Merge branch 'master' of ssh://opensimulator.org/var/git/opensim
commit
8a1d3b322f
|
@ -81,8 +81,11 @@ namespace OpenSim.Region.CoreModules.Avatar.Groups
|
|||
}
|
||||
|
||||
if (groupsConfig.GetString("Module", "Default") != "Default")
|
||||
{
|
||||
m_Enabled = false;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -125,6 +125,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
|
||||
|
||||
//Attractor properties
|
||||
private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
|
||||
private float m_verticalAttractionEfficiency = 1.0f; // damped
|
||||
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
|
||||
|
||||
|
@ -197,9 +198,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
break;
|
||||
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
|
||||
m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f));
|
||||
m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
|
||||
break;
|
||||
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
|
||||
m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
|
||||
m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
|
||||
break;
|
||||
|
||||
// These are vector properties but the engine lets you use a single float value to
|
||||
|
@ -530,12 +533,22 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
Refresh();
|
||||
|
||||
m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
|
||||
m_linearMotorDecayTimescale, m_linearFrictionTimescale, 1f);
|
||||
m_linearMotorDecayTimescale, m_linearFrictionTimescale,
|
||||
1f);
|
||||
m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
|
||||
|
||||
m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
|
||||
m_angularMotorDecayTimescale, m_angularFrictionTimescale, 1f);
|
||||
m_angularMotorDecayTimescale, m_angularFrictionTimescale,
|
||||
1f);
|
||||
m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
|
||||
|
||||
m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
|
||||
BSMotor.Infinite, BSMotor.InfiniteVector,
|
||||
m_verticalAttractionEfficiency);
|
||||
// Z goes away and we keep X and Y
|
||||
m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f);
|
||||
m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
|
||||
|
||||
// m_bankingMotor = new BSVMotor("BankingMotor", ...);
|
||||
}
|
||||
|
||||
|
@ -617,138 +630,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
|
||||
Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
|
||||
|
||||
// Current vehicle position
|
||||
Vector3 pos = Prim.ForcePosition;
|
||||
|
||||
// ==================================================================
|
||||
Vector3 terrainHeightContribution = Vector3.Zero;
|
||||
// If below the terrain, move us above the ground a little.
|
||||
float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
|
||||
// Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset.
|
||||
// TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
|
||||
// Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation;
|
||||
// if (rotatedSize.Z < terrainHeight)
|
||||
if (pos.Z < terrainHeight)
|
||||
{
|
||||
// TODO: correct position by applying force rather than forcing position.
|
||||
pos.Z = terrainHeight + 2;
|
||||
Prim.ForcePosition = pos;
|
||||
VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos);
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
Vector3 hoverContribution = Vector3.Zero;
|
||||
// Check if hovering
|
||||
// m_VhoverEfficiency: 0=bouncy, 1=totally damped
|
||||
// m_VhoverTimescale: time to achieve height
|
||||
if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
|
||||
{
|
||||
// We should hover, get the target height
|
||||
if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
|
||||
{
|
||||
m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight;
|
||||
}
|
||||
if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
|
||||
{
|
||||
m_VhoverTargetHeight = terrainHeight + m_VhoverHeight;
|
||||
}
|
||||
if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
|
||||
{
|
||||
m_VhoverTargetHeight = m_VhoverHeight;
|
||||
}
|
||||
Vector3 terrainHeightContribution = ComputeLinearTerrainHeightCorrection(pTimestep, ref pos, terrainHeight);
|
||||
|
||||
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
|
||||
{
|
||||
// If body is already heigher, use its height as target height
|
||||
if (pos.Z > m_VhoverTargetHeight)
|
||||
m_VhoverTargetHeight = pos.Z;
|
||||
}
|
||||
if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
|
||||
{
|
||||
if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f)
|
||||
{
|
||||
pos.Z = m_VhoverTargetHeight;
|
||||
Prim.ForcePosition = pos;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float verticalError = pos.Z - m_VhoverTargetHeight;
|
||||
// RA: where does the 50 come from?
