removed OdePlugin/Meshing directory

afrisby
Jeff Ames 2007-11-10 21:20:55 +00:00
parent cb07ba0d68
commit 9a4b4dae5e
6 changed files with 0 additions and 1522 deletions

View File

@ -1,83 +0,0 @@
using System;
using System.Collections.Generic;
using System.Text;
namespace OpenSim.Region.Physics.OdePlugin.Meshing
{
class Extruder
{
public float startParameter;
public float stopParameter;
public Manager.PhysicsVector size;
public Mesh Extrude(Mesh m)
{
// Currently only works for iSteps=1;
Mesh result = new Mesh();
Mesh workingPlus = m.Clone();
Mesh workingMinus = m.Clone();
foreach (Vertex v in workingPlus.vertices)
{
if (v == null)
continue;
v.Z = +.5f;
v.X *= size.X;
v.Y *= size.Y;
v.Z *= size.Z;
}
foreach (Vertex v in workingMinus.vertices)
{
if (v == null)
continue;
v.Z = -.5f;
v.X *= size.X;
v.Y *= size.Y;
v.Z *= size.Z;
}
foreach (Triangle t in workingMinus.triangles)
{
t.invertNormal();
}
result.Append(workingMinus);
result.Append(workingPlus);
int iLastNull = 0;
for (int i = 0; i < workingPlus.vertices.Count; i++)
{
int iNext = (i + 1);
if (workingPlus.vertices[i] == null) // Can't make a simplex here
{
iLastNull = i+1;
continue;
}
if (i == workingPlus.vertices.Count-1) // End of list
{
iNext = iLastNull;
}
if (workingPlus.vertices[iNext] == null) // Null means wrap to begin of last segment
{
iNext = iLastNull;
}
Triangle tSide;
tSide = new Triangle(workingPlus.vertices[i], workingMinus.vertices[i], workingPlus.vertices[iNext]);
result.Add(tSide);
tSide = new Triangle(workingPlus.vertices[iNext], workingMinus.vertices[i], workingMinus.vertices[iNext]);
result.Add(tSide);
}
return result;
}
}
}

View File

@ -1,306 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS AS IS AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using OpenSim.Framework.Console;
using OpenSim.Region.Physics.Manager;
using OpenSim.Region.Physics.OdePlugin.Meshing;
public class Vertex : PhysicsVector, IComparable<Vertex>
{
public Vertex(float x, float y, float z)
: base(x, y, z)
{
}
public Vertex(PhysicsVector v)
: base(v.X, v.Y, v.Z)
{
}
public Vertex Clone()
{
return new Vertex(X, Y, Z);
}
public static Vertex FromAngle(double angle)
{
return new Vertex((float)Math.Cos(angle), (float)Math.Sin(angle), 0.0f);
}
public virtual bool Equals(Vertex v, float tolerance)
{
PhysicsVector diff = this - v;
float d = diff.length();
if (d < tolerance)
return true;
return false;
}
public int CompareTo(Vertex other)
{
if (X < other.X)
return -1;
if (X > other.X)
return 1;
if (Y < other.Y)
return -1;
if (Y > other.Y)
return 1;
if (Z < other.Z)
return -1;
if (Z > other.Z)
return 1;
return 0;
}
public static bool operator >(Vertex me, Vertex other)
{
return me.CompareTo(other) > 0;
}
public static bool operator <(Vertex me, Vertex other)
{
return me.CompareTo(other) < 0;
}
public String ToRaw()
{
// Why this stuff with the number formatter?
// Well, the raw format uses the english/US notation of numbers
// where the "," separates groups of 1000 while the "." marks the border between 1 and 10E-1.
// The german notation uses these characters exactly vice versa!
// The Float.ToString() routine is a localized one, giving different results depending on the country
// settings your machine works with. Unusable for a machine readable file format :-(
NumberFormatInfo nfi = new NumberFormatInfo();
nfi.NumberDecimalSeparator = ".";
nfi.NumberDecimalDigits = 3;
String s1 = X.ToString("N2", nfi) + " " + Y.ToString("N2", nfi) + " " + Z.ToString("N2", nfi);
return s1;
}
}
public class Triangle
{
public Vertex v1;
public Vertex v2;
public Vertex v3;
private float radius_square;
private float cx;
private float cy;
public Triangle(Vertex _v1, Vertex _v2, Vertex _v3)
{
v1 = _v1;
v2 = _v2;
v3 = _v3;
CalcCircle();
}
public bool isInCircle(float x, float y)
{
float dx, dy;
float dd;
dx = x - cx;
dy = y - cy;
dd = dx*dx + dy*dy;
if (dd < radius_square)
return true;
else
return false;
}
public bool isDegraded()
{
// This means, the vertices of this triangle are somewhat strange.
