removed outdated coments.
parent
bcf59a574f
commit
f168fefb79
|
@ -1,630 +0,0 @@
|
||||||
/*
|
|
||||||
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
|
|
||||||
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
|
|
||||||
* ODEPrim.cs contains methods dealing with Prim editing, Prim
|
|
||||||
* characteristics and Kinetic motion.
|
|
||||||
* ODEDynamics.cs contains methods dealing with Prim Physical motion
|
|
||||||
* (dynamics) and the associated settings. Old Linear and angular
|
|
||||||
* motors for dynamic motion have been replace with MoveLinear()
|
|
||||||
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
|
|
||||||
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
|
|
||||||
* switch between 'VEHICLE' parameter use and general dynamics
|
|
||||||
* settings use.
|
|
||||||
*
|
|
||||||
* Copyright (c) Contributors, http://opensimulator.org/
|
|
||||||
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
|
||||||
*
|
|
||||||
* Redistribution and use in source and binary forms, with or without
|
|
||||||
* modification, are permitted provided that the following conditions are met:
|
|
||||||
* * Redistributions of source code must retain the above copyright
|
|
||||||
* notice, this list of conditions and the following disclaimer.
|
|
||||||
* * Redistributions in binary form must reproduce the above copyright
|
|
||||||
* notice, this list of conditions and the following disclaimer in the
|
|
||||||
* documentation and/or other materials provided with the distribution.
|
|
||||||
* * Neither the name of the OpenSimulator Project nor the
|
|
||||||
* names of its contributors may be used to endorse or promote products
|
|
||||||
* derived from this software without specific prior written permission.
|
|
||||||
*
|
|
||||||
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
|
|
||||||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
||||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
||||||
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
|
||||||
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
||||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
||||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
||||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
||||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
||||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
*/
|
|
||||||
|
|
||||||
using System;
|
|
||||||
using System.Collections.Generic;
|
|
||||||
using System.Reflection;
|
|
||||||
using System.Runtime.InteropServices;
|
|
||||||
using log4net;
|
|
||||||
using OpenMetaverse;
|
|
||||||
using Ode.NET;
|
|
||||||
using OpenSim.Framework;
|
|
||||||
using OpenSim.Region.Physics.Manager;
|
|
||||||
|
|
||||||
namespace OpenSim.Region.Physics.OdePlugin
|
|
||||||
{
|
|
||||||
public class ODEDynamics
|
|
||||||
{
|
|
||||||
public Vehicle Type
|
|
||||||
{
|
|
||||||
get { return m_type; }
|
|
||||||
}
|
|
||||||
|
|
||||||
public IntPtr Body
|
|
||||||
{
|
|
||||||
get { return m_body; }
|
|
||||||
}
|
|
||||||
|
|
||||||
private int frcount = 0; // Used to limit dynamics debug output to
|
|
||||||
// every 100th frame
|
|
||||||
|
|
||||||
// private OdeScene m_parentScene = null;
|
|
||||||
private IntPtr m_body = IntPtr.Zero;
|
|
||||||
private IntPtr m_jointGroup = IntPtr.Zero;
|
|
||||||
private IntPtr m_aMotor = IntPtr.Zero;
|
|
||||||
|
|
||||||
|
|
||||||
// Vehicle properties
|
|
||||||
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
|
|
||||||
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
|
|
||||||
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
|
|
||||||
// HOVER_TERRAIN_ONLY
|
|
||||||
// HOVER_GLOBAL_HEIGHT
|
|
||||||
// NO_DEFLECTION_UP
|
|
||||||
// HOVER_WATER_ONLY
|
|
||||||
// HOVER_UP_ONLY
|
|
||||||
// LIMIT_MOTOR_UP
|
|
||||||
// LIMIT_ROLL_ONLY
|
|
||||||
|
|
||||||
// Linear properties
|
|
||||||
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
|
|
||||||
