BulletSim: reorganize motor step code to separate error computation allowing subclass for PID error correction.
							parent
							
								
									a9b9c0f035
								
							
						
					
					
						commit
						b7ad44e3a6
					
				|  | @ -29,13 +29,14 @@ using System; | |||
| using System.Collections.Generic; | ||||
| using System.Text; | ||||
| using OpenMetaverse; | ||||
| using OpenSim.Framework; | ||||
| 
 | ||||
| namespace OpenSim.Region.Physics.BulletSPlugin | ||||
| { | ||||
| public abstract class BSMotor | ||||
| { | ||||
|     // Timescales and other things can be turned off by setting them to 'infinite'. | ||||
|     public const float Infinite = 12345f; | ||||
|     public const float Infinite = 12345.6f; | ||||
|     public readonly static Vector3 InfiniteVector = new Vector3(BSMotor.Infinite, BSMotor.Infinite, BSMotor.Infinite); | ||||
| 
 | ||||
|     public BSMotor(string useName) | ||||
|  | @ -62,12 +63,16 @@ public abstract class BSMotor | |||
|         } | ||||
|     } | ||||
| } | ||||
| // Can all the incremental stepping be replaced with motor classes? | ||||
| 
 | ||||
| // Motor which moves CurrentValue to TargetValue over TimeScale seconds. | ||||
| // The TargetValue decays in TargetValueDecayTimeScale and | ||||
| //     the CurrentValue will be held back by FrictionTimeScale. | ||||
| // TimeScale and TargetDelayTimeScale may be 'infinite' which means go decay. | ||||
| // This motor will "zero itself" over time in that the targetValue will | ||||
| //    decay to zero and the currentValue will follow it to that zero. | ||||
| //    The overall effect is for the returned correction value to go from large | ||||
| //    values (the total difference between current and target minus friction) | ||||
| //    to small and eventually zero values. | ||||
| // TimeScale and TargetDelayTimeScale may be 'infinite' which means no decay. | ||||
| 
 | ||||
| // For instance, if something is moving at speed X and the desired speed is Y, | ||||
| //    CurrentValue is X and TargetValue is Y. As the motor is stepped, new | ||||
|  | @ -81,13 +86,15 @@ public class BSVMotor : BSMotor | |||
|     // public Vector3 FrameOfReference { get; set; } | ||||
|     // public Vector3 Offset { get; set; } | ||||
| 
 | ||||
|     public float TimeScale { get; set; } | ||||
|     public float TargetValueDecayTimeScale { get; set; } | ||||
|     public Vector3 FrictionTimescale { get; set; } | ||||
|     public float Efficiency { get; set; } | ||||
|     public virtual float TimeScale { get; set; } | ||||
|     public virtual float TargetValueDecayTimeScale { get; set; } | ||||
|     public virtual Vector3 FrictionTimescale { get; set; } | ||||
|     public virtual float Efficiency { get; set; } | ||||
| 
 | ||||
|     public Vector3 TargetValue { get; private set; } | ||||
|     public Vector3 CurrentValue { get; private set; } | ||||
|     public virtual float ErrorZeroThreshold { get; set; } | ||||
| 
 | ||||
|     public virtual Vector3 TargetValue { get; private set; } | ||||
|     public virtual Vector3 CurrentValue { get; private set; } | ||||
| 
 | ||||
|     public BSVMotor(string useName) | ||||
|         : base(useName) | ||||
|  | @ -96,6 +103,7 @@ public class BSVMotor : BSMotor | |||
|         Efficiency = 1f; | ||||
|         FrictionTimescale = BSMotor.InfiniteVector; | ||||
|         CurrentValue = TargetValue = Vector3.Zero; | ||||
|         ErrorZeroThreshold = 0.01f; | ||||
|     } | ||||
|     public BSVMotor(string useName, float timeScale, float decayTimeScale, Vector3 frictionTimeScale, float efficiency)  | ||||