// They either line up or at least two of them are identical
return (radius_square == 0.0);
}
private void CalcCircle()
{
// Calculate the center and the radius of a circle given by three points p1, p2, p3
// It is assumed, that the triangles vertices are already set correctly
double p1x, p2x, p1y, p2y, p3x, p3y;
// Deviation of this routine:
// A circle has the general equation (M-p)^2=r^2, where M and p are vectors
// this gives us three equations f(p)=r^2, each for one point p1, p2, p3
// putting respectively two equations together gives two equations
// f(p1)=f(p2) and f(p1)=f(p3)
// bringing all constant terms to one side brings them to the form
// M*v1=c1 resp.M*v2=c2 where v1=(p1-p2) and v2=(p1-p3) (still vectors)
// and c1, c2 are scalars (Naming conventions like the variables below)
// Now using the equations that are formed by the components of the vectors
// and isolate Mx lets you make one equation that only holds My
// The rest is straight forward and eaasy :-)
//
/* helping variables for temporary results */
double c1, c2;
double v1x, v1y, v2x, v2y;
double z, n;
double rx, ry;
// Readout the three points, the triangle consists of
p1x = v1.X;
p1y = v1.Y;
p2x = v2.X;
p2y = v2.Y;
p3x = v3.X;
p3y = v3.Y;
/* calc helping values first */
c1 = (p1x*p1x + p1y*p1y - p2x*p2x - p2y*p2y)/2;
c2 = (p1x*p1x + p1y*p1y - p3x*p3x - p3y*p3y)/2;
v1x = p1x - p2x;
v1y = p1y - p2y;
v2x = p1x - p3x;
v2y = p1y - p3y;
z = (c1*v2x - c2*v1x);
n = (v1y*v2x - v2y*v1x);
if (n == 0.0) // This is no triangle, i.e there are (at least) two points at the same location
{
radius_square = 0.0f;
return;
}
cy = (float) (z/n);
if (v2x != 0.0)
{
cx = (float) ((c2 - v2y*cy)/v2x);
}
else if (v1x != 0.0)
{
cx = (float) ((c1 - v1y*cy)/v1x);
}
else
{
Debug.Assert(false, "Malformed triangle"); /* Both terms zero means nothing good */
}
rx = (p1x - cx);
ry = (p1y - cy);
radius_square = (float) (rx*rx + ry*ry);
}
public List<Simplex> GetSimplices()
{
List<Simplex> result = new List<Simplex>();
Simplex s1 = new Simplex(v1, v2);
Simplex s2 = new Simplex(v2, v3);
Simplex s3 = new Simplex(v3, v1);
result.Add(s1);
result.Add(s2);
result.Add(s3);
return result;
}
public override String ToString()
{
NumberFormatInfo nfi = new NumberFormatInfo();
nfi.CurrencyDecimalDigits = 2;
nfi.CurrencyDecimalSeparator = ".";
String s1 = "<" + v1.X.ToString(nfi) + "," + v1.Y.ToString(nfi) + "," + v1.Z.ToString(nfi) + ">";
String s2 = "<" + v2.X.ToString(nfi) + "," + v2.Y.ToString(nfi) + "," + v2.Z.ToString(nfi) + ">";
String s3 = "<" + v3.X.ToString(nfi) + "," + v3.Y.ToString(nfi) + "," + v3.Z.ToString(nfi) + ">";
return s1 + ";" + s2 + ";" + s3;
}
public PhysicsVector getNormal()
{
// Vertices
// Vectors for edges
PhysicsVector e1;
PhysicsVector e2;
e1 = new PhysicsVector(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
e2 = new PhysicsVector(v1.X - v3.X, v1.Y - v3.Y, v1.Z - v3.Z);
// Cross product for normal
PhysicsVector n = PhysicsVector.cross(e1, e2);
// Length
float l = n.length();
// Normalized "normal"
n = n / l;
return n;
}
public void invertNormal()
{
Vertex vt;
vt = v1;
v1 = v2;
v2 = vt;
}
// Dumps a triangle in the "raw faces" format, blender can import. This is for visualisation and
// debugging purposes
public String ToStringRaw()
{
String output = v1.ToRaw() + " " + v2.ToRaw() + " " +v3.ToRaw();
return output;
}
}

View File

@ -1,197 +0,0 @@
using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using System.Runtime.InteropServices;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin.Meshing
{
public class Mesh
{
public List<Vertex> vertices;
public List<Triangle> triangles;
public float[] normals;
public Mesh()
{
vertices = new List<Vertex>();
triangles = new List<Triangle>();
}
public Mesh Clone()
{
Mesh result = new Mesh();
foreach (Vertex v in vertices)
{
if (v == null)
result.vertices.Add(null);
else
result.vertices.Add(v.Clone());
}
foreach (Triangle t in triangles)
{
int iV1, iV2, iV3;
iV1 = this.vertices.IndexOf(t.v1);
iV2 = this.vertices.IndexOf(t.v2);
iV3 = this.vertices.IndexOf(t.v3);
Triangle newT = new Triangle(result.vertices[iV1], result.vertices[iV2], result.vertices[iV3]);
result.Add(newT);
}
return result;
}
public void Add(Triangle triangle)
{
int i;
i = vertices.IndexOf(triangle.v1);
if (i < 0)
throw new ArgumentException("Vertex v1 not known to mesh");
i = vertices.IndexOf(triangle.v2);
if (i < 0)
throw new ArgumentException("Vertex v2 not known to mesh");
i = vertices.IndexOf(triangle.v3);
if (i < 0)
throw new ArgumentException("Vertex v3 not known to mesh");
triangles.Add(triangle);
