rename Ubitode

avinationmerge
UbitUmarov 2015-09-08 17:17:09 +01:00
parent 774c42e7fb
commit d2d34a473d
11 changed files with 1 additions and 14170 deletions

View File

@ -1,340 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using OpenMetaverse;
using OpenSim.Region.PhysicsModules.SharedBase;
using OpenSim.Region.PhysicsModules.UbitMeshing;
public class Vertex : IComparable<Vertex>
{
Vector3 vector;
public float X
{
get { return vector.X; }
set { vector.X = value; }
}
public float Y
{
get { return vector.Y; }
set { vector.Y = value; }
}
public float Z
{
get { return vector.Z; }
set { vector.Z = value; }
}
public Vertex(float x, float y, float z)
{
vector.X = x;
vector.Y = y;
vector.Z = z;
}
public Vertex normalize()
{
float tlength = vector.Length();
if (tlength != 0f)
{
float mul = 1.0f / tlength;
return new Vertex(vector.X * mul, vector.Y * mul, vector.Z * mul);
}
else
{
return new Vertex(0f, 0f, 0f);
}
}
public Vertex cross(Vertex v)
{
return new Vertex(vector.Y * v.Z - vector.Z * v.Y, vector.Z * v.X - vector.X * v.Z, vector.X * v.Y - vector.Y * v.X);
}
// disable warning: mono compiler moans about overloading
// operators hiding base operator but should not according to C#
// language spec
#pragma warning disable 0108
public static Vertex operator *(Vertex v, Quaternion q)
{
// From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/
Vertex v2 = new Vertex(0f, 0f, 0f);
v2.X = q.W * q.W * v.X +
2f * q.Y * q.W * v.Z -
2f * q.Z * q.W * v.Y +
q.X * q.X * v.X +
2f * q.Y * q.X * v.Y +
2f * q.Z * q.X * v.Z -
q.Z * q.Z * v.X -
q.Y * q.Y * v.X;
v2.Y =
2f * q.X * q.Y * v.X +
q.Y * q.Y * v.Y +
2f * q.Z * q.Y * v.Z +
2f * q.W * q.Z * v.X -
q.Z * q.Z * v.Y +
q.W * q.W * v.Y -
2f * q.X * q.W * v.Z -
q.X * q.X * v.Y;
v2.Z =
2f * q.X * q.Z * v.X +
2f * q.Y * q.Z * v.Y +
q.Z * q.Z * v.Z -
2f * q.W * q.Y * v.X -
q.Y * q.Y * v.Z +
2f * q.W * q.X * v.Y -
q.X * q.X * v.Z +
q.W * q.W * v.Z;
return v2;
}
public static Vertex operator +(Vertex v1, Vertex v2)
{
return new Vertex(v1.X + v2.X, v1.Y + v2.Y, v1.Z + v2.Z);
}
public static Vertex operator -(Vertex v1, Vertex v2)
{
return new Vertex(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
}
public static Vertex operator *(Vertex v1, Vertex v2)
{
return new Vertex(v1.X * v2.X, v1.Y * v2.Y, v1.Z * v2.Z);
}
public static Vertex operator +(Vertex v1, float am)
{
v1.X += am;
v1.Y += am;
v1.Z += am;
return v1;
}
public static Vertex operator -(Vertex v1, float am)
{
v1.X -= am;
v1.Y -= am;
v1.Z -= am;
return v1;
}
public static Vertex operator *(Vertex v1, float am)
{
v1.X *= am;
v1.Y *= am;
v1.Z *= am;
return v1;
}
public static Vertex operator /(Vertex v1, float am)
{
if (am == 0f)
{
return new Vertex(0f,0f,0f);
}
float mul = 1.0f / am;
v1.X *= mul;
v1.Y *= mul;
v1.Z *= mul;
return v1;
}
#pragma warning restore 0108
public float dot(Vertex v)
{
return X * v.X + Y * v.Y + Z * v.Z;
}
public Vertex(Vector3 v)
{
vector = v;
}
public Vertex Clone()
{
return new Vertex(X, Y, Z);
}
public static Vertex FromAngle(double angle)
{
return new Vertex((float) Math.Cos(angle), (float) Math.Sin(angle), 0.0f);
}
public float Length()
{
return vector.Length();
}
public virtual bool Equals(Vertex v, float tolerance)
{
Vertex diff = this - v;
float d = diff.Length();
if (d < tolerance)
return true;
return false;
}
public int CompareTo(Vertex other)
{
if (X < other.X)
return -1;
if (X > other.X)
return 1;
if (Y < other.Y)
return -1;
if (Y > other.Y)
return 1;
if (Z < other.Z)
return -1;
if (Z > other.Z)
return 1;
return 0;
}
public static bool operator >(Vertex me, Vertex other)
{
return me.CompareTo(other) > 0;
}
public static bool operator <(Vertex me, Vertex other)
{
return me.CompareTo(other) < 0;
}
public String ToRaw()
{
// Why this stuff with the number formatter?
// Well, the raw format uses the english/US notation of numbers
// where the "," separates groups of 1000 while the "." marks the border between 1 and 10E-1.
// The german notation uses these characters exactly vice versa!
// The Float.ToString() routine is a localized one, giving different results depending on the country
// settings your machine works with. Unusable for a machine readable file format :-(
NumberFormatInfo nfi = new NumberFormatInfo();
nfi.NumberDecimalSeparator = ".";
nfi.NumberDecimalDigits = 6;
String s1 = X.ToString(nfi) + " " + Y.ToString(nfi) + " " + Z.ToString(nfi);
return s1;
}
}
public class Triangle
{
public Vertex v1;
public Vertex v2;
public Vertex v3;
public Triangle(Vertex _v1, Vertex _v2, Vertex _v3)
{
v1 = _v1;
v2 = _v2;
v3 = _v3;
}
public Triangle(float _v1x,float _v1y,float _v1z,
float _v2x,float _v2y,float _v2z,
float _v3x,float _v3y,float _v3z)
{
v1 = new Vertex(_v1x, _v1y, _v1z);
v2 = new Vertex(_v2x, _v2y, _v2z);
v3 = new Vertex(_v3x, _v3y, _v3z);
}
public override String ToString()
{
NumberFormatInfo nfi = new NumberFormatInfo();
nfi.CurrencyDecimalDigits = 2;
nfi.CurrencyDecimalSeparator = ".";
String s1 = "<" + v1.X.ToString(nfi) + "," + v1.Y.ToString(nfi) + "," + v1.Z.ToString(nfi) + ">";
String s2 = "<" + v2.X.ToString(nfi) + "," + v2.Y.ToString(nfi) + "," + v2.Z.ToString(nfi) + ">";
String s3 = "<" + v3.X.ToString(nfi) + "," + v3.Y.ToString(nfi) + "," + v3.Z.ToString(nfi) + ">";
return s1 + ";" + s2 + ";" + s3;
}
public Vector3 getNormal()
{
// Vertices
// Vectors for edges
Vector3 e1;
Vector3 e2;
e1 = new Vector3(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
e2 = new Vector3(v1.X - v3.X, v1.Y - v3.Y, v1.Z - v3.Z);
// Cross product for normal
Vector3 n = Vector3.Cross(e1, e2);
// Length
float l = n.Length();
// Normalized "normal"
n = n/l;
return n;
}
public void invertNormal()
{
Vertex vt;
vt = v1;
v1 = v2;
v2 = vt;
}
// Dumps a triangle in the "raw faces" format, blender can import. This is for visualisation and
// debugging purposes
public String ToStringRaw()
{
String output = v1.ToRaw() + " " + v2.ToRaw() + " " + v3.ToRaw();
return output;
}
}

View File

@ -1,58 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System.Reflection;
using System.Runtime.InteropServices;
// Information about this assembly is defined by the following
// attributes.