|
||||
float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale);
|
||||
// Replace Vertical speed with correction figure if significant
|
||||
if (verticalError > 0.01f)
|
||||
{
|
||||
hoverContribution = new Vector3(0f, 0f, verticalCorrectionVelocity);
|
||||
//KF: m_VhoverEfficiency is not yet implemented
|
||||
}
|
||||
else if (verticalError < -0.01)
|
||||
{
|
||||
hoverContribution = new Vector3(0f, 0f, -verticalCorrectionVelocity);
|
||||
}
|
||||
}
|
||||
Vector3 hoverContribution = ComputeLinearHover(pTimestep, ref pos, terrainHeight);
|
||||
|
||||
VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}",
|
||||
Prim.LocalID, pos, hoverContribution, m_VhoverHeight, m_VhoverTargetHeight);
|
||||
}
|
||||
ComputeLinearBlockingEndPoint(pTimestep, ref pos);
|
||||
|
||||
// ==================================================================
|
||||
Vector3 posChange = pos - m_lastPositionVector;
|
||||
if (m_BlockingEndPoint != Vector3.Zero)
|
||||
{
|
||||
bool changed = false;
|
||||
if (pos.X >= (m_BlockingEndPoint.X - (float)1))
|
||||
{
|
||||
pos.X -= posChange.X + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
|
||||
{
|
||||
pos.Y -= posChange.Y + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
|
||||
{
|
||||
pos.Z -= posChange.Z + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.X <= 0)
|
||||
{
|
||||
pos.X += posChange.X + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.Y <= 0)
|
||||
{
|
||||
pos.Y += posChange.Y + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (changed)
|
||||
{
|
||||
Prim.ForcePosition = pos;
|
||||
VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
|
||||
Prim.LocalID, m_BlockingEndPoint, posChange, pos);
|
||||
}
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
Vector3 limitMotorUpContribution = Vector3.Zero;
|
||||
if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
|
||||
{
|
||||
// If the vehicle is motoring into the sky, get it going back down.
|
||||
float distanceAboveGround = pos.Z - terrainHeight;
|
||||
if (distanceAboveGround > 1f)
|
||||
{
|
||||
// downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
|
||||
// downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
|
||||
limitMotorUpContribution = new Vector3(0, 0, -distanceAboveGround);
|
||||
}
|
||||
// TODO: this calculation is all wrong. From the description at
|
||||
// (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
|
||||
// has a decay factor. This says this force should
|
||||
// be computed with a motor.
|
||||
VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}",
|
||||
Prim.LocalID, distanceAboveGround, limitMotorUpContribution);
|
||||
}
|
||||
Vector3 limitMotorUpContribution = ComputeLinearMotorUp(pTimestep, pos, terrainHeight);
|
||||
|
||||
// ==================================================================
|
||||
Vector3 newVelocity = linearMotorContribution
|
||||
|
@ -793,6 +684,149 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
|
||||
} // end MoveLinear()
|
||||
|
||||
public Vector3 ComputeLinearTerrainHeightCorrection(float pTimestep, ref Vector3 pos, float terrainHeight)
|
||||
{
|
||||
Vector3 ret = Vector3.Zero;
|
||||
// If below the terrain, move us above the ground a little.
|
||||
// Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset.
|
||||
// TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
|
||||
// Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation;
|
||||
// if (rotatedSize.Z < terrainHeight)
|
||||
if (pos.Z < terrainHeight)
|
||||
{
|
||||
// TODO: correct position by applying force rather than forcing position.
|
||||
pos.Z = terrainHeight + 2;
|
||||
Prim.ForcePosition = pos;
|
||||
VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
public Vector3 ComputeLinearHover(float pTimestep, ref Vector3 pos, float terrainHeight)
|
||||
{
|
||||
Vector3 ret = Vector3.Zero;
|
||||
|
||||
// m_VhoverEfficiency: 0=bouncy, 1=totally damped
|
||||
// m_VhoverTimescale: time to achieve height
|
||||
if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
|
||||
{
|
||||
// We should hover, get the target height
|
||||
if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
|
||||
{
|
||||
m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight;
|
||||
}
|
||||
if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
|
||||
{
|
||||
m_VhoverTargetHeight = terrainHeight + m_VhoverHeight;
|
||||
}
|
||||
if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
|
||||
{
|
||||
m_VhoverTargetHeight = m_VhoverHeight;
|
||||
}
|
||||
|
||||
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
|
||||
{
|
||||
// If body is already heigher, use its height as target height
|
||||
if (pos.Z > m_VhoverTargetHeight)
|
||||
m_VhoverTargetHeight = pos.Z;
|
||||
}
|
||||
if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
|
||||
{
|
||||
if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f)
|
||||
{
|
||||
pos.Z = m_VhoverTargetHeight;
|
||||
Prim.ForcePosition = pos;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float verticalError = pos.Z - m_VhoverTargetHeight;
|
||||
// RA: where does the 50 come from?