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
|
|
||||||
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
|
|
||||||
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
|
|
||||||
private float m_linearMotorDecayTimescale = 0;
|
|
||||||
private float m_linearMotorTimescale = 0;
|
|
||||||
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
|
|
||||||
// private bool m_LinearMotorSetLastFrame = false;
|
|
||||||
// private Vector3 m_linearMotorOffset = Vector3.Zero;
|
|
||||||
|
|
||||||
//Angular properties
|
|
||||||
private Vector3 m_angularMotorDirection = Vector3.Zero;
|
|
||||||
private Vector3 m_angularMotorDirectionLASTSET = Vector3.Zero;
|
|
||||||
private Vector3 m_angularFrictionTimescale = Vector3.Zero;
|
|
||||||
private float m_angularMotorDecayTimescale = 0;
|
|
||||||
private float m_angularMotorTimescale = 0;
|
|
||||||
private Vector3 m_lastAngularVelocityVector = Vector3.Zero;
|
|
||||||
|
|
||||||
//Deflection properties
|
|
||||||
// private float m_angularDeflectionEfficiency = 0;
|
|
||||||
// private float m_angularDeflectionTimescale = 0;
|
|
||||||
// private float m_linearDeflectionEfficiency = 0;
|
|
||||||
// private float m_linearDeflectionTimescale = 0;
|
|
||||||
|
|
||||||
//Banking properties
|
|
||||||
// private float m_bankingEfficiency = 0;
|
|
||||||
// private float m_bankingMix = 0;
|
|
||||||
// private float m_bankingTimescale = 0;
|
|
||||||
|
|
||||||
//Hover and Buoyancy properties
|
|
||||||
private float m_VhoverHeight = 0f;
|
|
||||||
private float m_VhoverEfficiency = 0f;
|
|
||||||
private float m_VhoverTimescale = 0f;
|
|
||||||
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
|
|
||||||
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
|
|
||||||
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
|
|
||||||
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
|
|
||||||
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
|
|
||||||
|
|
||||||
//Attractor properties
|
|
||||||
private float m_verticalAttractionEfficiency = 0;
|
|
||||||
private float m_verticalAttractionTimescale = 0;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
|
|
||||||
{
|
|
||||||
switch (pParam)
|
|
||||||
{
|
|
||||||
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_angularDeflectionEfficiency = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_angularDeflectionTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
m_angularMotorDecayTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
m_angularMotorTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.BANKING_EFFICIENCY:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_bankingEfficiency = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.BANKING_MIX:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_bankingMix = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.BANKING_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_bankingTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.BUOYANCY:
|
|
||||||
if (pValue < -1f) pValue = -1f;
|
|
||||||
if (pValue > 1f) pValue = 1f;
|
|
||||||
m_VehicleBuoyancy = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.HOVER_EFFICIENCY:
|
|
||||||
if (pValue < 0f) pValue = 0f;
|
|
||||||
if (pValue > 1f) pValue = 1f;
|
|
||||||
m_VhoverEfficiency = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.HOVER_HEIGHT:
|
|
||||||
m_VhoverHeight = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.HOVER_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
m_VhoverTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_linearDeflectionEfficiency = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
// m_linearDeflectionTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
m_linearMotorDecayTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_MOTOR_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
m_linearMotorTimescale = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
|
|
||||||
if (pValue < 0.0f) pValue = 0.0f;