}
public void Add(Vertex v)
{
vertices.Add(v);
}
public void Remove(Vertex v)
{
int i;
// First, remove all triangles that are build on v
for (i = 0; i < triangles.Count; i++)
{
Triangle t = triangles[i];
if (t.v1 == v || t.v2 == v || t.v3 == v)
{
triangles.RemoveAt(i);
i--;
}
}
// Second remove v itself
vertices.Remove(v);
}
public void RemoveTrianglesOutside(SimpleHull hull)
{
int i;
for (i = 0; i < triangles.Count; i++)
{
Triangle t = triangles[i];
Vertex v1 = t.v1;
Vertex v2 = t.v2;
Vertex v3 = t.v3;
PhysicsVector m = v1 + v2 + v3;
m /= 3.0f;
if (!hull.IsPointIn(new Vertex(m)))
{
triangles.RemoveAt(i);
i--;
}
}
}
public void Add(List<Vertex> lv)
{
foreach (Vertex v in lv)
{
vertices.Add(v);
}
}
public float[] getVertexListAsFloat()
{
float[] result = new float[vertices.Count * 3];
for (int i = 0; i < vertices.Count; i++)
{
Vertex v = vertices[i];
if (v == null)
continue;
result[3 * i + 0] = v.X;
result[3 * i + 1] = v.Y;
result[3 * i + 2] = v.Z;
}
GCHandle.Alloc(result, GCHandleType.Pinned);
return result;
}
public int[] getIndexListAsInt()
{
int[] result = new int[triangles.Count * 3];
for (int i = 0; i < triangles.Count; i++)
{
Triangle t = triangles[i];
result[3 * i + 0] = vertices.IndexOf(t.v1);
result[3 * i + 1] = vertices.IndexOf(t.v2);
result[3 * i + 2] = vertices.IndexOf(t.v3);
}
GCHandle.Alloc(result, GCHandleType.Pinned);
return result;
}
public void Append(Mesh newMesh)
{
foreach (Vertex v in newMesh.vertices)
vertices.Add(v);
foreach (Triangle t in newMesh.triangles)
Add(t);
}
// Do a linear transformation of mesh.
public void TransformLinear(float[,] matrix, float[] offset)
{
foreach (Vertex v in vertices)
{
if (v == null)
continue;
float x, y, z;
x = v.X * matrix[0, 0] + v.Y * matrix[1, 0] + v.Z * matrix[2, 0];
y = v.X * matrix[0, 1] + v.Y * matrix[1, 1] + v.Z * matrix[2, 1];
z = v.X * matrix[0, 2] + v.Y * matrix[1, 2] + v.Z * matrix[2, 2];
v.X = x + offset[0];
v.Y = y + offset[1];
v.Z = z + offset[2];
}
}
public void DumpRaw(String path, String name, String title)
{
if (path == null)
return;
String fileName = name + "_" + title + ".raw";
String completePath = Path.Combine(path, fileName);
StreamWriter sw = new StreamWriter(completePath);
foreach (Triangle t in triangles)
{
String s = t.ToStringRaw();
sw.WriteLine(s);
}
sw.Close();
}
}
}

View File

@ -1,375 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS AS IS AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
using System;
using System.IO;
using System.Globalization;
using System.Diagnostics;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using OpenSim.Framework;
using OpenSim.Framework.Console;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin.Meshing
{
public class Meshmerizer
{
// Setting baseDir to a path will enable the dumping of raw files
// raw files can be imported by blender so a visual inspection of the results can be done
// const string baseDir = "rawFiles";
const string baseDir = null;
static void IntersectionParameterPD(PhysicsVector p1, PhysicsVector r1, PhysicsVector p2, PhysicsVector r2, ref float lambda, ref float mu)
{
// p1, p2, points on the straight
// r1, r2, directional vectors of the straight. Not necessarily of length 1!
// note, that l, m can be scaled such, that the range 0..1 is mapped to the area between two points,
// thus allowing to decide whether an intersection is between two points
float r1x = r1.X;
float r1y = r1.Y;
float r2x = r2.X;
float r2y = r2.Y;
float denom = r1y*r2x - r1x*r2y;
if (denom == 0.0)
{
lambda = Single.NaN;
mu = Single.NaN;
return;
}
float p1x = p1.X;
float p1y = p1.Y;
float p2x = p2.X;
float p2y = p2.Y;
lambda = (-p2x * r2y + p1x * r2y + (p2y - p1y) * r2x) / denom;
mu = (-p2x * r1y + p1x * r1y + (p2y - p1y) * r1x) / denom;
}
private static List<Triangle> FindInfluencedTriangles(List<Triangle> triangles, Vertex v)
{
List<Triangle> influenced = new List<Triangle>();
foreach (Triangle t in triangles)
{
if (t.isInCircle(v.X, v.Y))
{
influenced.Add(t);
}
}
return influenced;
}
private static void InsertVertices(List<Vertex> vertices, int usedForSeed, List<Triangle> triangles)
{
// This is a variant of the delaunay algorithm
// each time a new vertex is inserted, all triangles that are influenced by it are deleted
// and replaced by new ones including the new vertex
// It is not very time efficient but easy to implement.
int iCurrentVertex;
int iMaxVertex = vertices.Count;
for (iCurrentVertex = usedForSeed; iCurrentVertex < iMaxVertex; iCurrentVertex++)
{
// Background: A triangle mesh fulfills the delaunay condition if (iff!)
