Dynamics Integration Part 1
parent
87590491b5
commit
f6f6ef1532
|
@ -747,7 +747,16 @@ namespace OpenSim.Region.Framework.Scenes
|
|||
/// <summary></summary>
|
||||
public Vector3 Acceleration
|
||||
{
|
||||
get { return m_acceleration; }
|
||||
get
|
||||
{
|
||||
PhysicsActor actor = PhysActor;
|
||||
if (actor != null)
|
||||
{
|
||||
m_acceleration = actor.Acceleration;
|
||||
}
|
||||
return m_acceleration;
|
||||
}
|
||||
|
||||
set { m_acceleration = value; }
|
||||
}
|
||||
|
||||
|
|
|
@ -1,817 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) Contributors, http://opensimulator.org/
|
||||
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of the OpenSimulator Project nor the
|
||||
* names of its contributors may be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
|
||||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
|
||||
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
|
||||
* ODEPrim.cs contains methods dealing with Prim editing, Prim
|
||||
* characteristics and Kinetic motion.
|
||||
* ODEDynamics.cs contains methods dealing with Prim Physical motion
|
||||
* (dynamics) and the associated settings. Old Linear and angular
|
||||
* motors for dynamic motion have been replace with MoveLinear()
|
||||
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
|
||||
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
|
||||
* switch between 'VEHICLE' parameter use and general dynamics
|
||||
* settings use.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
|
||||
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
|
||||
* ODEPrim.cs contains methods dealing with Prim editing, Prim
|
||||
* characteristics and Kinetic motion.
|
||||
* ODEDynamics.cs contains methods dealing with Prim Physical motion
|
||||
* (dynamics) and the associated settings. Old Linear and angular
|
||||
* motors for dynamic motion have been replace with MoveLinear()
|
||||
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
|
||||
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
|
||||
* switch between 'VEHICLE' parameter use and general dynamics
|
||||
* settings use.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Reflection;
|
||||
using System.Runtime.InteropServices;
|
||||
using log4net;
|
||||
using OpenMetaverse;
|
||||
using Ode.NET;
|
||||
using OpenSim.Framework;
|
||||
using OpenSim.Region.Physics.Manager;
|
||||
|
||||
namespace OpenSim.Region.Physics.OdePlugin
|
||||
{
|
||||
public class ODEDynamics
|
||||
{
|
||||
public Vehicle Type
|
||||
{
|
||||
get { return m_type; }
|
||||
}
|
||||
|
||||
public IntPtr Body
|
||||
{
|
||||
get { return m_body; }
|
||||
}
|
||||
|
||||
private int frcount = 0; // Used to limit dynamics debug output to
|
||||
// every 100th frame
|
||||
|
||||
// private OdeScene m_parentScene = null;
|
||||
private IntPtr m_body = IntPtr.Zero;
|
||||
// private IntPtr m_jointGroup = IntPtr.Zero;
|
||||
// private IntPtr m_aMotor = IntPtr.Zero;
|
||||
|
||||
// Vehicle properties
|
||||
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
|
||||
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
|
||||
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
|
||||
// HOVER_TERRAIN_ONLY
|
||||
// HOVER_GLOBAL_HEIGHT
|
||||
// NO_DEFLECTION_UP
|
||||
// HOVER_WATER_ONLY
|
||||
// HOVER_UP_ONLY
|
||||
// LIMIT_MOTOR_UP
|
||||
// LIMIT_ROLL_ONLY
|
||||
|
||||
// Linear properties
|
||||
private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity
|
||||
//requested by LSL
|
||||
private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL
|
||||
private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL
|
||||
private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL
|
||||
|
||||
private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor
|
||||
private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity
|
||||
private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity
|
||||
|
||||
//Angular properties
|
||||
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
|
||||
|
||||
private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL
|
||||
private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL
|
||||
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL
|
||||
|
||||
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
|
||||
// private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity
|
||||
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
|
||||
|
||||
private Vector3 m_angularLock = Vector3.One;
|
||||
|
||||
//Deflection properties
|
||||
// private float m_angularDeflectionEfficiency = 0;
|
||||
// private float m_angularDeflectionTimescale = 0;
|
||||
// private float m_linearDeflectionEfficiency = 0;
|
||||
// private float m_linearDeflectionTimescale = 0;
|
||||
|
||||
//Banking properties
|
||||
// private float m_bankingEfficiency = 0;
|
||||
// private float m_bankingMix = 0;
|
||||
// private float m_bankingTimescale = 0;
|
||||
|
||||
//Hover and Buoyancy properties
|
||||
private float m_VhoverHeight = 0f;
|
||||
// private float m_VhoverEfficiency = 0f;
|
||||
private float m_VhoverTimescale = 0f;
|
||||
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
|
||||
private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle.
