Mantis#1778. Thank you kindly, Junta_Kohime for a patch that:

llRot2Left and llRot2Up functions modified, using fast algebric 
calculations instead of vectors and quaternions products. 
The accuracy is the same. Normalization is now implemented.
0.6.0-stable
Charles Krinke 2008-07-18 19:09:51 +00:00
parent 76840906b5
commit c0e389cfff
2 changed files with 61 additions and 4 deletions

View File

@ -450,14 +450,43 @@ namespace OpenSim.Region.ScriptEngine.Common
public LSL_Types.Vector3 llRot2Left(LSL_Types.Quaternion r) public LSL_Types.Vector3 llRot2Left(LSL_Types.Quaternion r)
{ {
m_host.AddScriptLPS(1); m_host.AddScriptLPS(1);
return (new LSL_Types.Vector3(0, 1, 0) * r); double x,y,z,m;
m = Math.Sqrt(r.x*r.x+r.y*r.y+r.z*r.z+r.s*r.s);
// m is always greater than zero
if (m!=1) // if m is not equal to 1 then Rotation needs to be normalized
{
r.x/=m;
r.y/=m;
r.z/=m;
r.s/=m;
}
// Fast Algebric Calculations instead of Vectors & Quaternions Product
x = 2*(r.x*r.y-r.z*r.s);
y = -r.x*r.x+r.y*r.y-r.z*r.z+r.s*r.s;
z = 2*(r.x*r.s+r.y*r.z);
return (new LSL_Types.Vector3(x,y,z));
} }
public LSL_Types.Vector3 llRot2Up(LSL_Types.Quaternion r) public LSL_Types.Vector3 llRot2Up(LSL_Types.Quaternion r)
{ {
m_host.AddScriptLPS(1); m_host.AddScriptLPS(1);
return (new LSL_Types.Vector3(0, 0, 1) * r); double x,y,z,m;
m = Math.Sqrt(r.x*r.x+r.y*r.y+r.z*r.z+r.s*r.s);
// m is always greater than zero
if (m!=1) // if m is not equal to 1 then Rotation needs to be normalized
{
r.x/=m;
r.y/=m;
r.z/=m;
r.s/=m;
} }
// Fast Algebric Calculations instead of Vectors & Quaternions Product
x = 2*(r.x*r.z+r.y*r.s);
y = 2*(-r.x*r.s+r.y*r.z);
z = -r.x*r.x-r.y*r.y+r.z*r.z+r.s*r.s;
return (new LSL_Types.Vector3(x,y,z));
}
public LSL_Types.Quaternion llRotBetween(LSL_Types.Vector3 a, LSL_Types.Vector3 b) public LSL_Types.Quaternion llRotBetween(LSL_Types.Vector3 a, LSL_Types.Vector3 b)
{ {
//A and B should both be normalized //A and B should both be normalized

View File

@ -437,13 +437,41 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
public LSL_Types.Vector3 llRot2Left(LSL_Types.Quaternion r) public LSL_Types.Vector3 llRot2Left(LSL_Types.Quaternion r)
{ {
m_host.AddScriptLPS(1); m_host.AddScriptLPS(1);
return (new LSL_Types.Vector3(0, 1, 0) * r); double x,y,z,m;
m = Math.Sqrt(r.x*r.x+r.y*r.y+r.z*r.z+r.s*r.s);
// m is always greater than zero
if (m!=1) // if m is not equal to 1 then Rotation needs to be normalized
{
r.x/=m;
r.y/=m;
r.z/=m;
r.s/=m;
}
// Fast Algebric Calculations instead of Vectors & Quaternions Product
x = 2*(r.x*r.y-r.z*r.s);
y = -r.x*r.x+r.y*r.y-r.z*r.z+r.s*r.s;
z = 2*(r.x*r.s+r.y*r.z);
return (new LSL_Types.Vector3(x,y,z));
} }
public LSL_Types.Vector3 llRot2Up(LSL_Types.Quaternion r) public LSL_Types.Vector3 llRot2Up(LSL_Types.Quaternion r)
{ {
m_host.AddScriptLPS(1); m_host.AddScriptLPS(1);
return (new LSL_Types.Vector3(0, 0, 1) * r); double x,y,z,m;
m = Math.Sqrt(r.x*r.x+r.y*r.y+r.z*r.z+r.s*r.s);
// m is always greater than zero
if (m!=1) // if m is not equal to 1 then Rotation needs to be normalized
{
r.x/=m;
r.y/=m;
r.z/=m;
r.s/=m;
}
// Fast Algebric Calculations instead of Vectors & Quaternions Product
x = 2*(r.x*r.z+r.y*r.s);
y = 2*(-r.x*r.s+r.y*r.z);
z = -r.x*r.x-r.y*r.y+r.z*r.z+r.s*r.s;
return (new LSL_Types.Vector3(x,y,z));
} }
public LSL_Types.Quaternion llRotBetween(LSL_Types.Vector3 a, LSL_Types.Vector3 b) public LSL_Types.Quaternion llRotBetween(LSL_Types.Vector3 a, LSL_Types.Vector3 b)