|
||||
float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale);
|
||||
// Replace Vertical speed with correction figure if significant
|
||||
if (verticalError > 0.01f)
|
||||
{
|
||||
ret = new Vector3(0f, 0f, verticalCorrectionVelocity);
|
||||
//KF: m_VhoverEfficiency is not yet implemented
|
||||
}
|
||||
else if (verticalError < -0.01)
|
||||
{
|
||||
ret = new Vector3(0f, 0f, -verticalCorrectionVelocity);
|
||||
}
|
||||
}
|
||||
|
||||
VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}",
|
||||
Prim.LocalID, pos, ret, m_VhoverHeight, m_VhoverTargetHeight);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
public bool ComputeLinearBlockingEndPoint(float pTimestep, ref Vector3 pos)
|
||||
{
|
||||
bool changed = false;
|
||||
|
||||
Vector3 posChange = pos - m_lastPositionVector;
|
||||
if (m_BlockingEndPoint != Vector3.Zero)
|
||||
{
|
||||
if (pos.X >= (m_BlockingEndPoint.X - (float)1))
|
||||
{
|
||||
pos.X -= posChange.X + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
|
||||
{
|
||||
pos.Y -= posChange.Y + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
|
||||
{
|
||||
pos.Z -= posChange.Z + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.X <= 0)
|
||||
{
|
||||
pos.X += posChange.X + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (pos.Y <= 0)
|
||||
{
|
||||
pos.Y += posChange.Y + 1;
|
||||
changed = true;
|
||||
}
|
||||
if (changed)
|
||||
{
|
||||
Prim.ForcePosition = pos;
|
||||
VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
|
||||
Prim.LocalID, m_BlockingEndPoint, posChange, pos);
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
public Vector3 ComputeLinearMotorUp(float pTimestep, Vector3 pos, float terrainHeight)
|
||||
{
|
||||
Vector3 ret = Vector3.Zero;
|
||||
if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
|
||||
{
|
||||
// If the vehicle is motoring into the sky, get it going back down.
|
||||
float distanceAboveGround = pos.Z - terrainHeight;
|
||||
if (distanceAboveGround > 1f)
|
||||
{
|
||||
// downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
|
||||
// downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
|
||||
ret = new Vector3(0, 0, -distanceAboveGround);
|
||||
}
|
||||
// TODO: this calculation is all wrong. From the description at
|
||||
// (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
|
||||
// has a decay factor. This says this force should
|
||||
// be computed with a motor.
|
||||
VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}",
|
||||
Prim.LocalID, distanceAboveGround, ret);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// =======================================================================
|
||||
// Apply the effect of the angular motor.
|
||||
|
@ -829,124 +863,19 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep);
|
||||
|
||||
// ==================================================================
|
||||
Vector3 verticalAttractionContribution = Vector3.Zero;
|
||||
// If vertical attaction timescale is reasonable and we applied an angular force last time...
|
||||
if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
|
||||
// NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
|
||||
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
|
||||
{
|
||||
float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale;
|
||||
if (Prim.IsColliding)
|
||||
VAservo = pTimestep * 0.05f / m_verticalAttractionTimescale;
|
||||
|
||||
VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
|
||||
|
||||
// Create a vector of the vehicle "up" in world coordinates
|
||||
Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
|
||||
// verticalError.X and .Y are the World error amounts. They are 0 when there is no
|
||||
// error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its
|
||||
// side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall
|
||||
// and .Z will go negative. Similar for tilt and |.Y|. .X and .Y must be
|
||||
// modulated to prevent a stable inverted body.
