* Added stretchable ellipsoid support with configurable LOD. It's actually a split facet icosahedral geodesic sphere that's scaled.
* In other words, you can stretch spheres into oblong shapes now and watch them roll around like a football would. * Still can't cut, twist or profile cut spheres yet.0.6.0-stable
parent
04fe45c55c
commit
95e31c9f02
|
@ -39,6 +39,83 @@ public class Vertex : PhysicsVector, IComparable<Vertex>
|
|||
{
|
||||
}
|
||||
|
||||
public float length()
|
||||
{
|
||||
return (float)Math.Sqrt(X * X + Y * Y + Z * Z);
|
||||
}
|
||||
|
||||
public Vertex normalize()
|
||||
{
|
||||
float tlength = length();
|
||||
if (tlength != 0)
|
||||
{
|
||||
return new Vertex(X / tlength, Y / tlength, Z / tlength);
|
||||
}
|
||||
else
|
||||
{
|
||||
return new Vertex(0, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
public Vertex cross(Vertex v)
|
||||
{
|
||||
return new Vertex(Y * v.Z - Z * v.Y, Z * v.X - X * v.Z, X * v.Y - Y * v.X);
|
||||
}
|
||||
|
||||
public static Vertex operator +(Vertex v1, Vertex v2)
|
||||
{
|
||||
return new Vertex(v1.X + v2.X, v1.Y + v2.Y, v1.Z + v2.Z);
|
||||
}
|
||||
|
||||
public static Vertex operator -(Vertex v1, Vertex v2)
|
||||
{
|
||||
return new Vertex(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
|
||||
}
|
||||
|
||||
public static Vertex operator *(Vertex v1, Vertex v2)
|
||||
{
|
||||
return new Vertex(v1.X * v2.X, v1.Y * v2.Y, v1.Z * v2.Z);
|
||||
}
|
||||
|
||||
public static Vertex operator +(Vertex v1, float am)
|
||||
{
|
||||
v1.X += am;
|
||||
v1.Y += am;
|
||||
v1.Z += am;
|
||||
return v1;
|
||||
}
|
||||
public static Vertex operator -(Vertex v1, float am)
|
||||
{
|
||||
v1.X -= am;
|
||||
v1.Y -= am;
|
||||
v1.Z -= am;
|
||||
return v1;
|
||||
}
|
||||
public static Vertex operator *(Vertex v1, float am)
|
||||
{
|
||||
v1.X *= am;
|
||||
v1.Y *= am;
|
||||
v1.Z *= am;
|
||||
return v1;
|
||||
}
|
||||
public static Vertex operator /(Vertex v1, float am)
|
||||
{
|
||||
if (am == 0f)
|
||||
{
|
||||
return new Vertex(0f,0f,0f);
|
||||
}
|
||||
v1.X /= am;
|
||||
v1.Y /= am;
|
||||
v1.Z /= am;
|
||||
return v1;
|
||||
}
|
||||
|
||||
|
||||
public float dot(Vertex v)
|
||||
{
|
||||
return X * v.X + Y * v.Y + Z * v.Z;
|
||||
}
|
||||
|
||||
public Vertex(PhysicsVector v)
|
||||
: base(v.X, v.Y, v.Z)
|
||||
{
|
||||
|
|
|
@ -989,8 +989,17 @@ namespace OpenSim.Region.Physics.Meshing
|
|||
return result;
|
||||
}
|
||||
private static Mesh CreateSphereMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
|
||||
// Builds the z (+ and -) surfaces of a box shaped prim
|
||||
{
|
||||
// Builds an icosahedral geodesic sphere
|
||||
// based on an article by Paul Bourke
|
||||
// http://local.wasp.uwa.edu.au/~pbourke/
|
||||
// articles:
|
||||
// http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonmesh/
|
||||
// and
|
||||
// http://local.wasp.uwa.edu.au/~pbourke/geometry/polyhedra/index.html
|
||||
|
||||
// Still have more to do here.