//
// change them to the information which is associated with the assembly
// you compile.
[assembly : AssemblyTitle("OdePlugin")]
[assembly : AssemblyDescription("Ubit Variation")]
[assembly : AssemblyConfiguration("")]
[assembly : AssemblyCompany("http://opensimulator.org")]
[assembly : AssemblyProduct("OdePlugin")]
[assembly : AssemblyCopyright("Copyright (c) OpenSimulator.org Developers 2007-2009")]
[assembly : AssemblyTrademark("")]
[assembly : AssemblyCulture("")]
// This sets the default COM visibility of types in the assembly to invisible.
// If you need to expose a type to COM, use [ComVisible(true)] on that type.
[assembly : ComVisible(false)]
// The assembly version has following format :
//
// Major.Minor.Build.Revision
//
// You can specify all values by your own or you can build default build and revision
// numbers with the '*' character (the default):
[assembly : AssemblyVersion("0.6.5.*")]

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,933 +0,0 @@
/*
* AJLDuarte 2012
*/
using System;
using System.Threading;
using System.Collections.Generic;
using System.IO;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using OpenSim.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;
using OdeAPI;
using log4net;
using Nini.Config;
using OpenMetaverse;
namespace OpenSim.Region.PhysicsModules.OdePlugin
{
public enum MeshState : byte
{
noNeed = 0,
loadingAsset = 1,
AssetOK = 0x0f, // 00001111
NeedMask = 0x30, // 00110000
needMesh = 0x10, // 00010000
needAsset = 0x20, // 00100000
FailMask = 0xC0, // 11000000
AssetFailed = 0x40, // 01000000
MeshFailed = 0x80, // 10000000
MeshNoColide = FailMask | needAsset
}
public enum meshWorkerCmnds : byte
{
nop = 0,
addnew,
changefull,
changesize,
changeshapetype,
getmesh,
}
public class ODEPhysRepData
{
public PhysicsActor actor;
public PrimitiveBaseShape pbs;
public IMesh mesh;
public Vector3 size;
public Vector3 OBB;
public Vector3 OBBOffset;
public float volume;
public byte shapetype;
public bool hasOBB;
public bool hasMeshVolume;
public MeshState meshState;
public UUID? assetID;
public meshWorkerCmnds comand;
}
public class ODEMeshWorker
{
private ILog m_log;
private OdeScene m_scene;
private IMesher m_mesher;
public bool meshSculptedPrim = true;
public bool forceSimplePrimMeshing = false;
public float meshSculptLOD = 32;
public float MeshSculptphysicalLOD = 32;
private OpenSim.Framework.BlockingQueue<ODEPhysRepData> createqueue = new OpenSim.Framework.BlockingQueue<ODEPhysRepData>();
private bool m_running;
private Thread m_thread;
public ODEMeshWorker(OdeScene pScene, ILog pLog, IMesher pMesher, IConfig pConfig)
{
m_scene = pScene;
m_log = pLog;
m_mesher = pMesher;
if (pConfig != null)
{
forceSimplePrimMeshing = pConfig.GetBoolean("force_simple_prim_meshing", forceSimplePrimMeshing);
meshSculptedPrim = pConfig.GetBoolean("mesh_sculpted_prim", meshSculptedPrim);
meshSculptLOD = pConfig.GetFloat("mesh_lod", meshSculptLOD);
MeshSculptphysicalLOD = pConfig.GetFloat("mesh_physical_lod", MeshSculptphysicalLOD);
}
m_running = true;
m_thread = new Thread(DoWork);
m_thread.Name = "OdeMeshWorker";
m_thread.Start();
}
private void DoWork()
{
m_mesher.ExpireFileCache();
while(m_running)
{
ODEPhysRepData nextRep = createqueue.Dequeue();
if(!m_running)
return;
if (nextRep == null)
continue;
if (m_scene.haveActor(nextRep.actor))
{
switch (nextRep.comand)
{
case meshWorkerCmnds.changefull:
case meshWorkerCmnds.changeshapetype:
case meshWorkerCmnds.changesize:
GetMesh(nextRep);
if (CreateActorPhysRep(nextRep) && m_scene.haveActor(nextRep.actor))
m_scene.AddChange(nextRep.actor, changes.PhysRepData, nextRep);
break;
case meshWorkerCmnds.getmesh:
DoRepDataGetMesh(nextRep);
break;
}
}
}
}
public void Stop()
{
try
{
m_thread.Abort();
createqueue.Clear();
}
catch
{
}
}
public void ChangeActorPhysRep(PhysicsActor actor, PrimitiveBaseShape pbs,
Vector3 size, byte shapetype)
{
ODEPhysRepData repData = new ODEPhysRepData();
repData.actor = actor;
repData.pbs = pbs;
repData.size = size;
repData.shapetype = shapetype;
CheckMesh(repData);
CalcVolumeData(repData);
m_scene.AddChange(actor, changes.PhysRepData, repData);
return;
}
public ODEPhysRepData NewActorPhysRep(PhysicsActor actor, PrimitiveBaseShape pbs,
Vector3 size, byte shapetype)
{
ODEPhysRepData repData = new ODEPhysRepData();
repData.actor = actor;
repData.pbs = pbs;
repData.size = size;
repData.shapetype = shapetype;
CheckMesh(repData);
CalcVolumeData(repData);
m_scene.AddChange(actor, changes.AddPhysRep, repData);
return repData;
}
public void RequestMesh(ODEPhysRepData repData)
{
repData.mesh = null;
if (repData.meshState == MeshState.needAsset)
{
PrimitiveBaseShape pbs = repData.pbs;
// check if we got outdated
if (!pbs.SculptEntry || pbs.SculptTexture == UUID.Zero)
{
repData.meshState = MeshState.noNeed;
return;
}
repData.assetID = pbs.SculptTexture;
repData.meshState = MeshState.loadingAsset;
repData.comand = meshWorkerCmnds.getmesh;
createqueue.Enqueue(repData);
}
}
// creates and prepares a mesh to use and calls parameters estimation
public bool CreateActorPhysRep(ODEPhysRepData repData)
{
IMesh mesh = repData.mesh;
if (mesh != null)
{
IntPtr vertices, indices;
int vertexCount, indexCount;
int vertexStride, triStride;
mesh.getVertexListAsPtrToFloatArray(out vertices, out vertexStride, out vertexCount);
mesh.getIndexListAsPtrToIntArray(out indices, out triStride, out indexCount);
if (vertexCount == 0 || indexCount == 0)
{
m_log.WarnFormat("[PHYSICS]: Invalid mesh data on prim {0} mesh UUID {1}",
repData.actor.Name, repData.pbs.SculptTexture.ToString());
repData.meshState = MeshState.MeshFailed;
repData.hasOBB = false;
repData.mesh = null;
m_scene.mesher.ReleaseMesh(mesh);
}
else
{
repData.OBBOffset = mesh.GetCentroid();
repData.OBB = mesh.GetOBB();
repData.hasOBB = true;
mesh.releaseSourceMeshData();
}
}
CalcVolumeData(repData);
return true;
}
public void AssetLoaded(ODEPhysRepData repData)
{
if (m_scene.haveActor(repData.actor))
{
if (needsMeshing(repData.pbs)) // no need for pbs now?