// each circumlocutory circle (i.e. the circle that touches all three corners)
// of each triangle is empty of other vertices.
// Obviously a single (seeding) triangle fulfills this condition.
// If we now add one vertex, we need to reconstruct all triangles, that
// do not fulfill this condition with respect to the new triangle
// Find the triangles that are influenced by the new vertex
Vertex v=vertices[iCurrentVertex];
if (v == null)
continue; // Null is polygon stop marker. Ignore it
List<Triangle> influencedTriangles=FindInfluencedTriangles(triangles, v);
List<Simplex> simplices = new List<Simplex>();
// Reconstruction phase. First step, dissolve each triangle into it's simplices,
// i.e. it's "border lines"
// Goal is to find "inner" borders and delete them, while the hull gets conserved.
// Inner borders are special in the way that they always come twice, which is how we detect them
foreach (Triangle t in influencedTriangles)
{
List<Simplex> newSimplices = t.GetSimplices();
simplices.AddRange(newSimplices);
triangles.Remove(t);
}
// Now sort the simplices. That will make identical ones reside side by side in the list
simplices.Sort();
// Look for duplicate simplices here.
// Remember, they are directly side by side in the list right now,
// So we only check directly neighbours
int iSimplex;
List<Simplex> innerSimplices = new List<Simplex>();
for (iSimplex = 1; iSimplex < simplices.Count; iSimplex++) // Startindex=1, so we can refer backwards
{
if (simplices[iSimplex - 1].CompareTo(simplices[iSimplex]) == 0)
{
innerSimplices.Add(simplices[iSimplex - 1]);
innerSimplices.Add(simplices[iSimplex]);
}
}
foreach (Simplex s in innerSimplices)
{
simplices.Remove(s);
}
// each simplex still in the list belongs to the hull of the region in question
// The new vertex (yes, we still deal with verices here :-) ) forms a triangle
// with each of these simplices. Build the new triangles and add them to the list
foreach (Simplex s in simplices)
{
Triangle t = new Triangle(s.v1, s.v2, vertices[iCurrentVertex]);
if (!t.isDegraded())
{
triangles.Add(t);
}
}
}
}
static Mesh CreateBoxMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
// Builds the z (+ and -) surfaces of a box shaped prim
{
UInt16 hollowFactor = primShape.ProfileHollow;
UInt16 profileBegin = primShape.ProfileBegin;
UInt16 profileEnd = primShape.ProfileEnd;
// Procedure: This is based on the fact that the upper (plus) and lower (minus) Z-surface
// of a block are basically the same
// They may be warped differently but the shape is identical
// So we only create one surface as a model and derive both plus and minus surface of the block from it
// This is done in a model space where the block spans from -.5 to +.5 in X and Y
// The mapping to Scene space is done later during the "extrusion" phase
// Base
Vertex MM = new Vertex(-0.5f, -0.5f, 0.0f);
Vertex PM = new Vertex(+0.5f, -0.5f, 0.0f);
Vertex MP = new Vertex(-0.5f, +0.5f, 0.0f);
Vertex PP = new Vertex(+0.5f, +0.5f, 0.0f);
Meshing.SimpleHull outerHull = new SimpleHull();
outerHull.AddVertex(MM);
outerHull.AddVertex(PM);
outerHull.AddVertex(PP);
outerHull.AddVertex(MP);
// Deal with cuts now
if ((profileBegin != 0) || (profileEnd != 0))
{
double fProfileBeginAngle = profileBegin / 50000.0 * 360.0; // In degree, for easier debugging and understanding
fProfileBeginAngle -= (90.0 + 45.0); // for some reasons, the SL client counts from the corner -X/-Y
double fProfileEndAngle = 360.0 - profileEnd / 50000.0 * 360.0; // Pathend comes as complement to 1.0
fProfileEndAngle -= (90.0 + 45.0);
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
// Note, that we don't want to cut out a triangle, even if this is a
// good approximation for small cuts. Indeed we want to cut out an arc
// and we approximate this arc by a polygon chain
// Also note, that these vectors are of length 1.0 and thus their endpoints lay outside the model space
// So it can easily be subtracted from the outer hull
int iSteps = (int)(((fProfileBeginAngle - fProfileEndAngle) / 45.0) + .5); // how many steps do we need with approximately 45 degree
double dStepWidth=(fProfileBeginAngle-fProfileEndAngle)/iSteps;
Vertex origin = new Vertex(0.0f, 0.0f, 0.0f);
// Note the sequence of vertices here. It's important to have the other rotational sense than in outerHull
SimpleHull cutHull = new SimpleHull();
cutHull.AddVertex(origin);
for (int i=0; i<iSteps; i++) {
double angle=fProfileBeginAngle-i*dStepWidth; // we count against the angle orientation!!!!