|
|
||||||
if (pValue > 1.0f) pValue = 1.0f;
|
|
||||||
m_verticalAttractionEfficiency = pValue;
|
|
||||||
break;
|
|
||||||
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
|
|
||||||
if (pValue < 0.01f) pValue = 0.01f;
|
|
||||||
m_verticalAttractionTimescale = pValue;
|
|
||||||
break;
|
|
||||||
|
|
||||||
// These are vector properties but the engine lets you use a single float value to
|
|
||||||
// set all of the components to the same value
|
|
||||||
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
|
||||||
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
|
||||||
break;
|
|
||||||
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
|
||||||
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
|
|
||||||
m_angularMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
|
||||||
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
|
||||||
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
|
|
||||||
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_MOTOR_OFFSET:
|
|
||||||
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
|
|
||||||
break;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
}//end ProcessFloatVehicleParam
|
|
||||||
|
|
||||||
internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
|
|
||||||
{
|
|
||||||
switch (pParam)
|
|
||||||
{
|
|
||||||
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
|
||||||
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
break;
|
|
||||||
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
|
||||||
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
m_angularMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
|
||||||
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
|
||||||
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
break;
|
|
||||||
case Vehicle.LINEAR_MOTOR_OFFSET:
|
|
||||||
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
}//end ProcessVectorVehicleParam
|
|
||||||
|
|
||||||
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
|
|
||||||
{
|
|
||||||
switch (pParam)
|
|
||||||
{
|
|
||||||
case Vehicle.REFERENCE_FRAME:
|
|
||||||
// m_referenceFrame = pValue;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
}//end ProcessRotationVehicleParam
|
|
||||||
|
|
||||||
internal void ProcessTypeChange(Vehicle pType)
|
|
||||||
{
|
|
||||||
Console.WriteLine("ProcessTypeChange to " + pType);
|
|
||||||
|
|
||||||
// Set Defaults For Type
|
|
||||||
m_type = pType;
|
|
||||||
switch (pType)
|
|
||||||
{
|
|
||||||
case Vehicle.TYPE_SLED:
|
|
||||||
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
|
|
||||||
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
|
|
||||||
m_linearMotorDirection = Vector3.Zero;
|
|
||||||
m_linearMotorTimescale = 1000;
|
|
||||||
m_linearMotorDecayTimescale = 120;
|
|
||||||
m_angularMotorDirection = Vector3.Zero;
|
|
||||||
m_angularMotorTimescale = 1000;
|
|
||||||
m_angularMotorDecayTimescale = 120;
|
|
||||||
m_VhoverHeight = 0;
|
|
||||||
m_VhoverEfficiency = 1;
|
|
||||||
m_VhoverTimescale = 10;
|
|
||||||
m_VehicleBuoyancy = 0;
|
|
||||||
// m_linearDeflectionEfficiency = 1;
|
|
||||||
// m_linearDeflectionTimescale = 1;
|
|
||||||
// m_angularDeflectionEfficiency = 1;
|
|
||||||
// m_angularDeflectionTimescale = 1000;
|
|
||||||
// m_bankingEfficiency = 0;
|
|
||||||
// m_bankingMix = 1;
|
|
||||||
// m_bankingTimescale = 10;
|
|
||||||
// m_referenceFrame = Quaternion.Identity;
|
|
||||||
m_flags &=
|
|
||||||
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
||||||
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
|
||||||
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
|
||||||
break;
|
|
||||||
case Vehicle.TYPE_CAR:
|
|
||||||
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
|
|
||||||
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
|
|
||||||
m_linearMotorDirection = Vector3.Zero;
|
|
||||||
m_linearMotorTimescale = 1;
|
|
||||||
m_linearMotorDecayTimescale = 60;
|
|