{
repData.comand = meshWorkerCmnds.changefull;
createqueue.Enqueue(repData);
}
}
else
repData.pbs.SculptData = Utils.EmptyBytes;
}
public void DoRepDataGetMesh(ODEPhysRepData repData)
{
if (!repData.pbs.SculptEntry)
return;
if (repData.meshState != MeshState.loadingAsset)
return;
if (repData.assetID == null || repData.assetID == UUID.Zero)
return;
if (repData.assetID != repData.pbs.SculptTexture)
return;
// check if it is in cache
GetMesh(repData);
if (repData.meshState != MeshState.needAsset)
{
CreateActorPhysRep(repData);
m_scene.AddChange(repData.actor, changes.PhysRepData, repData);
return;
}
RequestAssetDelegate assetProvider = m_scene.RequestAssetMethod;
if (assetProvider == null)
return;
ODEAssetRequest asr = new ODEAssetRequest(this, assetProvider, repData, m_log);
}
/// <summary>
/// Routine to figure out if we need to mesh this prim with our mesher
/// </summary>
/// <param name="pbs"></param>
/// <returns></returns>
public bool needsMeshing(PrimitiveBaseShape pbs)
{
// check sculpts or meshs
if (pbs.SculptEntry)
{
if (meshSculptedPrim)
return true;
if (pbs.SculptType == (byte)SculptType.Mesh) // always do meshs
return true;
return false;
}
if (forceSimplePrimMeshing)
return true;
// if it's a standard box or sphere with no cuts, hollows, twist or top shear, return false since ODE can use an internal representation for the prim
if ((pbs.ProfileShape == ProfileShape.Square && pbs.PathCurve == (byte)Extrusion.Straight)
|| (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1
&& pbs.Scale.X == pbs.Scale.Y && pbs.Scale.Y == pbs.Scale.Z))
{
if (pbs.ProfileBegin == 0 && pbs.ProfileEnd == 0
&& pbs.ProfileHollow == 0
&& pbs.PathTwist == 0 && pbs.PathTwistBegin == 0
&& pbs.PathBegin == 0 && pbs.PathEnd == 0
&& pbs.PathTaperX == 0 && pbs.PathTaperY == 0
&& pbs.PathScaleX == 100 && pbs.PathScaleY == 100
&& pbs.PathShearX == 0 && pbs.PathShearY == 0)
{
return false;
}
}
// following code doesn't give meshs to boxes and spheres ever
// and it's odd.. so for now just return true if asked to force meshs
// hopefully mesher will fail if doesn't suport so things still get basic boxes
int iPropertiesNotSupportedDefault = 0;
if (pbs.ProfileHollow != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathBegin != 0) || pbs.PathEnd != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathTwistBegin != 0) || (pbs.PathTwist != 0))
iPropertiesNotSupportedDefault++;
if ((pbs.ProfileBegin != 0) || pbs.ProfileEnd != 0)
iPropertiesNotSupportedDefault++;
if ((pbs.PathScaleX != 100) || (pbs.PathScaleY != 100))
iPropertiesNotSupportedDefault++;
if ((pbs.PathShearX != 0) || (pbs.PathShearY != 0))
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.Circle && pbs.PathCurve == (byte)Extrusion.Straight)
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1 && (pbs.Scale.X != pbs.Scale.Y || pbs.Scale.Y != pbs.Scale.Z || pbs.Scale.Z != pbs.Scale.X))
iPropertiesNotSupportedDefault++;
if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1)
iPropertiesNotSupportedDefault++;
// test for torus
if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.Square)
{
if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
{
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
iPropertiesNotSupportedDefault++;
}
// ProfileCurve seems to combine hole shape and profile curve so we need to only compare against the lower 3 bits
else if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
if (pbs.PathCurve == (byte)Extrusion.Curve1 || pbs.PathCurve == (byte)Extrusion.Curve2)
{
iPropertiesNotSupportedDefault++;
}
}
else if ((pbs.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
iPropertiesNotSupportedDefault++;
}
else if (pbs.PathCurve == (byte)Extrusion.Curve1)
{
iPropertiesNotSupportedDefault++;
}
}
if (iPropertiesNotSupportedDefault == 0)
{
return false;
}
return true;
}
// see if we need a mesh and if so if we have a cached one
// called with a new repData
public void CheckMesh(ODEPhysRepData repData)
{
PhysicsActor actor = repData.actor;
PrimitiveBaseShape pbs = repData.pbs;
if (!needsMeshing(pbs))
{
repData.meshState = MeshState.noNeed;
return;
}
IMesh mesh = null;
Vector3 size = repData.size;
byte shapetype = repData.shapetype;
bool convex;
int clod = (int)LevelOfDetail.High;
if (shapetype == 0)
convex = false;
else
{
convex = true;
if (pbs.SculptType != (byte)SculptType.Mesh)
clod = (int)LevelOfDetail.Low;
}
mesh = m_mesher.GetMesh(actor.Name, pbs, size, clod, true, convex);
if (mesh == null)
{
if (pbs.SculptEntry)
{
if (pbs.SculptTexture != null && pbs.SculptTexture != UUID.Zero)
{
repData.assetID = pbs.SculptTexture;
repData.meshState = MeshState.needAsset;
}
else
repData.meshState = MeshState.MeshFailed;
return;
}
else
{
repData.meshState = MeshState.needMesh;
mesh = m_mesher.CreateMesh(actor.Name, pbs, size, clod, true, convex, true);
if (mesh == null)
{
repData.meshState = MeshState.MeshFailed;
return;
}
}
}
repData.meshState = MeshState.AssetOK;
repData.mesh = mesh;
if (pbs.SculptEntry)
{
repData.assetID = pbs.SculptTexture;
}
pbs.SculptData = Utils.EmptyBytes;
return ;
}
public void GetMesh(ODEPhysRepData repData)
{
PhysicsActor actor = repData.actor;
PrimitiveBaseShape pbs = repData.pbs;
repData.mesh = null;
repData.hasOBB = false;
if (!needsMeshing(pbs))
{
repData.meshState = MeshState.noNeed;
return;
}
if (repData.meshState == MeshState.MeshFailed)
return;
if (pbs.SculptEntry)
{
if (repData.meshState == MeshState.AssetFailed)
{
if (pbs.SculptTexture == repData.assetID)
return;
}
}
repData.meshState = MeshState.noNeed;
IMesh mesh = null;
Vector3 size = repData.size;
byte shapetype = repData.shapetype;
