some lsl cleanup

master
UbitUmarov 2020-02-27 21:07:35 +00:00
parent 8c74e47557
commit d1df9c9ee5
1 changed files with 16 additions and 81 deletions

View File

@ -917,51 +917,6 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
return eul;
}
/* From wiki:
The Euler angle vector (in radians) is converted to a rotation by doing the rotations around the 3 axes
in Z, Y, X order. So llEuler2Rot(<1.0, 2.0, 3.0> * DEG_TO_RAD) generates a rotation by taking the zero rotation,
a vector pointing along the X axis, first rotating it 3 degrees around the global Z axis, then rotating the resulting
vector 2 degrees around the global Y axis, and finally rotating that 1 degree around the global X axis.
*/
/* How we arrived at this llEuler2Rot
*
* Experiment in SL to determine conventions:
* llEuler2Rot(<PI,0,0>)=<1,0,0,0>
* llEuler2Rot(<0,PI,0>)=<0,1,0,0>
* llEuler2Rot(<0,0,PI>)=<0,0,1,0>
*
* Important facts about Quaternions
* - multiplication is non-commutative (a*b != b*a)
* - http://en.wikipedia.org/wiki/Quaternion#Basis_multiplication
*
* Above SL experiment gives (c1,c2,c3,s1,s2,s3 as defined in our llEuler2Rot):
* Qx = c1+i*s1
* Qy = c2+j*s2;
* Qz = c3+k*s3;
*
* Rotations applied in order (from above) Z, Y, X
* Q = (Qz * Qy) * Qx
* ((c1+i*s1)*(c2+j*s2))*(c3+k*s3)
* (c1*c2+i*s1*c2+j*c1*s2+ij*s1*s2)*(c3+k*s3)
* (c1*c2+i*s1*c2+j*c1*s2+k*s1*s2)*(c3+k*s3)
* c1*c2*c3+i*s1*c2*c3+j*c1*s2*c3+k*s1*s2*c3+k*c1*c2*s3+ik*s1*c2*s3+jk*c1*s2*s3+kk*s1*s2*s3
* c1*c2*c3+i*s1*c2*c3+j*c1*s2*c3+k*s1*s2*c3+k*c1*c2*s3 -j*s1*c2*s3 +i*c1*s2*s3 -s1*s2*s3
* regroup: x=i*(s1*c2*c3+c1*s2*s3)
* y=j*(c1*s2*c3-s1*c2*s3)
* z=k*(s1*s2*c3+c1*c2*s3)
* s= c1*c2*c3-s1*s2*s3
*
* This implementation agrees with the functions found here:
* http://lslwiki.net/lslwiki/wakka.php?wakka=LibraryRotationFunctions
* And with the results in SL.
*
* It's also possible to calculate llEuler2Rot by direct multiplication of
* the Qz, Qy, and Qx vectors (as above - and done in the "accurate" function
* from the wiki).
* Apparently in some cases this is better from a numerical precision perspective?
*/
public LSL_Rotation llEuler2Rot(LSL_Vector v)
{
m_host.AddScriptLPS(1);
@ -1122,48 +1077,26 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
{
//A and B should both be normalized
m_host.AddScriptLPS(1);
/* This method is more accurate than the SL one, and thus causes problems
for scripts that deal with the SL inaccuracy around 180-degrees -.- .._.
double dotProduct = LSL_Vector.Dot(a, b);
LSL_Vector crossProduct = LSL_Vector.Cross(a, b);
double magProduct = LSL_Vector.Mag(a) * LSL_Vector.Mag(b);
double angle = Math.Acos(dotProduct / magProduct);
LSL_Vector axis = LSL_Vector.Norm(crossProduct);
double s = Math.Sin(angle / 2);
double x = axis.x * s;
double y = axis.y * s;
double z = axis.z * s;
double w = Math.Cos(angle / 2);
if (Double.IsNaN(x) || Double.IsNaN(y) || Double.IsNaN(z) || Double.IsNaN(w))
return new LSL_Rotation(0.0f, 0.0f, 0.0f, 1.0f);
return new LSL_Rotation((float)x, (float)y, (float)z, (float)w);
*/
// This method mimics the 180 errors found in SL
// See www.euclideanspace.com... angleBetween
LSL_Vector vec_a = a;
LSL_Vector vec_b = b;
// Eliminate zero length
LSL_Float vec_a_mag = LSL_Vector.Mag(vec_a);
LSL_Float vec_b_mag = LSL_Vector.Mag(vec_b);
if (vec_a_mag < 0.00001 ||
vec_b_mag < 0.00001)
LSL_Float vec_a_mag = LSL_Vector.MagSquare(a);
LSL_Float vec_b_mag = LSL_Vector.MagSquare(b);
if (vec_a_mag < 1e-12 ||
vec_b_mag < 1e-12)
{
return new LSL_Rotation(0.0f, 0.0f, 0.0f, 1.0f);
}
// Normalize
vec_a = llVecNorm(vec_a);
vec_b = llVecNorm(vec_b);
a = llVecNorm(a);
b = llVecNorm(b);
// Calculate axis and rotation angle
LSL_Vector axis = vec_a % vec_b;
LSL_Float cos_theta = vec_a * vec_b;
LSL_Vector axis = a % b;
LSL_Float cos_theta = a * b;
// Check if parallel
if (cos_theta > 0.99999)
@ -1174,8 +1107,9 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
// Check if anti-parallel
else if (cos_theta < -0.99999)
{
LSL_Vector orthog_axis = new LSL_Vector(1.0, 0.0, 0.0) - (vec_a.x / (vec_a * vec_a) * vec_a);
if (LSL_Vector.Mag(orthog_axis) < 0.000001) orthog_axis = new LSL_Vector(0.0, 0.0, 1.0);
LSL_Vector orthog_axis = new LSL_Vector(1.0, 0.0, 0.0) - (a.x / (a * a) * a);
if (LSL_Vector.MagSquare(orthog_axis) < 1e-12)
orthog_axis = new LSL_Vector(0.0, 0.0, 1.0);
return new LSL_Rotation((float)orthog_axis.x, (float)orthog_axis.y, (float)orthog_axis.z, 0.0);
}
else // other rotation
@ -11199,10 +11133,9 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
/// http://lslwiki.net/lslwiki/wakka.php?wakka=llGetBoundingBox
/// Returns local bounding box of avatar without attachments
/// if target is non-seated avatar or prim/mesh in avatar attachment.
/// Returns local bounding box of object including seated avatars
/// Returns local bounding box of object
/// if target is seated avatar or prim/mesh in object.
/// Uses meshing of prims for high accuracy
/// or less accurate box models for speed.
/// Uses less accurate box models for speed.
/// </summary>
public LSL_List llGetBoundingBox(string obj)
{
@ -13482,6 +13415,8 @@ namespace OpenSim.Region.ScriptEngine.Shared.Api
public void llSetPayPrice(int price, LSL_List quick_pay_buttons)
{
m_host.AddScriptLPS(1);
if(m_host.LocalId != m_host.ParentGroup.RootPart.LocalId)
return;
if (quick_pay_buttons.Data.Length < 4)
{