|
||||
|
||||
// Error is 0 (no error) to +/- 2 (max error)
|
||||
verticalError.X = Math.Max(-2f, Math.Min(verticalError.X, 2f));
|
||||
verticalError.Y = Math.Max(-2f, Math.Min(verticalError.Y, 2f));
|
||||
|
||||
// scale it by VAservo (timestep and timescale)
|
||||
verticalError = verticalError * VAservo;
|
||||
|
||||
// As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y
|
||||
// then .X increases, so change Body angular velocity X based on Y, and Y based on X.
|
||||
// Z is not changed.
|
||||
verticalAttractionContribution.X = verticalError.Y;
|
||||
verticalAttractionContribution.Y = - verticalError.X;
|
||||
verticalAttractionContribution.Z = 0f;
|
||||
|
||||
// scaling appears better usingsquare-law
|
||||
Vector3 angularVelocity = Prim.ForceRotationalVelocity;
|
||||
float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
|
||||
verticalAttractionContribution.X += bounce * angularVelocity.X;
|
||||
verticalAttractionContribution.Y += bounce * angularVelocity.Y;
|
||||
|
||||
VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}",
|
||||
Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, verticalAttractionContribution);
|
||||
|
||||
angularMotorContribution.X = 0f;
|
||||
angularMotorContribution.Y = 0f;
|
||||
VDetailLog("{0},MoveAngular,noDeflectionUp,angularMotorContrib={1}", Prim.LocalID, angularMotorContribution);
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
Vector3 deflectionContribution = Vector3.Zero;
|
||||
if (m_angularDeflectionEfficiency != 0)
|
||||
{
|
||||
// Compute a scaled vector that points in the preferred axis (X direction)
|
||||
Vector3 scaledDefaultDirection =
|
||||
new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0);
|
||||
// Adding the current vehicle orientation and reference frame displaces the orientation to the frame.
|
||||
// Rotate the scaled default axix relative to the actual vehicle direction giving where it should point.
|
||||
Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
|
||||
Vector3 verticalAttractionContribution = ComputeAngularVerticalAttraction(pTimestep);
|
||||
|
||||
// Scale by efficiency and timescale
|
||||
deflectionContribution = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
|
||||
Vector3 deflectionContribution = ComputeAngularDeflection(pTimestep);
|
||||
|
||||
VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
|
||||
Prim.LocalID, preferredAxisOfMotion, deflectionContribution);
|
||||
// This deflection computation is not correct.
|
||||
deflectionContribution = Vector3.Zero;
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
Vector3 bankingContribution = Vector3.Zero;
|
||||
if (m_bankingEfficiency != 0)
|
||||
{
|
||||
Vector3 dir = Vector3.One * Prim.ForceOrientation;
|
||||
float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1);
|
||||
//Changes which way it banks in and out of turns
|
||||
|
||||
//Use the square of the efficiency, as it looks much more how SL banking works
|
||||
float effSquared = (m_bankingEfficiency*m_bankingEfficiency);
|
||||
if (m_bankingEfficiency < 0)
|
||||
effSquared *= -1; //Keep the negative!