bool convex;
int clod = (int)LevelOfDetail.High;
if (shapetype == 0)
convex = false;
else
{
convex = true;
if (pbs.SculptType != (byte)SculptType.Mesh)
clod = (int)LevelOfDetail.Low;
}
mesh = m_mesher.CreateMesh(actor.Name, pbs, size, clod, true, convex, true);
if (mesh == null)
{
if (pbs.SculptEntry)
{
if (pbs.SculptTexture == UUID.Zero)
return;
repData.assetID = pbs.SculptTexture;
if (pbs.SculptData == null || pbs.SculptData.Length == 0)
{
repData.meshState = MeshState.needAsset;
return;
}
}
}
repData.mesh = mesh;
repData.pbs.SculptData = Utils.EmptyBytes;
if (mesh == null)
{
if (pbs.SculptEntry)
repData.meshState = MeshState.AssetFailed;
else
repData.meshState = MeshState.MeshFailed;
return;
}
repData.meshState = MeshState.AssetOK;
return;
}
private void CalculateBasicPrimVolume(ODEPhysRepData repData)
{
PrimitiveBaseShape _pbs = repData.pbs;
Vector3 _size = repData.size;
float volume = _size.X * _size.Y * _size.Z; // default
float tmp;
float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f;
float hollowVolume = hollowAmount * hollowAmount;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// default box
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= (0.5f * .5f);
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
//a tube
volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - 2.0e-2f * (float)(200 - _pbs.PathScaleY);
volume -= volume * tmp * tmp;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= 0.5f * 0.5f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.78539816339f; // elipse base
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.5236f;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Circle:
case HollowShape.Triangle: // diference in sl is minor and odd
case HollowShape.Same:
break;
case HollowShape.Square:
hollowVolume *= 0.909f;
break;
// case HollowShape.Triangle:
// hollowVolume *= .827f;
// break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.EquilateralTriangle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.32475953f;
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.32475953f;
volume *= 0.01f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
default:
break;
}
float taperX1;
float taperY1;
float taperX;
float taperY;
float pathBegin;
float pathEnd;
float profileBegin;
float profileEnd;
if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible)
{
taperX1 = _pbs.PathScaleX * 0.01f;
if (taperX1 > 1.0f)
taperX1 = 2.0f - taperX1;
taperX = 1.0f - taperX1;
taperY1 = _pbs.PathScaleY * 0.01f;
if (taperY1 > 1.0f)
taperY1 = 2.0f - taperY1;
taperY = 1.0f - taperY1;
}
else
{
taperX = _pbs.PathTaperX * 0.01f;
if (taperX < 0.0f)
taperX = -taperX;
taperX1 = 1.0f - taperX;
taperY = _pbs.PathTaperY * 0.01f;
if (taperY < 0.0f)
taperY = -taperY;
taperY1 = 1.0f - taperY;
}
volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);
pathBegin = (float)_pbs.PathBegin * 2.0e-5f;
pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f;
volume *= (pathEnd - pathBegin);
// this is crude aproximation
profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f;
profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f;
volume *= (profileEnd - profileBegin);
repData.volume = volume;
}
private void CalcVolumeData(ODEPhysRepData repData)
{
if (repData.hasOBB)
{
Vector3 OBB = repData.OBB;
}
else
{
Vector3 OBB = repData.size;
OBB.X *= 0.5f;
OBB.Y *= 0.5f;
OBB.Z *= 0.5f;
repData.OBB = OBB;
repData.OBBOffset = Vector3.Zero;
}
CalculateBasicPrimVolume(repData);
}
}
public class ODEAssetRequest
{
ODEMeshWorker m_worker;
private ILog m_log;
ODEPhysRepData repData;
public ODEAssetRequest(ODEMeshWorker pWorker, RequestAssetDelegate provider,
ODEPhysRepData pRepData, ILog plog)
{
m_worker = pWorker;
m_log = plog;
repData = pRepData;
repData.meshState = MeshState.AssetFailed;
if (provider == null)
return;
if (repData.assetID == null)
return;
UUID assetID = (UUID) repData.assetID;
if (assetID == UUID.Zero)
return;
repData.meshState = MeshState.loadingAsset;
provider(assetID, ODEassetReceived);
}
void ODEassetReceived(AssetBase asset)
{
repData.meshState = MeshState.AssetFailed;
if (asset != null)
{
if (asset.Data != null && asset.Data.Length > 0)
{
repData.meshState = MeshState.noNeed;
if (!repData.pbs.SculptEntry)
return;
if (repData.pbs.SculptTexture != repData.assetID)
return;
// repData.pbs.SculptData = new byte[asset.Data.Length];
// asset.Data.CopyTo(repData.pbs.SculptData,0);
repData.pbs.SculptData = asset.Data;
repData.meshState = MeshState.AssetOK;
m_worker.AssetLoaded(repData);
}
else
m_log.WarnFormat("[PHYSICS]: asset provider returned invalid mesh data for prim {0} asset UUID {1}.",
repData.actor.Name, asset.ID.ToString());
}
else
m_log.WarnFormat("[PHYSICS]: asset provider returned null asset fo mesh of prim {0}.",
repData.actor.Name);
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,683 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using OpenSim.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;
using OdeAPI;
using log4net;
using OpenMetaverse;
namespace OpenSim.Region.PhysicsModules.OdePlugin
{
/// <summary>
/// Processes raycast requests as ODE is in a state to be able to do them.
/// This ensures that it's thread safe and there will be no conflicts.
/// Requests get returned by a different thread then they were requested by.
/// </summary>
public class ODERayCastRequestManager
{
/// <summary>
/// Pending ray requests
/// </summary>
protected OpenSim.Framework.LocklessQueue<ODERayRequest> m_PendingRequests = new OpenSim.Framework.LocklessQueue<ODERayRequest>();
/// <summary>
/// Scene that created this object.