Vertex v = Vertex.FromAngle(angle * Math.PI / 180.0);
cutHull.AddVertex(v);
}
Vertex legEnd = Vertex.FromAngle(fProfileEndAngle * Math.PI / 180.0); // Calculated separately to avoid errors
cutHull.AddVertex(legEnd);
MainLog.Instance.Debug("Starting cutting of the hollow shape from the prim {1}", 0, primName);
SimpleHull cuttedHull = SimpleHull.SubtractHull(outerHull, cutHull);
outerHull = cuttedHull;
}
// Deal with the hole here
if (hollowFactor > 0)
{
float hollowFactorF = (float) hollowFactor/(float) 50000;
Vertex IMM = new Vertex(-0.5f * hollowFactorF, -0.5f * hollowFactorF, 0.0f);
Vertex IPM = new Vertex(+0.5f * hollowFactorF, -0.5f * hollowFactorF, 0.0f);
Vertex IMP = new Vertex(-0.5f * hollowFactorF, +0.5f * hollowFactorF, 0.0f);
Vertex IPP = new Vertex(+0.5f * hollowFactorF, +0.5f * hollowFactorF, 0.0f);
SimpleHull holeHull = new SimpleHull();
holeHull.AddVertex(IMM);
holeHull.AddVertex(IMP);
holeHull.AddVertex(IPP);
holeHull.AddVertex(IPM);
SimpleHull hollowedHull = SimpleHull.SubtractHull(outerHull, holeHull);
outerHull = hollowedHull;
}
Mesh m = new Mesh();
Vertex Seed1 = new Vertex(0.0f, -10.0f, 0.0f);
Vertex Seed2 = new Vertex(-10.0f, 10.0f, 0.0f);
Vertex Seed3 = new Vertex(10.0f, 10.0f, 0.0f);
m.Add(Seed1);
m.Add(Seed2);
m.Add(Seed3);
m.Add(new Triangle(Seed1, Seed2, Seed3));
m.Add(outerHull.getVertices());
InsertVertices(m.vertices, 3, m.triangles);
m.DumpRaw(baseDir, primName, "Proto first Mesh");
m.Remove(Seed1);
m.Remove(Seed2);
m.Remove(Seed3);
m.DumpRaw(baseDir, primName, "Proto seeds removed");
m.RemoveTrianglesOutside(outerHull);
m.DumpRaw(baseDir, primName, "Proto outsides removed");
foreach (Triangle t in m.triangles)
{
PhysicsVector n = t.getNormal();
if (n.Z < 0.0)
t.invertNormal();
}
Extruder extr = new Extruder();
extr.size = size;
Mesh result = extr.Extrude(m);
result.DumpRaw(baseDir, primName, "Z extruded");
return result;
}
public static void CalcNormals(Mesh mesh)
{
int iTriangles = mesh.triangles.Count;
mesh.normals = new float[iTriangles*3];
int i = 0;
foreach (Triangle t in mesh.triangles)
{
float ux, uy, uz;
float vx, vy, vz;
float wx, wy, wz;
ux = t.v1.X;
uy = t.v1.Y;
uz = t.v1.Z;
vx = t.v2.X;
vy = t.v2.Y;
vz = t.v2.Z;
wx = t.v3.X;
wy = t.v3.Y;
wz = t.v3.Z;
// Vectors for edges
float e1x, e1y, e1z;
float e2x, e2y, e2z;
e1x = ux - vx;
e1y = uy - vy;
e1z = uz - vz;
e2x = ux - wx;
e2y = uy - wy;
e2z = uz - wz;
// Cross product for normal
float nx, ny, nz;
nx = e1y*e2z - e1z*e2y;
ny = e1z*e2x - e1x*e2z;
nz = e1x*e2y - e1y*e2x;
// Length
float l = (float) Math.Sqrt(nx*nx + ny*ny + nz*nz);
// Normalized "normal"
nx /= l;
ny /= l;
nz /= l;
mesh.normals[i] = nx;
mesh.normals[i + 1] = ny;
mesh.normals[i + 2] = nz;
i += 3;
}
}
public static Mesh CreateMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
{
Mesh mesh = null;
switch (primShape.ProfileShape)
{
case ProfileShape.Square:
mesh=CreateBoxMesh(primName, primShape, size);
CalcNormals(mesh);
break;
default:
mesh = CreateBoxMesh(primName, primShape, size);
CalcNormals(mesh);
//Set default mesh to cube otherwise it'll return
// null and crash on the 'setMesh' method in the physics plugins.
//mesh = null;
break;
}
return mesh;
}
}
}

View File

@ -1,363 +0,0 @@
using System;
using System.Collections.Generic;
using System.Text;
using OpenSim.Framework.Console;
namespace OpenSim.Region.Physics.OdePlugin.Meshing
{
// A simple hull is a set of vertices building up to simplices that border a region
// The word simple referes to the fact, that this class assumes, that all simplices
// do not intersect
// Simple hulls can be added and subtracted.