|         : this(useName) | ||||
|  | @ -115,24 +123,19 @@ public class BSVMotor : BSMotor | |||
|         TargetValue = target; | ||||
|     } | ||||
| 
 | ||||
|     // A form of stepping that does not take the time quantum into account. | ||||
|     // The caller must do the right thing later. | ||||
|     public virtual Vector3 Step() | ||||
|     { | ||||
|         return Step(1f); | ||||
|     } | ||||
| 
 | ||||
|     // Compute the next step and return the new current value | ||||
|     public virtual Vector3 Step(float timeStep) | ||||
|     { | ||||
|         Vector3 returnCurrent = Vector3.Zero; | ||||
|         if (!CurrentValue.ApproxEquals(TargetValue, 0.01f)) | ||||
|         { | ||||
|             Vector3 origTarget = TargetValue;       // DEBUG | ||||
|             Vector3 origCurrVal = CurrentValue;   // DEBUG | ||||
|         Vector3 origTarget = TargetValue;       // DEBUG | ||||
|         Vector3 origCurrVal = CurrentValue;     // DEBUG | ||||
| 
 | ||||
|             // Addition =  (desiredVector - currentAppliedVector) / secondsItShouldTakeToComplete | ||||
|             Vector3 addAmount = (TargetValue - CurrentValue)/TimeScale * timeStep; | ||||
|             CurrentValue += addAmount; | ||||
|         Vector3 correction = Vector3.Zero; | ||||
|         Vector3 error = TargetValue - CurrentValue; | ||||
|         if (!error.ApproxEquals(Vector3.Zero, ErrorZeroThreshold)) | ||||
|         { | ||||
|             correction = Step(timeStep, error); | ||||
| 
 | ||||
|             CurrentValue += correction; | ||||
| 
 | ||||
|             // The desired value reduces to zero which also reduces the difference with current. | ||||
|             // If the decay time is infinite, don't decay at all. | ||||
|  | @ -143,39 +146,50 @@ public class BSVMotor : BSMotor | |||
|                 TargetValue *= (1f - decayFactor); | ||||
|             } | ||||
| 
 | ||||
|             // The amount we can correct the error is reduced by the friction | ||||
|             Vector3 frictionFactor = Vector3.Zero; | ||||
|             if (FrictionTimescale != BSMotor.InfiniteVector) | ||||
|             { | ||||
|                 // frictionFactor = (Vector3.One / FrictionTimescale) * timeStep; | ||||
|                 // Individual friction components can be 'infinite' so compute each separately. | ||||
|                 frictionFactor.X = FrictionTimescale.X == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.X) * timeStep; | ||||
|                 frictionFactor.Y = FrictionTimescale.Y == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Y) * timeStep; | ||||
|                 frictionFactor.Z = FrictionTimescale.Z == BSMotor.Infinite ? 0f : (1f / FrictionTimescale.Z) * timeStep; | ||||
|                 frictionFactor.X = (FrictionTimescale.X == BSMotor.Infinite) ? 0f : (1f / FrictionTimescale.X); | ||||
|                 frictionFactor.Y = (FrictionTimescale.Y == BSMotor.Infinite) ? 0f : (1f / FrictionTimescale.Y); | ||||
|                 frictionFactor.Z = (FrictionTimescale.Z == BSMotor.Infinite) ? 0f : (1f / FrictionTimescale.Z); | ||||
|                 frictionFactor *= timeStep; | ||||
|                 CurrentValue *= (Vector3.One - frictionFactor); | ||||
|             } | ||||
| 
 | ||||
|             returnCurrent = CurrentValue; | ||||
| 
 | ||||
|             MDetailLog("{0},  BSVMotor.Step,nonZero,{1},origCurr={2},origTarget={3},timeStep={4},timeScale={5},addAmnt={6},targetDecay={7},decayFact={8},fricTS={9},frictFact={10}", | ||||