||||||
m_angularMotorDirection = Vector3.Zero;
|
|
||||||
m_angularMotorTimescale = 1;
|
|
||||||
m_angularMotorDecayTimescale = 0.8f;
|
|
||||||
m_VhoverHeight = 0;
|
|
||||||
m_VhoverEfficiency = 0;
|
|
||||||
m_VhoverTimescale = 1000;
|
|
||||||
m_VehicleBuoyancy = 0;
|
|
||||||
// // m_linearDeflectionEfficiency = 1;
|
|
||||||
// // m_linearDeflectionTimescale = 2;
|
|
||||||
// // m_angularDeflectionEfficiency = 0;
|
|
||||||
// m_angularDeflectionTimescale = 10;
|
|
||||||
m_verticalAttractionEfficiency = 1;
|
|
||||||
m_verticalAttractionTimescale = 10;
|
|
||||||
// m_bankingEfficiency = -0.2f;
|
|
||||||
// m_bankingMix = 1;
|
|
||||||
// m_bankingTimescale = 1;
|
|
||||||
// m_referenceFrame = Quaternion.Identity;
|
|
||||||
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
||||||
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
|
|
||||||
VehicleFlag.LIMIT_MOTOR_UP);
|
|
||||||
break;
|
|
||||||
case Vehicle.TYPE_BOAT:
|
|
||||||
m_linearFrictionTimescale = new Vector3(10, 3, 2);
|
|
||||||
m_angularFrictionTimescale = new Vector3(10,10,10);
|
|
||||||
m_linearMotorDirection = Vector3.Zero;
|
|
||||||
m_linearMotorTimescale = 5;
|
|
||||||
m_linearMotorDecayTimescale = 60;
|
|
||||||
m_angularMotorDirection = Vector3.Zero;
|
|
||||||
m_angularMotorTimescale = 4;
|
|
||||||
m_angularMotorDecayTimescale = 4;
|
|
||||||
m_VhoverHeight = 0;
|
|
||||||
m_VhoverEfficiency = 0.5f;
|
|
||||||
m_VhoverTimescale = 2;
|
|
||||||
m_VehicleBuoyancy = 1;
|
|
||||||
// m_linearDeflectionEfficiency = 0.5f;
|
|
||||||
// m_linearDeflectionTimescale = 3;
|
|
||||||
// m_angularDeflectionEfficiency = 0.5f;
|
|
||||||
// m_angularDeflectionTimescale = 5;
|
|
||||||
m_verticalAttractionEfficiency = 0.5f;
|
|
||||||
m_verticalAttractionTimescale = 5;
|
|
||||||
// m_bankingEfficiency = -0.3f;
|
|
||||||
// m_bankingMix = 0.8f;
|
|
||||||
// m_bankingTimescale = 1;
|
|
||||||
// m_referenceFrame = Quaternion.Identity;
|
|
||||||
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
|
|
||||||
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
|
||||||
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
|
|
||||||
VehicleFlag.LIMIT_MOTOR_UP);
|
|
||||||
break;
|
|
||||||
case Vehicle.TYPE_AIRPLANE:
|
|
||||||
m_linearFrictionTimescale = new Vector3(200, 10, 5);
|
|
||||||
m_angularFrictionTimescale = new Vector3(20, 20, 20);
|
|
||||||
m_linearMotorDirection = Vector3.Zero;
|
|
||||||
m_linearMotorTimescale = 2;
|
|
||||||
m_linearMotorDecayTimescale = 60;
|
|
||||||
m_angularMotorDirection = Vector3.Zero;
|
|
||||||
m_angularMotorTimescale = 4;
|
|
||||||
m_angularMotorDecayTimescale = 4;
|
|
||||||
m_VhoverHeight = 0;
|
|
||||||
m_VhoverEfficiency = 0.5f;
|
|
||||||
m_VhoverTimescale = 1000;
|
|
||||||
m_VehicleBuoyancy = 0;
|
|
||||||
// m_linearDeflectionEfficiency = 0.5f;
|
|
||||||
// m_linearDeflectionTimescale = 3;
|
|
||||||
// m_angularDeflectionEfficiency = 1;
|
|
||||||
// m_angularDeflectionTimescale = 2;
|
|
||||||
m_verticalAttractionEfficiency = 0.9f;
|
|
||||||
m_verticalAttractionTimescale = 2;
|
|
||||||
// m_bankingEfficiency = 1;
|
|
||||||
// m_bankingMix = 0.7f;
|
|
||||||
// m_bankingTimescale = 2;
|
|
||||||
// m_referenceFrame = Quaternion.Identity;
|
|
||||||
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
||||||
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
|
||||||
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
|
|
||||||
break;
|
|
||||||
case Vehicle.TYPE_BALLOON:
|
|
||||||
m_linearFrictionTimescale = new Vector3(5, 5, 5);
|
|
||||||
m_angularFrictionTimescale = new Vector3(10, 10, 10);
|
|
||||||
m_linearMotorDirection = Vector3.Zero;
|
|
||||||
m_linearMotorTimescale = 5;
|
|
||||||
m_linearMotorDecayTimescale = 60;
|
|
||||||
m_angularMotorDirection = Vector3.Zero;
|
|
||||||
m_angularMotorTimescale = 6;
|
|
||||||
m_angularMotorDecayTimescale = 10;
|
|
||||||
m_VhoverHeight = 5;
|
|
||||||
m_VhoverEfficiency = 0.8f;
|
|