|
||||
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
|
||||
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
|
||||
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
|
||||
|
||||
//Attractor properties
|
||||
private float m_verticalAttractionEfficiency = 1.0f; // damped
|
||||
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
|
||||
{
|
||||
switch (pParam)
|
||||
{
|
||||
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_angularDeflectionEfficiency = pValue;
|
||||
break;
|
||||
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_angularDeflectionTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
m_angularMotorDecayTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
m_angularMotorTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.BANKING_EFFICIENCY:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_bankingEfficiency = pValue;
|
||||
break;
|
||||
case Vehicle.BANKING_MIX:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_bankingMix = pValue;
|
||||
break;
|
||||
case Vehicle.BANKING_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_bankingTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.BUOYANCY:
|
||||
if (pValue < -1f) pValue = -1f;
|
||||
if (pValue > 1f) pValue = 1f;
|
||||
m_VehicleBuoyancy = pValue;
|
||||
break;
|
||||
// case Vehicle.HOVER_EFFICIENCY:
|
||||
// if (pValue < 0f) pValue = 0f;
|
||||
// if (pValue > 1f) pValue = 1f;
|
||||
// m_VhoverEfficiency = pValue;
|
||||
// break;
|
||||
case Vehicle.HOVER_HEIGHT:
|
||||
m_VhoverHeight = pValue;
|
||||
break;
|
||||
case Vehicle.HOVER_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
m_VhoverTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_linearDeflectionEfficiency = pValue;
|
||||
break;
|
||||
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
// m_linearDeflectionTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
m_linearMotorDecayTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.LINEAR_MOTOR_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
m_linearMotorTimescale = pValue;
|
||||
break;
|
||||
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
|
||||
if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
|
||||
if (pValue > 1.0f) pValue = 1.0f;
|
||||
m_verticalAttractionEfficiency = pValue;
|
||||
break;
|
||||
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
|
||||
if (pValue < 0.01f) pValue = 0.01f;
|
||||
m_verticalAttractionTimescale = pValue;
|
||||
break;
|
||||
|
||||
// These are vector properties but the engine lets you use a single float value to
|
||||
// set all of the components to the same value
|
||||
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
||||
if (pValue > 30f) pValue = 30f;
|
||||
if (pValue < 0.1f) pValue = 0.1f;
|
||||
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
||||
break;
|
||||
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
||||
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
|
||||
UpdateAngDecay();
|
||||
break;
|
||||
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
||||
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
||||
break;
|
||||
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
||||
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
|
||||
UpdateLinDecay();
|
||||
break;
|
||||
case Vehicle.LINEAR_MOTOR_OFFSET:
|
||||
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
}//end ProcessFloatVehicleParam
|
||||
|
||||
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
|
||||
{
|
||||
switch (pParam)
|
||||
{
|
||||
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
||||
if (pValue.X > 30f) pValue.X = 30f;
|
||||
if (pValue.X < 0.1f) pValue.X = 0.1f;
|
||||
if (pValue.Y > 30f) pValue.Y = 30f;
|
||||
if (pValue.Y < 0.1f) pValue.Y = 0.1f;
|
||||
if (pValue.Z > 30f) pValue.Z = 30f;
|
||||
if (pValue.Z < 0.1f) pValue.Z = 0.1f;
|
||||
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
||||
break;
|
||||
