePlugin
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{

View File

@ -2354,16 +2354,6 @@ Console.WriteLine(" JointCreateFixed");
{
m_vehicle.ProcessRotationVehicleParam((Vehicle) param, rotation);
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove)
{

View File

@ -181,17 +181,7 @@ namespace OpenSim.Region.Physics.POSPlugin
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove) { }
public override void SetVolumeDetect(int param)

View File

@ -138,17 +138,7 @@ namespace OpenSim.Region.Physics.POSPlugin
{
}
public override void VehicleFlagsSet(int flags)
{
}
public override void VehicleFlagsRemove(int flags)
{
}
public override void VehicleFlags(int param, bool remove) { }
public override void SetVolumeDetect(int param)

View File

@ -188,14 +188,6 @@ namespace OpenSim.Region.Physics.PhysXPlugin
{
}
public override void VehicleFlagsSet(int param)
{
}
public override void VehicleFlagsRemove(int param)
{
}
public override void VehicleFlags(int param, bool remove)
{
}

View File

@ -277,8 +277,6 @@ namespace OpenSim.Region.Physics.PhysXPlugin
}
public override void VehicleFlagsSet(int param) { }
public override void VehicleFlagsRemove(int param) { }
public override void VehicleFlags(int param, bool remove) { }
public override void SetVolumeDetect(int param)

View File

@ -2899,10 +2899,12 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
// the angles of rotation in radians into rotation value
LSL_Types.Quaternion rot = llEuler2Rot(angle);
/*
Quaternion rotation = new Quaternion((float)rot.x, (float)rot.y, (float)rot.z, (float)rot.s);
m_host.startLookAt(rotation, (float)damping, (float)strength);
This would only work if your physics system contains an APID controller */
// Orient the object to the angle calculated
//llSetRot(rot);
llSetRot(rot);
}
public void llRotLookAt(LSL_Rotation target, double strength, double damping)
@ -4017,14 +4019,17 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
bucket);
if (m_TransferModule != null)
m_TransferModule.SendInstantMessage(msg, delegate(bool success) {});
m_TransferModule.SendInstantMessage(msg, delegate(bool success) {});
//This delay should only occur when giving inventory to avatars.
ScriptSleep(3000);
}
else
{
// destination is an object
World.MoveTaskInventoryItem(destId, m_host, objId);
}
ScriptSleep(3000);
}
[DebuggerNonUserCode]