/// </summary>
private OdeScene m_scene;
IntPtr ray; // the ray. we only need one for our lifetime
IntPtr Sphere;
IntPtr Box;
IntPtr Plane;
private int CollisionContactGeomsPerTest = 25;
private const int DefaultMaxCount = 25;
private const int MaxTimePerCallMS = 30;
/// <summary>
/// ODE near callback delegate
/// </summary>
private d.NearCallback nearCallback;
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private List<ContactResult> m_contactResults = new List<ContactResult>();
private RayFilterFlags CurrentRayFilter;
private int CurrentMaxCount;
public ODERayCastRequestManager(OdeScene pScene)
{
m_scene = pScene;
nearCallback = near;
ray = d.CreateRay(IntPtr.Zero, 1.0f);
d.GeomSetCategoryBits(ray, 0);
Box = d.CreateBox(IntPtr.Zero, 1.0f, 1.0f, 1.0f);
d.GeomSetCategoryBits(Box, 0);
Sphere = d.CreateSphere(IntPtr.Zero,1.0f);
d.GeomSetCategoryBits(Sphere, 0);
Plane = d.CreatePlane(IntPtr.Zero, 0f,0f,1f,1f);
d.GeomSetCategoryBits(Sphere, 0);
}
public void QueueRequest(ODERayRequest req)
{
if (req.Count == 0)
req.Count = DefaultMaxCount;
m_PendingRequests.Enqueue(req);
}
/// <summary>
/// Process all queued raycast requests
/// </summary>
/// <returns>Time in MS the raycasts took to process.</returns>
public int ProcessQueuedRequests()
{
if (m_PendingRequests.Count <= 0)
return 0;
if (m_scene.ContactgeomsArray == IntPtr.Zero || ray == IntPtr.Zero)
// oops something got wrong or scene isn't ready still
{
m_PendingRequests.Clear();
return 0;
}
int time = Util.EnvironmentTickCount();
ODERayRequest req;
int closestHit;
int backfacecull;
CollisionCategories catflags;
while (m_PendingRequests.Dequeue(out req))
{
if (req.callbackMethod != null)
{
IntPtr geom = IntPtr.Zero;
if (req.actor != null)
{
if (m_scene.haveActor(req.actor))
{
if (req.actor is OdePrim)
geom = ((OdePrim)req.actor).prim_geom;
else if (req.actor is OdeCharacter)
geom = ((OdePrim)req.actor).prim_geom;
}
if (geom == IntPtr.Zero)
{
NoContacts(req);
continue;
}
}
CurrentRayFilter = req.filter;
CurrentMaxCount = req.Count;
CollisionContactGeomsPerTest = req.Count & 0xffff;
closestHit = ((CurrentRayFilter & RayFilterFlags.ClosestHit) == 0 ? 0 : 1);
backfacecull = ((CurrentRayFilter & RayFilterFlags.BackFaceCull) == 0 ? 0 : 1);
if (req.callbackMethod is ProbeBoxCallback)
{
if (CollisionContactGeomsPerTest > 80)
CollisionContactGeomsPerTest = 80;
d.GeomBoxSetLengths(Box, req.Normal.X, req.Normal.Y, req.Normal.Z);
d.GeomSetPosition(Box, req.Origin.X, req.Origin.Y, req.Origin.Z);
d.Quaternion qtmp;
qtmp.X = req.orientation.X;
qtmp.Y = req.orientation.Y;
qtmp.Z = req.orientation.Z;
qtmp.W = req.orientation.W;
d.GeomSetQuaternion(Box, ref qtmp);
}
else if (req.callbackMethod is ProbeSphereCallback)
{
if (CollisionContactGeomsPerTest > 80)
CollisionContactGeomsPerTest = 80;
d.GeomSphereSetRadius(Sphere, req.length);
d.GeomSetPosition(Sphere, req.Origin.X, req.Origin.Y, req.Origin.Z);
}
else if (req.callbackMethod is ProbePlaneCallback)
{
if (CollisionContactGeomsPerTest > 80)
CollisionContactGeomsPerTest = 80;
d.GeomPlaneSetParams(Plane, req.Normal.X, req.Normal.Y, req.Normal.Z, req.length);
}
else
{
if (CollisionContactGeomsPerTest > 25)
CollisionContactGeomsPerTest = 25;
d.GeomRaySetLength(ray, req.length);
d.GeomRaySet(ray, req.Origin.X, req.Origin.Y, req.Origin.Z, req.Normal.X, req.Normal.Y, req.Normal.Z);
d.GeomRaySetParams(ray, 0, backfacecull);
d.GeomRaySetClosestHit(ray, closestHit);
if (req.callbackMethod is RaycastCallback)
{
// if we only want one get only one per Collision pair saving memory
CurrentRayFilter |= RayFilterFlags.ClosestHit;
d.GeomRaySetClosestHit(ray, 1);
}
else
d.GeomRaySetClosestHit(ray, closestHit);
}
if ((CurrentRayFilter & RayFilterFlags.ContactsUnImportant) != 0)
unchecked
{
CollisionContactGeomsPerTest |= (int)d.CONTACTS_UNIMPORTANT;
}
if (geom == IntPtr.Zero)
{
// translate ray filter to Collision flags
catflags = 0;
if ((CurrentRayFilter & RayFilterFlags.volumedtc) != 0)
catflags |= CollisionCategories.VolumeDtc;
if ((CurrentRayFilter & RayFilterFlags.phantom) != 0)
catflags |= CollisionCategories.Phantom;
if ((CurrentRayFilter & RayFilterFlags.agent) != 0)
catflags |= CollisionCategories.Character;
if ((CurrentRayFilter & RayFilterFlags.PrimsNonPhantom) != 0)
catflags |= CollisionCategories.Geom;
if ((CurrentRayFilter & RayFilterFlags.land) != 0)
catflags |= CollisionCategories.Land;
if ((CurrentRayFilter & RayFilterFlags.water) != 0)
catflags |= CollisionCategories.Water;
if (catflags != 0)
{
if (req.callbackMethod is ProbeBoxCallback)
{
catflags |= CollisionCategories.Space;
d.GeomSetCollideBits(Box, (uint)catflags);
d.GeomSetCategoryBits(Box, (uint)catflags);
doProbe(req, Box);
}
else if (req.callbackMethod is ProbeSphereCallback)
{
catflags |= CollisionCategories.Space;
d.GeomSetCollideBits(Sphere, (uint)catflags);
d.GeomSetCategoryBits(Sphere, (uint)catflags);
doProbe(req, Sphere);
}
else if (req.callbackMethod is ProbePlaneCallback)
{
catflags |= CollisionCategories.Space;
d.GeomSetCollideBits(Plane, (uint)catflags);
d.GeomSetCategoryBits(Plane, (uint)catflags);
doPlane(req,IntPtr.Zero);
}
else
{
d.GeomSetCollideBits(ray, (uint)catflags);
doSpaceRay(req);
}
}
}
else
{
// if we select a geom don't use filters
if (req.callbackMethod is ProbePlaneCallback)
{
d.GeomSetCollideBits(Plane, (uint)CollisionCategories.All);
doPlane(req,geom);
}
else
{
d.GeomSetCollideBits(ray, (uint)CollisionCategories.All);
doGeomRay(req,geom);
}
}
}
if (Util.EnvironmentTickCountSubtract(time) > MaxTimePerCallMS)
break;
}
lock (m_contactResults)
m_contactResults.Clear();
return Util.EnvironmentTickCountSubtract(time);
}
/// <summary>
/// Method that actually initiates the raycast with spaces
/// </summary>
/// <param name="req"></param>
///
private void NoContacts(ODERayRequest req)
{
if (req.callbackMethod is RaycastCallback)
{
((RaycastCallback)req.callbackMethod)(false, Vector3.Zero, 0, 0, Vector3.Zero);
return;
}
List<ContactResult> cresult = new List<ContactResult>();
if (req.callbackMethod is RayCallback)
((RayCallback)req.callbackMethod)(cresult);
else if (req.callbackMethod is ProbeBoxCallback)
((ProbeBoxCallback)req.callbackMethod)(cresult);
else if (req.callbackMethod is ProbeSphereCallback)
((ProbeSphereCallback)req.callbackMethod)(cresult);
}
private const RayFilterFlags FilterActiveSpace = RayFilterFlags.agent | RayFilterFlags.physical | RayFilterFlags.LSLPhantom;
// private const RayFilterFlags FilterStaticSpace = RayFilterFlags.water | RayFilterFlags.land | RayFilterFlags.nonphysical | RayFilterFlags.LSLPhanton;
private const RayFilterFlags FilterStaticSpace = RayFilterFlags.water | RayFilterFlags.nonphysical | RayFilterFlags.LSLPhantom;
private void doSpaceRay(ODERayRequest req)
{
// Collide tests
if ((CurrentRayFilter & FilterActiveSpace) != 0)
{
d.SpaceCollide2(ray, m_scene.ActiveSpace, IntPtr.Zero, nearCallback);
d.SpaceCollide2(ray, m_scene.CharsSpace, IntPtr.Zero, nearCallback);
}
if ((CurrentRayFilter & FilterStaticSpace) != 0 && (m_contactResults.Count < CurrentMaxCount))
d.SpaceCollide2(ray, m_scene.StaticSpace, IntPtr.Zero, nearCallback);
if ((CurrentRayFilter & RayFilterFlags.land) != 0 && (m_contactResults.Count < CurrentMaxCount))
{
// current ode land to ray collisions is very bad
// so for now limit its range badly
if (req.length > 30.0f)
d.GeomRaySetLength(ray, 30.0f);
d.SpaceCollide2(ray, m_scene.GroundSpace, IntPtr.Zero, nearCallback);
}
if (req.callbackMethod is RaycastCallback)
{
// Define default results
bool hitYN = false;
uint hitConsumerID = 0;
float distance = float.MaxValue;
Vector3 closestcontact = Vector3.Zero;
Vector3 snormal = Vector3.Zero;
// Find closest contact and object.