|             MDetailLog("{0},  BSVMotor.Step,nonZero,{1},origCurr={2},origTarget={3},timeStep={4},error={5},corr={6},targetDecay={6},decayFact={7},frictFac{8},curr={9},target={10},ret={11}", | ||||
|                                 BSScene.DetailLogZero, UseName, origCurrVal, origTarget, | ||||
|                                 timeStep, TimeScale, addAmount, | ||||
|                                 TargetValueDecayTimeScale, decayFactor, | ||||
|                                 FrictionTimescale, frictionFactor); | ||||
|             MDetailLog("{0},  BSVMotor.Step,nonZero,{1},curr={2},target={3},add={4},decay={5},frict={6},ret={7}", | ||||
|                                     BSScene.DetailLogZero, UseName, CurrentValue, TargetValue, | ||||
|                                     addAmount, decayFactor, frictionFactor, returnCurrent); | ||||
|                                 timeStep, error, correction, | ||||
|                                 TargetValueDecayTimeScale, decayFactor, frictionFactor, | ||||
|                                 CurrentValue, TargetValue, CurrentValue); | ||||
|         } | ||||
|         else | ||||
|         { | ||||
|             // Difference between what we have and target is small. Motor is done. | ||||
|             CurrentValue = Vector3.Zero; | ||||
|             TargetValue = Vector3.Zero; | ||||
| 
 | ||||
|             MDetailLog("{0},  BSVMotor.Step,zero,{1},curr={2},target={3},ret={4}", | ||||
|                                     BSScene.DetailLogZero, UseName, TargetValue, CurrentValue, returnCurrent); | ||||
| 
 | ||||
|             MDetailLog("{0},  BSVMotor.Step,zero,{1},ret={2}", | ||||
|                         BSScene.DetailLogZero, UseName, CurrentValue); | ||||
|         } | ||||
|         return returnCurrent; | ||||
| 
 | ||||
|         return CurrentValue; | ||||
|     } | ||||
|     public virtual Vector3 Step(float timeStep, Vector3 error) | ||||
|     { | ||||
|         Vector3 returnCorrection = Vector3.Zero; | ||||
|         if (!error.ApproxEquals(Vector3.Zero, ErrorZeroThreshold)) | ||||
|         { | ||||
|             // correction =  error / secondsItShouldTakeToCorrect | ||||
|             Vector3 correctionAmount = error / TimeScale * timeStep; | ||||
| 
 | ||||
|             returnCorrection = correctionAmount; | ||||
|             MDetailLog("{0},  BSVMotor.Step,nonZero,{1},timeStep={2},timeScale={3},err={4},corr={5},frictTS={6},ret={7}", | ||||
|                                     BSScene.DetailLogZero, UseName, timeStep, TimeScale, error, | ||||
|                                     correctionAmount, FrictionTimescale, returnCorrection); | ||||
|         } | ||||
|         return returnCorrection; | ||||
|     } | ||||
|     public override string ToString() | ||||
|     { | ||||
|  | @ -214,9 +228,14 @@ public class BSFMotor : BSMotor | |||
| // Good description at http://www.answers.com/topic/pid-controller . Includes processes for choosing p, i and d factors. | ||||
| public class BSPIDVMotor : BSVMotor | ||||
| { | ||||
|     public Vector3 pFactor { get; set; }    // Amount of direct correction of an error (sometimes called 'proportional gain') | ||||
|     public Vector3 iFactor { get; set; }    //  | ||||
|     public Vector3 dFactor { get; set; } | ||||
|     // Larger makes more overshoot, smaller means converge quicker. Range of 0.1 to 10. | ||||
|     public Vector3 proportionFactor { get; set; } | ||||
|     public Vector3 integralFactor { get; set; } | ||||
|     public Vector3 derivFactor { get; set; } | ||||
|     // Arbritrary factor range. | ||||