// Vertices can be checked to lie inside a hull
// Also note, that the sequence of the vertices is important and defines if the region that
// is defined by the hull lies inside or outside the simplex chain
public class SimpleHull
{
List<Vertex> vertices = new List<Vertex>();
List<Vertex> holeVertices = new List<Vertex>(); // Only used, when the hull is hollow
// Adds a vertex to the end of the list
public void AddVertex(Vertex v) {
vertices.Add(v);
}
override public String ToString()
{
String result="";
foreach (Vertex v in vertices)
{
result += "b:" + v.ToString() + "\n";
}
return result;
}
public List<Vertex> getVertices() {
List<Vertex> newVertices = new List<Vertex>();
newVertices.AddRange(vertices);
newVertices.Add(null);
newVertices.AddRange(holeVertices);
return newVertices;
}
public SimpleHull Clone()
{
SimpleHull result = new SimpleHull();
foreach (Vertex v in vertices)
{
result.AddVertex(v.Clone());
}
foreach (Vertex v in this.holeVertices)
{
result.holeVertices.Add(v.Clone());
}
return result;
}
public bool IsPointIn(Vertex v1)
{
int iCounter=0;
List<Simplex> simplices=buildSimplexList();
foreach (Simplex s in simplices)
{
// Send a ray along the positive X-Direction
// Note, that this direction must correlate with the "below" interpretation
// of handling for the special cases below
Manager.PhysicsVector intersection = s.RayIntersect(v1, new Manager.PhysicsVector(1.0f, 0.0f, 0.0f), true);
if (intersection == null)
continue; // No intersection. Done. More tests to follow otherwise
// Did we hit the end of a simplex?
// Then this can be one of two special cases:
// 1. we go through a border exactly at a joint
// 2. we have just marginally touched a corner
// 3. we can slide along a border
// Solution: If the other vertex is "below" the ray, we don't count it
// Thus corners pointing down are counted twice, corners pointing up are not counted
// borders are counted once
if (intersection.IsIdentical(s.v1, 0.001f)) {
if (s.v2.Y < v1.Y)
continue;
}
// Do this for the other vertex two
if (intersection.IsIdentical(s.v2, 0.001f)) {
if (s.v1.Y<v1.Y)
continue;
}
iCounter++;
}
return iCounter % 2 == 1; // Point is inside if the number of intersections is odd
}
public bool containsPointsFrom(SimpleHull otherHull)
{
foreach (Vertex v in otherHull.vertices)
{
if (IsPointIn(v))
return true;
}
return false;
}
List<Simplex> buildSimplexList() {
List<Simplex> result = new List<Simplex>();
// Not asserted but assumed: at least three vertices
for (int i=0; i<vertices.Count-1; i++) {
Simplex s=new Simplex(vertices[i], vertices[i+1]);
result.Add(s);
}
Simplex s1=new Simplex(vertices[vertices.Count-1], vertices[0]);
result.Add(s1);
if (holeVertices.Count==0)
return result;
// Same here. At least three vertices in hole assumed
for (int i = 0; i < holeVertices.Count - 1; i++)
{
Simplex s = new Simplex(holeVertices[i], holeVertices[i + 1]);
result.Add(s);
}
s1 = new Simplex(holeVertices[holeVertices.Count - 1], holeVertices[0]);
result.Add(s1);
return result;
}
bool InsertVertex(Vertex v, int iAfter)
{
vertices.Insert(iAfter + 1, v);
return true;
}
Vertex getNextVertex(Vertex currentVertex)
{
int iCurrentIndex;
iCurrentIndex = vertices.IndexOf(currentVertex);
// Error handling for iCurrentIndex==-1 should go here (and probably never will)
iCurrentIndex++;
if (iCurrentIndex == vertices.Count)
iCurrentIndex = 0;
return vertices[iCurrentIndex];
}
public Vertex FindVertex(Vertex vBase, float tolerance) {
foreach (Vertex v in vertices) {
if (v.IsIdentical(vBase, tolerance))
return v;
}
return null;
}
public void FindIntersection(Simplex s, ref Vertex Intersection, ref Vertex nextVertex)
{
Vertex bestIntersection=null;
float distToV1=Single.PositiveInfinity;
Simplex bestIntersectingSimplex=null;
List<Simplex> simple = buildSimplexList();
foreach (Simplex sTest in simple)
{
Manager.PhysicsVector vvTemp = Simplex.Intersect(sTest, s, -.001f, -.001f, 0.999f, .999f);
Vertex vTemp=null;
if (vvTemp != null)
vTemp = new Vertex(vvTemp);
if (vTemp!=null) {
Manager.PhysicsVector diff=(s.v1-vTemp);
float distTemp=diff.length();
if (bestIntersection==null || distTemp<distToV1) {
bestIntersection=vTemp;
distToV1=distTemp;
bestIntersectingSimplex = sTest;
}
} // end if vTemp
} // end foreach
Intersection = bestIntersection;
if (bestIntersectingSimplex != null)
nextVertex = bestIntersectingSimplex.v2;
else
nextVertex = null;
}
public static SimpleHull SubtractHull(SimpleHull baseHull, SimpleHull otherHull)
{
SimpleHull baseHullClone = baseHull.Clone();
SimpleHull otherHullClone = otherHull.Clone();
bool intersects = false;