|
||||
|
||||
float mix = Math.Abs(m_bankingMix);
|
||||
if (m_angularMotorVelocity.X == 0)
|
||||
{
|
||||
// The vehicle is stopped
|
||||
/*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
|
||||
{
|
||||
Vector3 axisAngle;
|
||||
float angle;
|
||||
parent.Orientation.GetAxisAngle(out axisAngle, out angle);
|
||||
Vector3 rotatedVel = parent.Velocity * parent.Orientation;
|
||||
if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
|
||||
m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
|
||||
else
|
||||
m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
|
||||
}*/
|
||||
}
|
||||
else
|
||||
{
|
||||
bankingContribution.Z += (effSquared * (mult * mix)) * (m_angularMotorVelocity.X) * 4;
|
||||
}
|
||||
|
||||
//If they are colliding, we probably shouldn't shove the prim around... probably
|
||||
if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
|
||||
{
|
||||
float angVelZ = m_angularMotorVelocity.X*-1;
|
||||
/*if(angVelZ > mix)
|
||||
angVelZ = mix;
|
||||
else if(angVelZ < -mix)
|
||||
angVelZ = -mix;*/
|
||||
//This controls how fast and how far the banking occurs
|
||||
Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0);
|
||||
if (bankingRot.X > 3)
|
||||
bankingRot.X = 3;
|
||||
else if (bankingRot.X < -3)
|
||||
bankingRot.X = -3;
|
||||
bankingRot *= Prim.ForceOrientation;
|
||||
bankingContribution += bankingRot;
|
||||
}
|
||||
m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
|
||||
VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},effSq={3},mult={4},mix={5},banking={6}",
|
||||
Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, effSquared, mult, mix, bankingContribution);
|
||||
}
|
||||
Vector3 bankingContribution = ComputeAngularBanking(pTimestep);
|
||||
|
||||
// ==================================================================
|
||||
m_lastVertAttractor = verticalAttractionContribution;
|
||||
|
@ -988,15 +917,6 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
// NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
|
||||
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
|
||||
{
|
||||
m_lastAngularVelocity.X = 0;
|
||||
m_lastAngularVelocity.Y = 0;
|
||||
VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
|
||||
{
|
||||
|
@ -1025,6 +945,147 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
}
|
||||
}
|
||||
|
||||
public Vector3 ComputeAngularVerticalAttraction(float pTimestep)
|
||||
{
|
||||
Vector3 ret = Vector3.Zero;
|
||||
|
||||
// If vertical attaction timescale is reasonable and we applied an angular force last time...
|
||||
if (m_verticalAttractionTimescale < 500)
|
||||
{
|
||||
Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
|
||||
verticalError.Normalize();
|
||||
m_verticalAttractionMotor.SetCurrent(verticalError);
|
||||
m_verticalAttractionMotor.SetTarget(Vector3.UnitZ);
|
||||
ret = m_verticalAttractionMotor.Step(pTimestep);
|
||||
/*
|
||||
// Take a vector pointing up and convert it from world to vehicle relative coords.
|
||||
Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
|
||||
verticalError.Normalize();
|
||||
|
||||
// If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
|
||||
// is now leaning to one side (rotated around the X axis) and the Y value will
|
||||
// go from zero (nearly straight up) to one (completely to the side) or leaning
|
||||
// front-to-back (rotated around the Y axis) and the value of X will be between
|
||||
// zero and one.
|
||||
// The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.
|
||||
|
||||
// If verticalError.Z is negative, the vehicle is upside down. Add additional push.
|
||||
if (verticalError.Z < 0f)
|
||||
{
|
||||
verticalError.X = 2f - verticalError.X;
|
||||
verticalError.Y = 2f - verticalError.Y;
|
||||
}
|
||||
|
||||
// Y error means needed rotation around X axis and visa versa.
|
||||
verticalAttractionContribution.X = verticalError.Y;
|
||||
verticalAttractionContribution.Y = - verticalError.X;
|
||||
verticalAttractionContribution.Z = 0f;
|
||||
|
||||
// scale by the time scale and timestep
|
||||
Vector3 unscaledContrib = verticalAttractionContribution;
|
||||
verticalAttractionContribution /= m_verticalAttractionTimescale;
|
||||
verticalAttractionContribution *= pTimestep;
|
||||
|
||||
// apply efficiency
|
||||
Vector3 preEfficiencyContrib = verticalAttractionContribution;
|
||||
float efficencySquared = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency;
|
||||
verticalAttractionContribution *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
|
||||
|
||||
VDetailLog("{0},MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},preEff={3},eff={4},effSq={5},vertAttr={6}",
|
||||
Prim.LocalID, verticalError, unscaledContrib, preEfficiencyContrib,
|
||||
m_verticalAttractionEfficiency, efficencySquared,
|
||||
verticalAttractionContribution);
|
||||
*/
|
||||
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
public Vector3 ComputeAngularDeflection(float pTimestep)
|
||||
{
|
||||
Vector3 ret = Vector3.Zero;
|
||||
|
||||
if (m_angularDeflectionEfficiency != 0)
|
||||
{
|
||||
// Compute a scaled vector that points in the preferred axis (X direction)
|
||||
Vector3 scaledDefaultDirection =
|
||||
new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0);
|
||||
// Adding the current vehicle orientation and reference frame displaces the orientation to the frame.