|
||||
|
||||
UInt16 hollowFactor = primShape.ProfileHollow;
|
||||
UInt16 profileBegin = primShape.ProfileBegin;
|
||||
UInt16 profileEnd = primShape.ProfileEnd;
|
||||
|
@ -999,13 +1008,17 @@ namespace OpenSim.Region.Physics.Meshing
|
|||
UInt16 pathShearX = primShape.PathShearX;
|
||||
UInt16 pathShearY = primShape.PathShearY;
|
||||
Mesh m = new Mesh();
|
||||
float radius = 0.6f;
|
||||
|
||||
float LOD = 0.2f;
|
||||
float diameter = 0.5f;// Our object will result in -0.5 to 0.5
|
||||
float sq5 = (float) Math.Sqrt(5.0);
|
||||
float phi = (1 + sq5) * 0.5f;
|
||||
float rat = (float) Math.Sqrt(10f + (2f * sq5)) / (4f * phi);
|
||||
float a = (radius / rat) * 0.5f;
|
||||
float b = (radius / rat) / (2.0f * phi);
|
||||
float a = (diameter / rat) * 0.5f;
|
||||
float b = (diameter / rat) / (2.0f * phi);
|
||||
|
||||
|
||||
// 12 Icosahedron vertexes
|
||||
Vertex v1 = new Vertex(0f, b, -a);
|
||||
Vertex v2 = new Vertex(b, a, 0f);
|
||||
Vertex v3 = new Vertex(-b, a, 0f);
|
||||
|
@ -1018,72 +1031,47 @@ namespace OpenSim.Region.Physics.Meshing
|
|||
Vertex v10 = new Vertex(-a, 0f, -b);
|
||||
Vertex v11 = new Vertex(b, -a, 0);
|
||||
Vertex v12 = new Vertex(-b, -a, 0);
|
||||
m.Add(v1);
|
||||
m.Add(v2);
|
||||
m.Add(v3);
|
||||
m.Add(v4);
|
||||
m.Add(v5);
|
||||
m.Add(v6);
|
||||
m.Add(v7);
|
||||
m.Add(v8);
|
||||
m.Add(v9);
|
||||
m.Add(v10);
|
||||
m.Add(v11);
|
||||
m.Add(v12);
|
||||
|
||||
Triangle t1 = new Triangle(v1, v2, v3);
|
||||
Triangle t2 = new Triangle(v4, v3, v2);
|
||||
Triangle t3 = new Triangle(v4, v5, v6);
|
||||
Triangle t4 = new Triangle(v4, v9, v5);
|
||||
Triangle t5 = new Triangle(v1, v7, v8);
|
||||
Triangle t6 = new Triangle(v1, v10, v7);
|
||||
Triangle t7 = new Triangle(v5, v11, v12);
|
||||
Triangle t8 = new Triangle(v7, v12, v11);
|
||||
Triangle t9 = new Triangle(v3, v6, v10);
|
||||
Triangle t10 = new Triangle(v12, v10, v6);
|
||||
Triangle t11 = new Triangle(v2, v8, v9);
|
||||
Triangle t12 = new Triangle(v11, v9, v8);
|
||||
Triangle t13 = new Triangle(v4, v6, v3);
|
||||
Triangle t14 = new Triangle(v4, v2, v9);
|
||||
Triangle t15 = new Triangle(v1, v3, v10);
|
||||
Triangle t16 = new Triangle(v1, v8, v2);
|
||||
Triangle t17 = new Triangle(v7, v10, v12);
|
||||
Triangle t18 = new Triangle(v7, v11, v8);
|
||||
Triangle t19 = new Triangle(v5, v12, v6);
|
||||
Triangle t20 = new Triangle(v5, v9, v11);
|
||||
m.Add(t1);
|
||||
m.Add(t2);
|
||||
m.Add(t3);
|
||||
m.Add(t4);
|
||||
m.Add(t5);
|
||||
m.Add(t6);
|
||||
m.Add(t7);
|
||||
m.Add(t8);
|
||||
m.Add(t9);
|
||||
m.Add(t10);
|
||||
m.Add(t11);
|
||||
m.Add(t12);
|
||||
m.Add(t13);
|
||||
m.Add(t14);
|
||||
m.Add(t15);
|
||||
m.Add(t16);
|
||||
m.Add(t17);
|
||||
m.Add(t18);
|
||||
m.Add(t19);
|
||||
m.Add(t20);
|
||||
|
||||
// strechy!