MainLog.Instance.Debug("State before intersection detection");
MainLog.Instance.Debug("The baseHull is:\n{1}", 0, baseHullClone.ToString());
MainLog.Instance.Debug("The otherHull is:\n{1}", 0, otherHullClone.ToString());
{
int iBase, iOther;
// Insert into baseHull
for (iBase = 0; iBase < baseHullClone.vertices.Count; iBase++)
{
int iBaseNext = (iBase + 1) % baseHullClone.vertices.Count;
Simplex sBase = new Simplex(baseHullClone.vertices[iBase], baseHullClone.vertices[iBaseNext]);
for (iOther = 0; iOther < otherHullClone.vertices.Count; iOther++)
{
int iOtherNext = (iOther + 1) % otherHullClone.vertices.Count;
Simplex sOther = new Simplex(otherHullClone.vertices[iOther], otherHullClone.vertices[iOtherNext]);
Manager.PhysicsVector intersect = Simplex.Intersect(sBase, sOther, 0.001f, -.001f, 0.999f, 1.001f);
if (intersect != null)
{
Vertex vIntersect = new Vertex(intersect);
baseHullClone.vertices.Insert(iBase + 1, vIntersect);
sBase.v2 = vIntersect;
intersects = true;
}
}
}
}
MainLog.Instance.Debug("State after intersection detection for the base hull");
MainLog.Instance.Debug("The baseHull is:\n{1}", 0, baseHullClone.ToString());
{
int iOther, iBase;
// Insert into otherHull
for (iOther = 0; iOther < otherHullClone.vertices.Count; iOther++)
{
int iOtherNext = (iOther + 1) % otherHullClone.vertices.Count;
Simplex sOther = new Simplex(otherHullClone.vertices[iOther], otherHullClone.vertices[iOtherNext]);
for (iBase = 0; iBase < baseHullClone.vertices.Count; iBase++)
{
int iBaseNext = (iBase + 1) % baseHullClone.vertices.Count;
Simplex sBase = new Simplex(baseHullClone.vertices[iBase], baseHullClone.vertices[iBaseNext]);
Manager.PhysicsVector intersect = Simplex.Intersect(sBase, sOther, -.001f, 0.001f, 1.001f, 0.999f);
if (intersect != null)
{
Vertex vIntersect = new Vertex(intersect);
otherHullClone.vertices.Insert(iOther + 1, vIntersect);
sOther.v2 = vIntersect;
intersects = true;
}
}
}
}
MainLog.Instance.Debug("State after intersection detection for the base hull");
MainLog.Instance.Debug("The otherHull is:\n{1}", 0, otherHullClone.ToString());
bool otherIsInBase = baseHullClone.containsPointsFrom(otherHullClone);
if (!intersects && otherIsInBase)
{
// We have a hole here
baseHullClone.holeVertices = otherHullClone.vertices;
return baseHullClone;
}
SimpleHull result = new SimpleHull();
// Find a good starting Simplex from baseHull
// A good starting simplex is one that is outside otherHull
// Such a simplex must exist, otherwise the result will be empty
Vertex baseStartVertex = null;
{
int iBase;
for (iBase = 0; iBase < baseHullClone.vertices.Count; iBase++)
{
int iBaseNext = (iBase + 1) % baseHullClone.vertices.Count;
Vertex center = new Vertex((baseHullClone.vertices[iBase] + baseHullClone.vertices[iBaseNext]) / 2.0f);
bool isOutside = !otherHullClone.IsPointIn(center);
if (isOutside)
{
baseStartVertex = baseHullClone.vertices[iBaseNext];
break;
}
}
}
if (baseStartVertex == null) // i.e. no simplex fulfilled the "outside" condition.
// In otherwords, subtractHull completely embraces baseHull
{
return result;
}
// The simplex that *starts* with baseStartVertex is outside the cutting hull,
// so we can start our walk with the next vertex without loosing a branch
Vertex V1 = baseStartVertex;
bool onBase = true;
// And here is how we do the magic :-)
// Start on the base hull.
// Walk the vertices in the positive direction
// For each vertex check, whether it is a vertex shared with the other hull
// if this is the case, switch over to walking the other vertex list.
// Note: The other hull *must* go backwards to our starting point (via several orther vertices)
// Thus it is important that the cutting hull has the inverse directional sense than the
// base hull!!!!!!!!! (means if base goes CW around it's center cutting hull must go CCW)
bool done = false;
while (!done)
{
result.AddVertex(V1);
Vertex nextVertex = null;
if (onBase)
{
nextVertex = otherHullClone.FindVertex(V1, 0.001f);
}
else
{
nextVertex = baseHullClone.FindVertex(V1, 0.001f);
}
if (nextVertex != null) // A node that represents an intersection
{
V1 = nextVertex; // Needed to find the next vertex on the other hull
onBase = !onBase;
}
if (onBase)
V1 = baseHullClone.getNextVertex(V1);
else
V1 = otherHullClone.getNextVertex(V1);
if (V1 == baseStartVertex)
done = true;
}
MainLog.Instance.Debug("The resulting Hull is:\n{1}", 0, result.ToString());
return result;
}
}
}

View File

@ -1,198 +0,0 @@
using System;
using System.Collections.Generic;
using System.Text;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin.Meshing
{
// A simplex is a section of a straight line.