|
||||
// Rotate the scaled default axix relative to the actual vehicle direction giving where it should point.
|
||||
Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
|
||||
|
||||
// Scale by efficiency and timescale
|
||||
ret = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
|
||||
|
||||
VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}", Prim.LocalID, preferredAxisOfMotion, ret);
|
||||
|
||||
// This deflection computation is not correct.
|
||||
ret = Vector3.Zero;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
public Vector3 ComputeAngularBanking(float pTimestep)
|
||||
{
|
||||
Vector3 ret = Vector3.Zero;
|
||||
|
||||
if (m_bankingEfficiency != 0)
|
||||
{
|
||||
Vector3 dir = Vector3.One * Prim.ForceOrientation;
|
||||
float mult = (m_bankingMix * m_bankingMix) * -1 * (m_bankingMix < 0 ? -1 : 1);
|
||||
//Changes which way it banks in and out of turns
|
||||
|
||||
//Use the square of the efficiency, as it looks much more how SL banking works
|
||||
float effSquared = (m_bankingEfficiency * m_bankingEfficiency);
|
||||
if (m_bankingEfficiency < 0)
|
||||
effSquared *= -1; //Keep the negative!
|
||||
|
||||
float mix = Math.Abs(m_bankingMix);
|
||||
if (m_angularMotorVelocity.X == 0)
|
||||
{
|
||||
// The vehicle is stopped
|
||||
/*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
|
||||
{
|
||||
Vector3 axisAngle;
|
||||
float angle;
|
||||
parent.Orientation.GetAxisAngle(out axisAngle, out angle);
|
||||
Vector3 rotatedVel = parent.Velocity * parent.Orientation;
|
||||
if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
|
||||
m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
|
||||
else
|
||||
m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
|
||||
}*/
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.Z += (effSquared * (mult * mix)) * (m_angularMotorVelocity.X) * 4;
|
||||
}
|
||||
|
||||
//If they are colliding, we probably shouldn't shove the prim around... probably
|
||||
if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
|
||||
{
|
||||
float angVelZ = m_angularMotorVelocity.X * -1;
|
||||
/*if(angVelZ > mix)
|
||||
angVelZ = mix;
|
||||
else if(angVelZ < -mix)
|
||||
angVelZ = -mix;*/
|
||||
//This controls how fast and how far the banking occurs
|
||||
Vector3 bankingRot = new Vector3(angVelZ * (effSquared * mult), 0, 0);
|
||||
if (bankingRot.X > 3)
|
||||
bankingRot.X = 3;
|
||||
else if (bankingRot.X < -3)
|
||||
bankingRot.X = -3;
|
||||
bankingRot *= Prim.ForceOrientation;
|
||||
ret += bankingRot;
|
||||
}
|
||||
m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
|
||||
VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},effSq={3},mult={4},mix={5},banking={6}",
|
||||
Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, effSquared, mult, mix, ret);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
// This is from previous instantiations of XXXDynamics.cs.
|
||||
// Applies roll reference frame.
|
||||
// TODO: is this the right way to separate the code to do this operation?
|
||||
|
|
|
@ -7,6 +7,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
|
|||
{
|
||||
public abstract class BSMotor
|
||||
{
|
||||
// Timescales and other things can be turned off by setting them to 'infinite'.