|     // EfficiencyHigh means move quickly to the correct number. EfficiencyLow means might over correct. | ||||
|     public float EfficiencyHigh = 0.4f; | ||||
|     public float EfficiencyLow = 4.0f; | ||||
| 
 | ||||
|     Vector3 IntegralFactor { get; set; } | ||||
|     Vector3 LastError { get; set; } | ||||
|  | @ -224,17 +243,39 @@ public class BSPIDVMotor : BSVMotor | |||
|     public BSPIDVMotor(string useName) | ||||
|         : base(useName) | ||||
|     { | ||||
|         // larger makes more overshoot, smaller means converge quicker. Range of 0.1 to 10. | ||||
|         pFactor = new Vector3(1.00f, 1.00f, 1.00f); | ||||
|         iFactor = new Vector3(1.00f, 1.00f, 1.00f); | ||||
|         dFactor = new Vector3(1.00f, 1.00f, 1.00f); | ||||
|         proportionFactor = new Vector3(1.00f, 1.00f, 1.00f); | ||||
|         integralFactor = new Vector3(1.00f, 1.00f, 1.00f); | ||||
|         derivFactor = new Vector3(1.00f, 1.00f, 1.00f); | ||||
|         IntegralFactor = Vector3.Zero; | ||||
|         LastError = Vector3.Zero; | ||||
|     } | ||||
| 
 | ||||
|     public override Vector3 Step(float timeStep) | ||||
|     public override void Zero() | ||||
|     { | ||||
|         // How far are we from where we should be | ||||
|         Vector3 error = TargetValue - CurrentValue; | ||||
|         base.Zero(); | ||||
|     } | ||||
| 
 | ||||
|     public override float Efficiency | ||||
|     { | ||||
|         get { return base.Efficiency; } | ||||
|         set | ||||
|         { | ||||
|             base.Efficiency = Util.Clamp(value, 0f, 1f); | ||||
|             // Compute factors based on efficiency. | ||||
|             // If efficiency is high (1f), use a factor value that moves the error value to zero with little overshoot. | ||||
|             // If efficiency is low (0f), use a factor value that overcorrects. | ||||
|             // TODO: might want to vary contribution of different factor depending on efficiency. | ||||
|             float factor = ((1f - this.Efficiency) * EfficiencyHigh + EfficiencyLow) / 3f; | ||||
|             // float factor = (1f - this.Efficiency) * EfficiencyHigh + EfficiencyLow; | ||||
|             proportionFactor = new Vector3(factor, factor, factor); | ||||
|             integralFactor = new Vector3(factor, factor, factor); | ||||
|             derivFactor = new Vector3(factor, factor, factor); | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     // Ignore Current and Target Values and just advance the PID computation on this error. | ||||
|     public Vector3 Step(float timeStep, Vector3 error) | ||||
|     { | ||||
|         // Add up the error so we can integrate over the accumulated errors | ||||
|         IntegralFactor += error * timeStep; | ||||
| 
 | ||||
|  | @ -242,9 +283,8 @@ public class BSPIDVMotor : BSVMotor | |||
|         Vector3 derivFactor = (error - LastError) * timeStep; | ||||
|         LastError = error; | ||||
| 
 | ||||
|         //                   Proportion                  Integral               Derivitive | ||||
|         // Correction = proportionOfPresentError + accumulationOfPastError + rateOfChangeOfError | ||||
|         Vector3 ret =        error * pFactor    + IntegralFactor * iFactor + derivFactor * dFactor; | ||||
|         // Correction = -(proportionOfPresentError +      accumulationOfPastError    +     rateOfChangeOfError) | ||||
|         Vector3 ret   = -(error * proportionFactor + IntegralFactor * integralFactor + derivFactor * derivFactor); | ||||
| 
 | ||||
|         return ret; | ||||
|     } | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	 Robert Adams
						Robert Adams