lock (m_contactResults)
{
foreach (ContactResult cResult in m_contactResults)
{
if(cResult.Depth < distance)
{
closestcontact = cResult.Pos;
hitConsumerID = cResult.ConsumerID;
distance = cResult.Depth;
snormal = cResult.Normal;
}
}
m_contactResults.Clear();
}
if (distance > 0 && distance < float.MaxValue)
hitYN = true;
((RaycastCallback)req.callbackMethod)(hitYN, closestcontact, hitConsumerID, distance, snormal);
}
else
{
List<ContactResult> cresult = new List<ContactResult>(m_contactResults.Count);
lock (m_PendingRequests)
{
cresult.AddRange(m_contactResults);
m_contactResults.Clear();
}
((RayCallback)req.callbackMethod)(cresult);
}
}
private void doProbe(ODERayRequest req, IntPtr probe)
{
// Collide tests
if ((CurrentRayFilter & FilterActiveSpace) != 0)
{
d.SpaceCollide2(probe, m_scene.ActiveSpace, IntPtr.Zero, nearCallback);
d.SpaceCollide2(probe, m_scene.CharsSpace, IntPtr.Zero, nearCallback);
}
if ((CurrentRayFilter & FilterStaticSpace) != 0 && (m_contactResults.Count < CurrentMaxCount))
d.SpaceCollide2(probe, m_scene.StaticSpace, IntPtr.Zero, nearCallback);
if ((CurrentRayFilter & RayFilterFlags.land) != 0 && (m_contactResults.Count < CurrentMaxCount))
d.SpaceCollide2(probe, m_scene.GroundSpace, IntPtr.Zero, nearCallback);
List<ContactResult> cresult = new List<ContactResult>(m_contactResults.Count);
lock (m_PendingRequests)
{
cresult.AddRange(m_contactResults);
m_contactResults.Clear();
}
if (req.callbackMethod is ProbeBoxCallback)
((ProbeBoxCallback)req.callbackMethod)(cresult);
else if (req.callbackMethod is ProbeSphereCallback)
((ProbeSphereCallback)req.callbackMethod)(cresult);
}
private void doPlane(ODERayRequest req,IntPtr geom)
{
// Collide tests
if (geom == IntPtr.Zero)
{
if ((CurrentRayFilter & FilterActiveSpace) != 0)
{
d.SpaceCollide2(Plane, m_scene.ActiveSpace, IntPtr.Zero, nearCallback);
d.SpaceCollide2(Plane, m_scene.CharsSpace, IntPtr.Zero, nearCallback);
}
if ((CurrentRayFilter & FilterStaticSpace) != 0 && (m_contactResults.Count < CurrentMaxCount))
d.SpaceCollide2(Plane, m_scene.StaticSpace, IntPtr.Zero, nearCallback);
if ((CurrentRayFilter & RayFilterFlags.land) != 0 && (m_contactResults.Count < CurrentMaxCount))
d.SpaceCollide2(Plane, m_scene.GroundSpace, IntPtr.Zero, nearCallback);
}
else
{
d.SpaceCollide2(Plane, geom, IntPtr.Zero, nearCallback);
}
List<ContactResult> cresult = new List<ContactResult>(m_contactResults.Count);
lock (m_PendingRequests)
{
cresult.AddRange(m_contactResults);
m_contactResults.Clear();
}
((ProbePlaneCallback)req.callbackMethod)(cresult);
}
/// <summary>
/// Method that actually initiates the raycast with a geom
/// </summary>
/// <param name="req"></param>
private void doGeomRay(ODERayRequest req, IntPtr geom)
{
// Collide test
d.SpaceCollide2(ray, geom, IntPtr.Zero, nearCallback); // still do this to have full AABB pre test
if (req.callbackMethod is RaycastCallback)
{
// Define default results
bool hitYN = false;
uint hitConsumerID = 0;
float distance = float.MaxValue;
Vector3 closestcontact = Vector3.Zero;
Vector3 snormal = Vector3.Zero;
// Find closest contact and object.