|
||||
public const float Infinite = 10000f;
|
||||
public readonly static Vector3 InfiniteVector = new Vector3(BSMotor.Infinite, BSMotor.Infinite, BSMotor.Infinite);
|
||||
|
||||
public BSMotor(string useName)
|
||||
{
|
||||
UseName = useName;
|
||||
|
@ -46,8 +50,9 @@ public class BSVMotor : BSMotor
|
|||
public BSVMotor(string useName)
|
||||
: base(useName)
|
||||
{
|
||||
TimeScale = TargetValueDecayTimeScale = Efficiency = 1f;
|
||||
FrictionTimescale = Vector3.Zero;
|
||||
TimeScale = TargetValueDecayTimeScale = BSMotor.Infinite;
|
||||
Efficiency = 1f;
|
||||
FrictionTimescale = BSMotor.InfiniteVector;
|
||||
CurrentValue = TargetValue = Vector3.Zero;
|
||||
}
|
||||
public BSVMotor(string useName, float timeScale, float decayTimeScale, Vector3 frictionTimeScale, float efficiency)
|
||||
|
@ -78,23 +83,35 @@ public class BSVMotor : BSMotor
|
|||
// Addition = (desiredVector - currentAppliedVector) / secondsItShouldTakeToComplete
|
||||
Vector3 addAmount = (TargetValue - CurrentValue)/TimeScale * timeStep;
|
||||
CurrentValue += addAmount;
|
||||
|
||||
returnCurrent = CurrentValue;
|
||||
|
||||
// The desired value reduces to zero when also reduces the difference with current.
|
||||
float decayFactor = (1.0f / TargetValueDecayTimeScale) * timeStep;
|
||||
// The desired value reduces to zero which also reduces the difference with current.
|
||||
// If the decay time is infinite, don't decay at all.
|
||||
float decayFactor = 0f;
|
||||
if (TargetValueDecayTimeScale != BSMotor.Infinite)
|
||||
{
|
||||
decayFactor = (1.0f / TargetValueDecayTimeScale) * timeStep;
|
||||
TargetValue *= (1f - decayFactor);
|
||||
}
|
||||
|
||||
Vector3 frictionFactor = Vector3.Zero;
|
||||
frictionFactor = (Vector3.One / FrictionTimescale) * timeStep;
|
||||
if (FrictionTimescale != BSMotor.InfiniteVector)
|
||||
{
|
||||
// frictionFactor = (Vector3.One / FrictionTimescale) * timeStep;
|
||||
frictionFactor.X = FrictionTimescale.X == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.X) * timeStep;
|
||||
frictionFactor.Y = FrictionTimescale.Y == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Y) * timeStep;
|
||||
frictionFactor.Z = FrictionTimescale.Z == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Z) * timeStep;
|
||||
CurrentValue *= (Vector3.One - frictionFactor);
|
||||
}
|
||||
|
||||
MDetailLog("{0},BSVMotor.Step,nonZero,{1},origTarget={2},origCurr={3},timeStep={4},timeScale={5},addAmnt={6},targetDecay={7},decayFact={8},fricTS={9},frictFact={10}",
|
||||
BSScene.DetailLogZero, UseName, origTarget, origCurrVal,
|
||||
MDetailLog("{0},BSVMotor.Step,nonZero,{1},origCurr={2},origTarget={3},timeStep={4},timeScale={5},addAmnt={6},targetDecay={7},decayFact={8},fricTS={9},frictFact={10}",
|
||||
BSScene.DetailLogZero, UseName, origCurrVal, origTarget,
|
||||
timeStep, TimeScale, addAmount,
|
||||
TargetValueDecayTimeScale, decayFactor,
|
||||
FrictionTimescale, frictionFactor);
|
||||
MDetailLog("{0},BSVMotor.Step,nonZero,{1},curr={2},target={3},add={4},decay={5},frict={6},ret={7}",
|
||||
BSScene.DetailLogZero, UseName, TargetValue, CurrentValue,
|
||||
BSScene.DetailLogZero, UseName, CurrentValue, TargetValue,
|
||||
addAmount, decayFactor, frictionFactor, returnCurrent);
|
||||
}
|
||||
else
|
||||
|
|
|
@ -88,6 +88,8 @@ public sealed class BSTerrainMesh : BSTerrainPhys
|
|||
// Something is very messed up and a crash is in our future.