||||||
m_VhoverTimescale = 10;
|
|
||||||
m_VehicleBuoyancy = 1;
|
|
||||||
// m_linearDeflectionEfficiency = 0;
|
|
||||||
// m_linearDeflectionTimescale = 5;
|
|
||||||
// m_angularDeflectionEfficiency = 0;
|
|
||||||
// m_angularDeflectionTimescale = 5;
|
|
||||||
m_verticalAttractionEfficiency = 1;
|
|
||||||
m_verticalAttractionTimescale = 1000;
|
|
||||||
// m_bankingEfficiency = 0;
|
|
||||||
// m_bankingMix = 0.7f;
|
|
||||||
// m_bankingTimescale = 5;
|
|
||||||
// m_referenceFrame = Quaternion.Identity;
|
|
||||||
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
||||||
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
|
||||||
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
||||||
break;
|
|
||||||
|
|
||||||
}
|
|
||||||
}//end SetDefaultsForType
|
|
||||||
|
|
||||||
internal void Enable(IntPtr pBody, OdeScene pParentScene)
|
|
||||||
{
|
|
||||||
//Console.WriteLine("Enable m_type=" + m_type + " m_VehicleBuoyancy=" + m_VehicleBuoyancy);
|
|
||||||
if (m_type == Vehicle.TYPE_NONE)
|
|
||||||
return;
|
|
||||||
|
|
||||||
m_body = pBody;
|
|
||||||
//KF: This used to set up the linear and angular joints
|
|
||||||
}
|
|
||||||
|
|
||||||
internal void Step(float pTimestep, OdeScene pParentScene)
|
|
||||||
{
|
|
||||||
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
|
|
||||||
return;
|
|
||||||
frcount++; // used to limit debug comment output
|
|
||||||
if (frcount > 100)
|
|
||||||
frcount = 0;
|
|
||||||
|
|
||||||
MoveLinear(pTimestep, pParentScene);
|
|
||||||
MoveAngular(pTimestep);
|
|
||||||
}// end Step
|
|
||||||
|
|
||||||
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
|
|
||||||
{
|
|
||||||
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
|
|
||||||
{
|
|
||||||
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
|
|
||||||
|
|
||||||
// add drive to body
|
|
||||||
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
|
|
||||||
m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
|
|
||||||
|
|
||||||
// This will work temporarily, but we really need to compare speed on an axis
|
|
||||||
// KF: Limit body velocity to applied velocity?
|
|
||||||
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
|
|
||||||
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
|
|
||||||
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
|
|
||||||
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
|
|
||||||
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
|
|
||||||
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
|
|
||||||
|
|
||||||
// decay applied velocity
|
|
||||||
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
|
|
||||||
//Console.WriteLine("decay: " + decayfraction);
|
|
||||||
m_linearMotorDirection -= m_linearMotorDirection * decayfraction;
|
|
||||||
//Console.WriteLine("actual: " + m_linearMotorDirection);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{ // requested is not significant
|
|
||||||
// if what remains of applied is small, zero it.
|
|
||||||
if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
|
|
||||||
m_lastLinearVelocityVector = Vector3.Zero;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// convert requested object velocity to world-referenced vector
|
|
||||||
m_dir = m_lastLinearVelocityVector;
|
|
||||||
d.Quaternion rot = d.BodyGetQuaternion(Body);
|
|
||||||
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
|
|
||||||
m_dir *= rotq; // apply obj rotation to velocity vector
|
|
||||||
|
|
||||||
// add Gravity andBuoyancy
|
|
||||||
// KF: So far I have found no good method to combine a script-requested
|
|
||||||
// .Z velocity and gravity. Therefore only 0g will used script-requested
|
|
||||||
// .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
|
|
||||||
Vector3 grav = Vector3.Zero;
|
|
||||||
if(m_VehicleBuoyancy < 1.0f)
|
|
||||||
{
|
|
||||||
// There is some gravity, make a gravity force vector
|
|
||||||
// that is applied after object velocity.