|
||||
|
||||
// Base Faces of the Icosahedron (20)
|
||||
SphereLODTriangle(v1, v2, v3, diameter, LOD, m);
|
||||
SphereLODTriangle(v4, v3, v2, diameter, LOD, m);
|
||||
SphereLODTriangle(v4, v5, v6, diameter, LOD, m);
|
||||
SphereLODTriangle(v4, v9, v5, diameter, LOD, m);
|
||||
SphereLODTriangle(v1, v7, v8, diameter, LOD, m);
|
||||
SphereLODTriangle(v1, v10, v7, diameter, LOD, m);
|
||||
SphereLODTriangle(v5, v11, v12, diameter, LOD, m);
|
||||
SphereLODTriangle(v7, v12, v11, diameter, LOD, m);
|
||||
SphereLODTriangle(v3, v6, v10, diameter, LOD, m);
|
||||
SphereLODTriangle(v12, v10, v6, diameter, LOD, m);
|
||||
SphereLODTriangle(v2, v8, v9, diameter, LOD, m);
|
||||
SphereLODTriangle(v11, v9, v8, diameter, LOD, m);
|
||||
SphereLODTriangle(v4, v6, v3, diameter, LOD, m);
|
||||
SphereLODTriangle(v4, v2, v9, diameter, LOD, m);
|
||||
SphereLODTriangle(v1, v3, v10, diameter, LOD, m);
|
||||
SphereLODTriangle(v1, v8, v2, diameter, LOD, m);
|
||||
SphereLODTriangle(v7, v10, v12, diameter, LOD, m);
|
||||
SphereLODTriangle(v7, v11, v8, diameter, LOD, m);
|
||||
SphereLODTriangle(v5, v12, v6, diameter, LOD, m);
|
||||
SphereLODTriangle(v5, v9, v11, diameter, LOD, m);
|
||||
|
||||
// Scale the mesh based on our prim scale
|
||||
foreach (Vertex v in m.vertices)
|
||||
{
|
||||
v.X *= size.X;
|
||||
v.Y *= size.Y;
|
||||
v.Z *= size.Z;
|
||||
}
|
||||
|
||||
// This was built with the normals pointing inside..
|
||||
// therefore we have to invert the normals
|
||||
foreach (Triangle t in m.triangles)
|
||||
{
|
||||
t.invertNormal();
|
||||
}
|
||||
m.DumpRaw(baseDir, primName, "Z extruded");
|
||||
// Dump the faces for visualization in blender.
|
||||
m.DumpRaw(baseDir, primName, "Icosahedron");
|
||||
|
||||
return m;
|
||||
}
|
||||
|
@ -1149,6 +1137,49 @@ namespace OpenSim.Region.Physics.Meshing
|
|||
}
|
||||
}
|
||||
|
||||
public static Vertex midUnitRadialPoint(Vertex a, Vertex b, float radius)
|
||||
{
|
||||
Vertex midpoint = new Vertex(a + b) * 0.5f;
|
||||
return (midpoint.normalize() * radius);
|
||||
}
|
||||
|
||||
public static void SphereLODTriangle(Vertex a, Vertex b, Vertex c, float diameter, float LOD, Mesh m)
|
||||
{
|
||||
Vertex aa = a - b;
|
||||
Vertex ba = b - c;
|
||||
Vertex da = c - a;
|
||||
|
||||
if (((aa.length() < LOD) && (ba.length() < LOD) && (da.length() < LOD)))
|
||||
{
|
||||
// We don't want duplicate verticies. Duplicates cause the scale algorithm to produce a spikeball
|
||||
// spikes are novel, but we want ellipsoids.
|
||||
|
||||
if (!m.vertices.Contains(a))
|
||||
m.Add(a);
|
||||
if (!m.vertices.Contains(b))
|
||||
m.Add(b);
|
||||
if (!m.vertices.Contains(c))
|
||||
m.Add(c);
|
||||
|
||||
// Add the triangle to the mesh
|
||||
Triangle t = new Triangle(a, b, c);
|
||||
m.Add(t);
|
||||
}
|
||||
else
|
||||
{
|
||||
Vertex ab = midUnitRadialPoint(a, b, diameter);
|
||||
Vertex bc = midUnitRadialPoint(b, c, diameter);
|
||||
Vertex ca = midUnitRadialPoint(c, a, diameter);
|
||||
|
||||
// Recursive! Splits the triangle up into 4 smaller triangles
|
||||
SphereLODTriangle(a, ab, ca, diameter, LOD, m);
|
||||
SphereLODTriangle(ab, b, bc, diameter, LOD, m);
|
||||
SphereLODTriangle(ca, bc, c, diameter, LOD, m);
|
||||
SphereLODTriangle(ab, bc, ca, diameter, LOD, m);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
|
||||
{
|
||||
Mesh mesh = null;
|
||||
|
|
Loading…
Reference in New Issue