lock (m_contactResults)
{
foreach (ContactResult cResult in m_contactResults)
{
if(cResult.Depth < distance )
{
closestcontact = cResult.Pos;
hitConsumerID = cResult.ConsumerID;
distance = cResult.Depth;
snormal = cResult.Normal;
}
}
m_contactResults.Clear();
}
if (distance > 0 && distance < float.MaxValue)
hitYN = true;
((RaycastCallback)req.callbackMethod)(hitYN, closestcontact, hitConsumerID, distance, snormal);
}
else
{
List<ContactResult> cresult = new List<ContactResult>(m_contactResults.Count);
lock (m_PendingRequests)
{
cresult.AddRange(m_contactResults);
m_contactResults.Clear();
}
((RayCallback)req.callbackMethod)(cresult);
}
}
private bool GetCurContactGeom(int index, ref d.ContactGeom newcontactgeom)
{
IntPtr ContactgeomsArray = m_scene.ContactgeomsArray;
if (ContactgeomsArray == IntPtr.Zero || index >= CollisionContactGeomsPerTest)
return false;
IntPtr contactptr = new IntPtr(ContactgeomsArray.ToInt64() + (Int64)(index * d.ContactGeom.unmanagedSizeOf));
newcontactgeom = (d.ContactGeom)Marshal.PtrToStructure(contactptr, typeof(d.ContactGeom));
return true;
}
// This is the standard Near. g1 is the ray
private void near(IntPtr space, IntPtr g1, IntPtr g2)
{
if (g2 == IntPtr.Zero || g1 == g2)
return;
if (m_contactResults.Count >= CurrentMaxCount)
return;
if (d.GeomIsSpace(g2))
{
try
{
d.SpaceCollide2(g1, g2, IntPtr.Zero, nearCallback);
}
catch (Exception e)
{
m_log.WarnFormat("[PHYSICS Ray]: Unable to Space collide test an object: {0}", e.Message);
}
return;
}
int count = 0;
try
{
count = d.CollidePtr(g1, g2, CollisionContactGeomsPerTest, m_scene.ContactgeomsArray, d.ContactGeom.unmanagedSizeOf);
}
catch (Exception e)
{
m_log.WarnFormat("[PHYSICS Ray]: Unable to collide test an object: {0}", e.Message);
return;
}
if (count == 0)
return;
/*
uint cat1 = d.GeomGetCategoryBits(g1);
uint cat2 = d.GeomGetCategoryBits(g2);
uint col1 = d.GeomGetCollideBits(g1);
uint col2 = d.GeomGetCollideBits(g2);
*/
uint ID = 0;
PhysicsActor p2 = null;
m_scene.actor_name_map.TryGetValue(g2, out p2);
if (p2 == null)
return;
switch (p2.PhysicsActorType)
{
case (int)ActorTypes.Prim:
RayFilterFlags thisFlags;
if (p2.IsPhysical)
thisFlags = RayFilterFlags.physical;
else
thisFlags = RayFilterFlags.nonphysical;
if (p2.Phantom)
thisFlags |= RayFilterFlags.phantom;
if (p2.IsVolumeDtc)
thisFlags |= RayFilterFlags.volumedtc;
if ((thisFlags & CurrentRayFilter) == 0)
return;
ID = ((OdePrim)p2).LocalID;
break;
case (int)ActorTypes.Agent:
if ((CurrentRayFilter & RayFilterFlags.agent) == 0)
return;
else
ID = ((OdeCharacter)p2).LocalID;
break;
case (int)ActorTypes.Ground:
if ((CurrentRayFilter & RayFilterFlags.land) == 0)
return;
break;
case (int)ActorTypes.Water:
if ((CurrentRayFilter & RayFilterFlags.water) == 0)
return;
break;
default:
break;
}
d.ContactGeom curcontact = new d.ContactGeom();
// closestHit for now only works for meshs, so must do it for others
if ((CurrentRayFilter & RayFilterFlags.ClosestHit) == 0)
{
// Loop all contacts, build results.
for (int i = 0; i < count; i++)
{
if (!GetCurContactGeom(i, ref curcontact))
break;
ContactResult collisionresult = new ContactResult();
collisionresult.ConsumerID = ID;
collisionresult.Pos.X = curcontact.pos.X;
collisionresult.Pos.Y = curcontact.pos.Y;
collisionresult.Pos.Z = curcontact.pos.Z;
collisionresult.Depth = curcontact.depth;
collisionresult.Normal.X = curcontact.normal.X;
collisionresult.Normal.Y = curcontact.normal.Y;
collisionresult.Normal.Z = curcontact.normal.Z;
lock (m_contactResults)
{
m_contactResults.Add(collisionresult);
if (m_contactResults.Count >= CurrentMaxCount)
return;
}
}
}
else
{
// keep only closest contact
ContactResult collisionresult = new ContactResult();
collisionresult.ConsumerID = ID;
collisionresult.Depth = float.MaxValue;
for (int i = 0; i < count; i++)
{
if (!GetCurContactGeom(i, ref curcontact))
break;
if (curcontact.depth < collisionresult.Depth)
{
collisionresult.Pos.X = curcontact.pos.X;
collisionresult.Pos.Y = curcontact.pos.Y;
collisionresult.Pos.Z = curcontact.pos.Z;
collisionresult.Depth = curcontact.depth;
collisionresult.Normal.X = curcontact.normal.X;
collisionresult.Normal.Y = curcontact.normal.Y;
collisionresult.Normal.Z = curcontact.normal.Z;
}
}
if (collisionresult.Depth != float.MaxValue)
{
lock (m_contactResults)
m_contactResults.Add(collisionresult);
}
}
}
/// <summary>
/// Dereference the creator scene so that it can be garbage collected if needed.
/// </summary>
internal void Dispose()
{
m_scene = null;
if (ray != IntPtr.Zero)
{
d.GeomDestroy(ray);
ray = IntPtr.Zero;
}
if (Box != IntPtr.Zero)
{
d.GeomDestroy(Box);
Box = IntPtr.Zero;
}
if (Sphere != IntPtr.Zero)
{
d.GeomDestroy(Sphere);
Sphere = IntPtr.Zero;
}
if (Plane != IntPtr.Zero)
{
d.GeomDestroy(Plane);
Plane = IntPtr.Zero;
}
}
}
public struct ODERayRequest
{
public PhysicsActor actor;
public Vector3 Origin;
public Vector3 Normal;
public int Count;
public float length;
public object callbackMethod;
public RayFilterFlags filter;
public Quaternion orientation;
}
}

View File

@ -1,356 +0,0 @@
/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Ubit 2012
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using OpenSim.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;
using OdeAPI;
using log4net;
using OpenMetaverse;
namespace OpenSim.Region.PhysicsModules.OdePlugin
{
/// <summary>
/// </summary>
public class ODESitAvatar
{
private OdeScene m_scene;
private ODERayCastRequestManager m_raymanager;
public ODESitAvatar(OdeScene pScene, ODERayCastRequestManager raymanager)
{
m_scene = pScene;
m_raymanager = raymanager;
}
private static Vector3 SitAjust = new Vector3(0, 0, 0.4f);
private const RayFilterFlags RaySitFlags = RayFilterFlags.AllPrims | RayFilterFlags.ClosestHit;
private void RotAroundZ(float x, float y, ref Quaternion ori)
{
double ang = Math.Atan2(y, x);
ang *= 0.5d;
float s = (float)Math.Sin(ang);