// It is defined by its endpoints, i.e. by two vertices
// Operation on vertices are
public class Simplex : IComparable<Simplex>
{
public Vertex v1;
public Vertex v2;
public Simplex(Vertex _v1, Vertex _v2)
{
v1 = _v1;
v2 = _v2;
}
public int CompareTo(Simplex other)
{
Vertex lv1, lv2, ov1, ov2, temp;
lv1 = v1;
lv2 = v2;
ov1 = other.v1;
ov2 = other.v2;
if (lv1 > lv2)
{
temp = lv1;
lv1 = lv2;
lv2 = temp;
}
if (ov1 > ov2)
{
temp = ov1;
ov1 = ov2;
ov2 = temp;
}
if (lv1 > ov1)
{
return 1;
}
if (lv1 < ov1)
{
return -1;
}
if (lv2 > ov2)
{
return 1;
}
if (lv2 < ov2)
{
return -1;
}
return 0;
}
private static void intersectParameter(PhysicsVector p1, PhysicsVector r1, PhysicsVector p2, PhysicsVector r2, ref float lambda, ref float mu)
{
// Intersects two straights
// p1, p2, points on the straight
// r1, r2, directional vectors of the straight. Not necessarily of length 1!
// note, that l, m can be scaled such, that the range 0..1 is mapped to the area between two points,
// thus allowing to decide whether an intersection is between two points
float r1x = r1.X;
float r1y = r1.Y;
float r2x = r2.X;
float r2y = r2.Y;
float denom = r1y*r2x - r1x*r2y;
float p1x = p1.X;
float p1y = p1.Y;
float p2x = p2.X;
float p2y = p2.Y;
float z1=-p2x * r2y + p1x * r2y + (p2y - p1y) * r2x;
float z2=-p2x * r1y + p1x * r1y + (p2y - p1y) * r1x;
if (denom == 0.0f) // Means the straights are parallel. Either no intersection or an infinite number of them
{
if (z1==0.0f) {// Means they are identical -> many, many intersections
lambda = Single.NaN;
mu = Single.NaN;
} else {
lambda = Single.PositiveInfinity;
mu = Single.PositiveInfinity;
}
return;
}
lambda = z1 / denom;
mu = z2 / denom;
}
// Intersects the simplex with another one.
// the borders are used to deal with float inaccuracies
// As a rule of thumb, the borders are
// lowerBorder1 : 0.0
// lowerBorder2 : 0.0
// upperBorder1 : 1.0
// upperBorder2 : 1.0
// Set these to values near the given parameters (e.g. 0.001 instead of 1 to exclude simplex starts safely, or to -0.001 to include them safely)
public static PhysicsVector Intersect(
Simplex s1,
Simplex s2,
float lowerBorder1,
float lowerBorder2,
float upperBorder1,
float upperBorder2)
{
PhysicsVector firstSimplexDirection = s1.v2 - s1.v1;
PhysicsVector secondSimplexDirection = s2.v2 - s2.v1;
float lambda = 0.0f;
float mu = 0.0f;
// Give us the parameters of an intersection. This subroutine does *not* take the constraints
// (intersection must be between v1 and v2 and it must be in the positive direction of the ray)
// into account. We do that afterwards.
intersectParameter(s1.v1, firstSimplexDirection, s2.v1, secondSimplexDirection, ref lambda, ref mu);
if (Single.IsInfinity(lambda)) // Special case. No intersection at all. directions parallel.
return null;
if (Single.IsNaN(lambda)) // Special case. many, many intersections.
return null;
if (lambda > upperBorder1) // We're behind v2
return null;
if (lambda < lowerBorder1)
return null;
if (mu < lowerBorder2) // outside simplex 2
return null;
if (mu > upperBorder2) // outside simplex 2
return null;
return s1.v1 + lambda * firstSimplexDirection;
}
// Intersects the simplex with a ray. The ray is defined as all p=origin + lambda*direction
// where lambda >= 0
public PhysicsVector RayIntersect(Vertex origin, PhysicsVector direction, bool bEndsIncluded)
{
PhysicsVector simplexDirection = v2 - v1;
float lambda = 0.0f;
float mu = 0.0f;
// Give us the parameters of an intersection. This subroutine does *not* take the constraints
// (intersection must be between v1 and v2 and it must be in the positive direction of the ray)
// into account. We do that afterwards.
intersectParameter(v1, simplexDirection, origin, direction, ref lambda, ref mu);
if (Single.IsInfinity(lambda)) // Special case. No intersection at all. directions parallel.
return null;
if (Single.IsNaN(lambda)) // Special case. many, many intersections.
return null;
if (mu < 0.0) // We're on the wrong side of the ray
return null;
if (lambda > 1.0) // We're behind v2
return null;
if (lambda == 1.0 && !bEndsIncluded)
return null; // The end of the simplices are not included
if (lambda < 0.0f) // we're before v1;
return null;
return this.v1 + lambda * simplexDirection;
}
}
}