|
|
||||||
d.Mass objMass;
|
|
||||||
d.BodyGetMass(Body, out objMass);
|
|
||||||
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
|
|
||||||
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
|
|
||||||
// Preserve the current Z velocity
|
|
||||||
d.Vector3 vel_now = d.BodyGetLinearVel(Body);
|
|
||||||
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
|
|
||||||
} // else its 1.0, no gravity.
|
|
||||||
|
|
||||||
// Check if hovering
|
|
||||||
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
|
|
||||||
{
|
|
||||||
// We should hover, get the target height
|
|
||||||
d.Vector3 pos = d.BodyGetPosition(Body);
|
|
||||||
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
|
|
||||||
{
|
|
||||||
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
|
|
||||||
}
|
|
||||||
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
|
|
||||||
{
|
|
||||||
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
|
|
||||||
}
|
|
||||||
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
|
|
||||||
{
|
|
||||||
m_VhoverTargetHeight = m_VhoverHeight;
|
|
||||||
}
|
|
||||||
|
|
||||||
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
|
|
||||||
{
|
|
||||||
// If body is aready heigher, use its height as target height
|
|
||||||
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
|
|
||||||
}
|
|
||||||
|
|
||||||
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
|
|
||||||
// m_VhoverTimescale = 0f; // time to acheive height
|
|
||||||
// pTimestep is time since last frame,in secs
|
|
||||||
float herr0 = pos.Z - m_VhoverTargetHeight;
|
|
||||||
//if(frcount == 0) Console.WriteLine("herr0=" + herr0);
|
|
||||||
// Replace Vertical speed with correction figure if significant
|
|
||||||
if(Math.Abs(herr0) > 0.01f )
|
|
||||||
{
|
|
||||||
d.Mass objMass;
|
|
||||||
d.BodyGetMass(Body, out objMass);
|
|
||||||
m_dir.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
|
|
||||||
// m_VhoverEfficiency is not yet implemented
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
m_dir.Z = 0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Apply velocity
|
|
||||||
d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
|
|
||||||
//if(frcount == 0) Console.WriteLine("Move " + Body + ":"+ m_dir.X + " " + m_dir.Y + " " + m_dir.Z);
|
|
||||||
// apply gravity force
|
|
||||||
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
|
|
||||||
//if(frcount == 0) Console.WriteLine("Force " + Body + ":" + grav.X + " " + grav.Y + " " + grav.Z);
|
|
||||||
|
|
||||||
|
|
||||||
// apply friction
|
|
||||||
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
|
|
||||||
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
|
|
||||||
} // end MoveLinear()
|
|
||||||
|
|
||||||
private void MoveAngular(float pTimestep)
|
|
||||||
{
|
|
||||||
|
|
||||||
// m_angularMotorDirection is the latest value from the script, and is decayed here
|
|
||||||
// m_angularMotorDirectionLASTSET is the latest value from the script
|
|
||||||
// m_lastAngularVelocityVector is what is being applied to the Body, varied up and down here
|
|
||||||
|
|
||||||
if (!m_angularMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
|
|
||||||
{
|
|
||||||
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
|
|
||||||
// ramp up to new value
|
|
||||||
Vector3 addAmount = m_angularMotorDirection / (m_angularMotorTimescale / pTimestep);
|
|
||||||
m_lastAngularVelocityVector += (addAmount * 10f);
|
|
||||||