float c = (float)Math.Cos(ang);
ori.X = 0;
ori.Y = 0;
ori.Z = s;
ori.W = c;
}
public void Sit(PhysicsActor actor, Vector3 avPos, Vector3 avCameraPosition, Vector3 offset, Vector3 avOffset, SitAvatarCallback PhysicsSitResponse)
{
if (!m_scene.haveActor(actor) || !(actor is OdePrim) || ((OdePrim)actor).prim_geom == IntPtr.Zero)
{
PhysicsSitResponse(-1, actor.LocalID, offset, Quaternion.Identity);
return;
}
IntPtr geom = ((OdePrim)actor).prim_geom;
Vector3 geopos = d.GeomGetPositionOMV(geom);
Quaternion geomOri = d.GeomGetQuaternionOMV(geom);
// Vector3 geopos = actor.Position;
// Quaternion geomOri = actor.Orientation;
Quaternion geomInvOri = Quaternion.Conjugate(geomOri);
Quaternion ori = Quaternion.Identity;
Vector3 rayDir = geopos + offset - avCameraPosition;
float raylen = rayDir.Length();
if (raylen < 0.001f)
{
PhysicsSitResponse(-1, actor.LocalID, offset, Quaternion.Identity);
return;
}
float t = 1 / raylen;
rayDir.X *= t;
rayDir.Y *= t;
rayDir.Z *= t;
raylen += 30f; // focal point may be far
List<ContactResult> rayResults;
rayResults = m_scene.RaycastActor(actor, avCameraPosition, rayDir, raylen, 1, RaySitFlags);
if (rayResults.Count == 0)
{
/* if this fundamental ray failed, then just fail so user can try another spot and not be sitted far on a big prim
d.AABB aabb;
d.GeomGetAABB(geom, out aabb);
offset = new Vector3(avOffset.X, 0, aabb.MaxZ + avOffset.Z - geopos.Z);
ori = geomInvOri;
offset *= geomInvOri;
PhysicsSitResponse(1, actor.LocalID, offset, ori);
*/
PhysicsSitResponse(0, actor.LocalID, offset, ori);
return;
}
int status = 1;
offset = rayResults[0].Pos - geopos;
d.GeomClassID geoclass = d.GeomGetClass(geom);
if (geoclass == d.GeomClassID.SphereClass)
{
float r = d.GeomSphereGetRadius(geom);
offset.Normalize();
offset *= r;
RotAroundZ(offset.X, offset.Y, ref ori);
if (r < 0.4f)
{
offset = new Vector3(0, 0, r);
}
else
{
if (offset.Z < 0.4f)
{
t = offset.Z;
float rsq = r * r;
t = 1.0f / (rsq - t * t);
offset.X *= t;
offset.Y *= t;
offset.Z = 0.4f;
t = rsq - 0.16f;
offset.X *= t;
offset.Y *= t;
}
else if (r > 0.8f && offset.Z > 0.8f * r)
{
status = 3;
avOffset.X = -avOffset.X;
avOffset.Z *= 1.6f;
}
}
offset += avOffset * ori;
ori = geomInvOri * ori;
offset *= geomInvOri;
PhysicsSitResponse(status, actor.LocalID, offset, ori);
return;
}
Vector3 norm = rayResults[0].Normal;
if (norm.Z < -0.4f)
{
PhysicsSitResponse(0, actor.LocalID, offset, Quaternion.Identity);
return;
}
float SitNormX = -rayDir.X;
float SitNormY = -rayDir.Y;
Vector3 pivot = geopos + offset;
float edgeNormalX = norm.X;
float edgeNormalY = norm.Y;
float edgeDirX = -rayDir.X;
float edgeDirY = -rayDir.Y;
Vector3 edgePos = rayResults[0].Pos;
float edgeDist = float.MaxValue;
bool foundEdge = false;
if (norm.Z < 0.5f)
{
float rayDist = 4.0f;
for (int i = 0; i < 6; i++)
{
pivot.X -= 0.01f * norm.X;
pivot.Y -= 0.01f * norm.Y;
pivot.Z -= 0.01f * norm.Z;
rayDir.X = -norm.X * norm.Z;
rayDir.Y = -norm.Y * norm.Z;
rayDir.Z = 1.0f - norm.Z * norm.Z;
rayDir.Normalize();
rayResults = m_scene.RaycastActor(actor, pivot, rayDir, rayDist, 1, RayFilterFlags.AllPrims);
if (rayResults.Count == 0)
break;
if (Math.Abs(rayResults[0].Normal.Z) < 0.7f)
{
rayDist -= rayResults[0].Depth;
if (rayDist < 0f)
break;
pivot = rayResults[0].Pos;
norm = rayResults[0].Normal;
edgeNormalX = norm.X;
edgeNormalY = norm.Y;
edgeDirX = -rayDir.X;
edgeDirY = -rayDir.Y;
}
else
{
foundEdge = true;
edgePos = rayResults[0].Pos;
break;
}
}
if (!foundEdge)
{
PhysicsSitResponse(0, actor.LocalID, offset, ori);
return;
}
avOffset.X *= 0.5f;
}
else if (norm.Z > 0.866f)
{
float toCamBaseX = avCameraPosition.X - pivot.X;
float toCamBaseY = avCameraPosition.Y - pivot.Y;
float toCamX = toCamBaseX;
float toCamY = toCamBaseY;
for (int j = 0; j < 4; j++)
{
float rayDist = 1.0f;
float curEdgeDist = 0.0f;
for (int i = 0; i < 3; i++)
{
pivot.Z -= 0.01f;
rayDir.X = toCamX;
rayDir.Y = toCamY;
rayDir.Z = (-toCamX * norm.X - toCamY * norm.Y) / norm.Z;
rayDir.Normalize();
rayResults = m_scene.RaycastActor(actor, pivot, rayDir, rayDist, 1, RayFilterFlags.AllPrims);
if (rayResults.Count == 0)
break;
curEdgeDist += rayResults[0].Depth;
if (rayResults[0].Normal.Z > 0.5f)
{
rayDist -= rayResults[0].Depth;
if (rayDist < 0f)
break;
pivot = rayResults[0].Pos;
norm = rayResults[0].Normal;
}
else
{
foundEdge = true;
if (curEdgeDist < edgeDist)
{
edgeDist = curEdgeDist;
edgeNormalX = rayResults[0].Normal.X;
edgeNormalY = rayResults[0].Normal.Y;
edgeDirX = rayDir.X;
edgeDirY = rayDir.Y;
edgePos = rayResults[0].Pos;
}
break;
}
}
if (foundEdge && edgeDist < 0.2f)
break;
pivot = geopos + offset;
switch (j)
{
case 0:
toCamX = -toCamBaseY;
toCamY = toCamBaseX;
break;
case 1:
toCamX = toCamBaseY;
toCamY = -toCamBaseX;
break;
case 2:
toCamX = -toCamBaseX;
toCamY = -toCamBaseY;
break;
default:
break;
}
}
if (!foundEdge)
{
avOffset.X = -avOffset.X;
avOffset.Z *= 1.6f;
RotAroundZ(SitNormX, SitNormY, ref ori);
offset += avOffset * ori;
ori = geomInvOri * ori;
offset *= geomInvOri;
PhysicsSitResponse(3, actor.LocalID, offset, ori);
return;
}
avOffset.X *= 0.5f;
}
SitNormX = edgeNormalX;
SitNormY = edgeNormalY;
if (edgeDirX * SitNormX + edgeDirY * SitNormY < 0)
{
SitNormX = -SitNormX;
SitNormY = -SitNormY;
}
RotAroundZ(SitNormX, SitNormY, ref ori);
offset = edgePos + avOffset * ori;
offset -= geopos;
ori = geomInvOri * ori;
offset *= geomInvOri;
PhysicsSitResponse(1, actor.LocalID, offset, ori);
return;
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -359,7 +359,7 @@
</Files>
</Project>
<Project frameworkVersion="v4_0" name="OpenSim.Region.PhysicsModules.UbitOdePlugin" path="OpenSim/Region/PhysicsModules/UbitOdePlugin" type="Library">
<Project frameworkVersion="v4_0" name="OpenSim.Region.PhysicsModules.UbitOde" path="OpenSim/Region/PhysicsModules/UbitOde" type="Library">
<Configuration name="Debug">
<Options>
<OutputPath>../../../../bin/Physics/</OutputPath>