|
||||
return;
|
||||
}
|
||||
PhysicsScene.DetailLog("{0},BSTerrainMesh.create,meshed,indices={1},indSz={2},vertices={3},vertSz={4}",
|
||||
ID, indicesCount, indices.Length, verticesCount, vertices.Length);
|
||||
|
||||
m_terrainShape = new BulletShape(BulletSimAPI.CreateMeshShape2(PhysicsScene.World.ptr,
|
||||
indicesCount, indices, verticesCount, vertices),
|
||||
|
@ -122,10 +124,10 @@ public sealed class BSTerrainMesh : BSTerrainPhys
|
|||
// Static objects are not very massive.
|
||||
BulletSimAPI.SetMassProps2(m_terrainBody.ptr, 0f, Vector3.Zero);
|
||||
|
||||
// Return the new terrain to the world of physical objects
|
||||
// Put the new terrain to the world of physical objects
|
||||
BulletSimAPI.AddObjectToWorld2(PhysicsScene.World.ptr, m_terrainBody.ptr);
|
||||
|
||||
// redo its bounding box now that it is in the world
|
||||
// Redo its bounding box now that it is in the world
|
||||
BulletSimAPI.UpdateSingleAabb2(PhysicsScene.World.ptr, m_terrainBody.ptr);
|
||||
|
||||
BulletSimAPI.SetCollisionFilterMask2(m_terrainBody.ptr,
|
||||
|
@ -188,6 +190,11 @@ public sealed class BSTerrainMesh : BSTerrainPhys
|
|||
// Simple mesh creation which assumes magnification == 1.
|
||||
// TODO: do a more general solution that scales, adds new vertices and smoothes the result.
|
||||
|
||||
// Create an array of vertices that is sizeX+1 by sizeY+1 (note the loop
|
||||
// from zero to <= sizeX). The triangle indices are then generated as two triangles
|
||||
// per heightmap point. There are sizeX by sizeY of these squares. The extra row and
|
||||
// column of vertices are used to complete the triangles of the last row and column
|
||||
// of the heightmap.
|
||||
try
|
||||
{
|
||||
// One vertice per heightmap value plus the vertices off the top and bottom edge.
|
||||
|
@ -200,16 +207,18 @@ public sealed class BSTerrainMesh : BSTerrainPhys
|
|||
float magY = (float)sizeY / extentY;
|
||||
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh,totVert={1},totInd={2},extentBase={3},magX={4},magY={5}",
|
||||
BSScene.DetailLogZero, totalVertices, totalIndices, extentBase, magX, magY);
|
||||
float minHeight = float.MaxValue;
|
||||
// Note that sizeX+1 vertices are created since there is land between this and the next region.
|
||||
for (int yy = 0; yy <= sizeY; yy++)
|
||||
{
|
||||
for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we got through sizeX + 1 times
|
||||
for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we go around sizeX + 1 times
|
||||
{
|
||||
int offset = yy * sizeX + xx;
|
||||
// Extend the height from the height from the last row or column
|
||||
// Extend the height with the height from the last row or column
|
||||
if (yy == sizeY) offset -= sizeX;
|
||||
if (xx == sizeX) offset -= 1;
|
||||
float height = heightMap[offset];
|
||||
minHeight = Math.Min(minHeight, height);
|
||||
vertices[verticesCount + 0] = (float)xx * magX + extentBase.X;
|
||||
vertices[verticesCount + 1] = (float)yy * magY + extentBase.Y;
|
||||
vertices[verticesCount + 2] = height + extentBase.Z;
|
||||
|
@ -222,7 +231,7 @@ public sealed class BSTerrainMesh : BSTerrainPhys
|
|||
{
|
||||
for (int xx = 0; xx < sizeX; xx++)
|
||||
{
|
||||
int offset = yy * sizeX + xx;
|
||||
int offset = yy * (sizeX + 1) + xx;
|
||||
// Each vertices is presumed to be the upper left corner of a box of two triangles
|
||||
indices[indicesCount + 0] = offset;
|
||||
indices[indicesCount + 1] = offset + 1;
|
||||
|
@ -233,6 +242,7 @@ public sealed class BSTerrainMesh : BSTerrainPhys
|
|||
indicesCount += 6;
|
||||
}
|
||||
}
|
||||
|
||||
ret = true;
|
||||
}
|
||||
catch (Exception e)
|
||||
|
|
Loading…
Reference in New Issue