Add script instruction count back to llRot2Euler. Other minor formatting/doc changes.

iar_mods
Justin Clark-Casey (justincc) 2012-01-06 21:12:22 +00:00
parent eb9bf71726
commit 8c445dac67
2 changed files with 32 additions and 16 deletions

View File

@ -468,10 +468,19 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
//Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke //Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke
// Using algorithm based off http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/quat_2_euler_paper_ver2-1.pdf /// <summary>
// to avoid issues with singularity and rounding with Y rotation of +/- PI/2 /// Convert an LSL rotation to a Euler vector.
/// </summary>
/// <remarks>
/// Using algorithm based off http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/quat_2_euler_paper_ver2-1.pdf
/// to avoid issues with singularity and rounding with Y rotation of +/- PI/2
/// </remarks>
/// <param name="r"></param>
/// <returns></returns>
public LSL_Vector llRot2Euler(LSL_Rotation r) public LSL_Vector llRot2Euler(LSL_Rotation r)
{ {
m_host.AddScriptLPS(1);
LSL_Vector v = new LSL_Vector(0.0, 0.0, 1.0) * r; // Z axis unit vector unaffected by Z rotation component of r. LSL_Vector v = new LSL_Vector(0.0, 0.0, 1.0) * r; // Z axis unit vector unaffected by Z rotation component of r.
double m = LSL_Vector.Mag(v); // Just in case v isn't normalized, need magnitude for Asin() operation later. double m = LSL_Vector.Mag(v); // Just in case v isn't normalized, need magnitude for Asin() operation later.
if (m == 0.0) return new LSL_Vector(); if (m == 0.0) return new LSL_Vector();
@ -482,6 +491,7 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
// Rotate X axis unit vector by r and unwind the X and Y rotations leaving only the Z rotation // Rotate X axis unit vector by r and unwind the X and Y rotations leaving only the Z rotation
v = new LSL_Vector(1.0, 0.0, 0.0) * ((r * new LSL_Rotation(Math.Sin(-x / 2.0), 0.0, 0.0, Math.Cos(-x / 2.0))) * new LSL_Rotation(0.0, Math.Sin(-y / 2.0), 0.0, Math.Cos(-y / 2.0))); v = new LSL_Vector(1.0, 0.0, 0.0) * ((r * new LSL_Rotation(Math.Sin(-x / 2.0), 0.0, 0.0, Math.Cos(-x / 2.0))) * new LSL_Rotation(0.0, Math.Sin(-y / 2.0), 0.0, Math.Cos(-y / 2.0)));
double z = Math.Atan2(v.y, v.x); double z = Math.Atan2(v.y, v.x);
return new LSL_Vector(x, y, z); return new LSL_Vector(x, y, z);
} }

View File

@ -201,20 +201,26 @@ namespace OpenSim.Region.ScriptEngine.Shared.Tests
CheckllRot2Euler(new LSL_Types.Quaternion(-0.092302, -0.701059, -0.092302, -0.701059)); CheckllRot2Euler(new LSL_Types.Quaternion(-0.092302, -0.701059, -0.092302, -0.701059));
} }
// Testing Rot2Euler this way instead of comparing against expected angles because /// <summary>
// 1. There are several ways to get to the original Quaternion. For example a rotation /// Check an llRot2Euler conversion.
// of PI and -PI will give the same result. But PI and -PI aren't equal. /// </summary>
// 2. This method checks to see if the calculated angles from a quaternion can be used /// <remarks>
// to create a new quaternion to produce the same rotation. /// Testing Rot2Euler this way instead of comparing against expected angles because
// However, can't compare the newly calculated quaternion against the original because /// 1. There are several ways to get to the original Quaternion. For example a rotation
// once again, there are multiple quaternions that give the same result. For instance /// of PI and -PI will give the same result. But PI and -PI aren't equal.
// <X, Y, Z, S> == <-X, -Y, -Z, -S>. Additionally, the magnitude of S can be changed /// 2. This method checks to see if the calculated angles from a quaternion can be used
// and will still result in the same rotation if the values for X, Y, Z are also changed /// to create a new quaternion to produce the same rotation.
// to compensate. /// However, can't compare the newly calculated quaternion against the original because
// However, if two quaternions represent the same rotation, then multiplying the first /// once again, there are multiple quaternions that give the same result. For instance
// quaternion by the conjugate of the second, will give a third quaternion representing /// <X, Y, Z, S> == <-X, -Y, -Z, -S>. Additionally, the magnitude of S can be changed
// a zero rotation. This can be tested for by looking at the X, Y, Z values which should /// and will still result in the same rotation if the values for X, Y, Z are also changed
// be zero. /// to compensate.
/// However, if two quaternions represent the same rotation, then multiplying the first
/// quaternion by the conjugate of the second, will give a third quaternion representing
/// a zero rotation. This can be tested for by looking at the X, Y, Z values which should
/// be zero.
/// </remarks>
/// <param name="rot"></param>
private void CheckllRot2Euler(LSL_Types.Quaternion rot) private void CheckllRot2Euler(LSL_Types.Quaternion rot)
{ {
// Call LSL function to convert quaternion rotaion to euler radians. // Call LSL function to convert quaternion rotaion to euler radians.