//if(frcount == 0) Console.WriteLine("add: " + addAmount);
|
|
||||||
|
|
||||||
// limit applied value to what was set by script
|
|
||||||
// This will work temporarily, but we really need to compare speed on an axis
|
|
||||||
if (Math.Abs(m_lastAngularVelocityVector.X) > Math.Abs(m_angularMotorDirectionLASTSET.X))
|
|
||||||
m_lastAngularVelocityVector.X = m_angularMotorDirectionLASTSET.X;
|
|
||||||
if (Math.Abs(m_lastAngularVelocityVector.Y) > Math.Abs(m_angularMotorDirectionLASTSET.Y))
|
|
||||||
m_lastAngularVelocityVector.Y = m_angularMotorDirectionLASTSET.Y;
|
|
||||||
if (Math.Abs(m_lastAngularVelocityVector.Z) > Math.Abs(m_angularMotorDirectionLASTSET.Z))
|
|
||||||
m_lastAngularVelocityVector.Z = m_angularMotorDirectionLASTSET.Z;
|
|
||||||
|
|
||||||
// decay the requested value
|
|
||||||
Vector3 decayfraction = ((Vector3.One / (m_angularMotorDecayTimescale / pTimestep)));
|
|
||||||
//Console.WriteLine("decay: " + decayfraction);
|
|
||||||
m_angularMotorDirection -= m_angularMotorDirection * decayfraction;
|
|
||||||
//Console.WriteLine("actual: " + m_linearMotorDirection);
|
|
||||||
}
|
|
||||||
// KF: m_lastAngularVelocityVector is rotational speed in rad/sec ?
|
|
||||||
|
|
||||||
// Vertical attractor section
|
|
||||||
|
|
||||||
// d.Mass objMass;
|
|
||||||
// d.BodyGetMass(Body, out objMass);
|
|
||||||
// float servo = 100f * objMass.mass * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
|
|
||||||
float servo = 0.1f * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep);
|
|
||||||
// get present body rotation
|
|
||||||
d.Quaternion rot = d.BodyGetQuaternion(Body);
|
|
||||||
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
|
|
||||||
// make a vector pointing up
|
|
||||||
Vector3 verterr = Vector3.Zero;
|
|
||||||
verterr.Z = 1.0f;
|
|
||||||
// rotate it to Body Angle
|
|
||||||
verterr = verterr * rotq;
|
|
||||||
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
|
|
||||||
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
|
|
||||||
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
|
|
||||||
if (verterr.Z < 0.0f)
|
|
||||||
{
|
|
||||||
verterr.X = 2.0f - verterr.X;
|
|
||||||
verterr.Y = 2.0f - verterr.Y;
|
|
||||||
}
|
|
||||||
// Error is 0 (no error) to +/- 2 (max error)
|
|
||||||
// scale it by servo
|
|
||||||
verterr = verterr * servo;
|
|
||||||
|
|
||||||
// rotate to object frame
|
|
||||||
// verterr = verterr * rotq;
|
|
||||||
|
|
||||||
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
|
|
||||||
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
|
|
||||||
m_lastAngularVelocityVector.X += verterr.Y;
|
|
||||||
m_lastAngularVelocityVector.Y -= verterr.X;
|
|
||||||
/*
|
|
||||||
if(frcount == 0)
|
|
||||||
{
|
|
||||||
// Console.WriteLine("AngleMotor " + m_lastAngularVelocityVector);
|
|
||||||
Console.WriteLine(String.Format("VA Body:{0} servo:{1} err:<{2},{3},{4}> VAE:{5}",
|
|
||||||
Body, servo, verterr.X, verterr.Y, verterr.Z, m_verticalAttractionEfficiency));
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
d.BodySetAngularVel (Body, m_lastAngularVelocityVector.X, m_lastAngularVelocityVector.Y, m_lastAngularVelocityVector.Z);
|
|
||||||
// apply friction
|
|
||||||
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
|
|
||||||
m_lastAngularVelocityVector -= m_lastAngularVelocityVector * decayamount;
|
|
||||||
|
|
||||||
} //end MoveAngular
|
|
||||||
}
|
|
||||||
}
|
|
Loading…
Reference in New Issue