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
||||
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
||||
// Limit requested angular speed to 2 rps= 4 pi rads/sec
|
||||
if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
|
||||
if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
|
||||
if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
|
||||
if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
|
||||
if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
|
||||
if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
|
||||
UpdateAngDecay();
|
||||
break;
|
||||
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
||||
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
||||
break;
|
||||
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
||||
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting
|
||||
UpdateLinDecay();
|
||||
break;
|
||||
case Vehicle.LINEAR_MOTOR_OFFSET:
|
||||
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
||||
break;
|
||||
}
|
||||
|
||||
}//end ProcessVectorVehicleParam
|
||||
|
||||
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
|
||||
{
|
||||
switch (pParam)
|
||||
{
|
||||
case Vehicle.REFERENCE_FRAME:
|
||||
// m_referenceFrame = pValue;
|
||||
break;
|
||||
}
|
||||
|
||||
}//end ProcessRotationVehicleParam
|
||||
|
||||
internal void SetAngularLock(Vector3 pValue)
|
||||
{
|
||||
m_angularLock = pValue;
|
||||
}
|
||||
|
||||
internal void ProcessFlagsVehicleSet(int flags)
|
||||
{
|
||||
m_flags |= (VehicleFlag)flags;
|
||||
}
|
||||
|
||||
internal void ProcessFlagsVehicleRemove(int flags)
|
||||
{
|
||||
m_flags &= ~((VehicleFlag)flags);
|
||||
}
|
||||
|
||||
internal void ProcessTypeChange(Vehicle pType)
|
||||
{
|
||||
// Set Defaults For Type
|
||||
m_type = pType;
|
||||
switch (pType)
|
||||
{
|
||||
case Vehicle.TYPE_SLED:
|
||||
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
|
||||
m_angularFrictionTimescale = new Vector3(30, 30, 30);
|
||||
// m_lLinMotorVel = Vector3.Zero;
|
||||
m_linearMotorTimescale = 1000;
|
||||
m_linearMotorDecayTimescale = 120;
|
||||
m_angularMotorDirection = Vector3.Zero;
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
m_angularMotorTimescale = 1000;
|
||||
m_angularMotorDecayTimescale = 120;
|
||||
m_VhoverHeight = 0;
|
||||
// m_VhoverEfficiency = 1;
|
||||
m_VhoverTimescale = 10;
|
||||
m_VehicleBuoyancy = 0;
|
||||
// m_linearDeflectionEfficiency = 1;
|
||||
// m_linearDeflectionTimescale = 1;
|
||||
// m_angularDeflectionEfficiency = 1;
|
||||
// m_angularDeflectionTimescale = 1000;
|
||||
// m_bankingEfficiency = 0;
|
||||
// m_bankingMix = 1;
|
||||
// m_bankingTimescale = 10;
|
||||
// m_referenceFrame = Quaternion.Identity;
|
||||
m_flags &=
|
||||
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
||||
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
||||
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
||||
break;
|
||||
case Vehicle.TYPE_CAR:
|
||||
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
|
||||
m_angularFrictionTimescale = new Vector3(30, 30, 30); // was 1000, but sl max frict time is 30.
|
||||
// m_lLinMotorVel = Vector3.Zero;
|
||||
m_linearMotorTimescale = 1;
|
||||
m_linearMotorDecayTimescale = 60;
|
||||
m_angularMotorDirection = Vector3.Zero;
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
m_angularMotorTimescale = 1;
|
||||
m_angularMotorDecayTimescale = 0.8f;
|
||||
m_VhoverHeight = 0;
|
||||
// m_VhoverEfficiency = 0;
|
||||
m_VhoverTimescale = 1000;
|
||||
m_VehicleBuoyancy = 0;
|
||||
// // m_linearDeflectionEfficiency = 1;
|
||||
// // m_linearDeflectionTimescale = 2;
|
||||
// // m_angularDeflectionEfficiency = 0;
|
||||
// m_angularDeflectionTimescale = 10;
|
||||
m_verticalAttractionEfficiency = 1f;
|
||||
m_verticalAttractionTimescale = 10f;
|
||||
// m_bankingEfficiency = -0.2f;
|
||||
// m_bankingMix = 1;
|
||||
// m_bankingTimescale = 1;
|
||||
// m_referenceFrame = Quaternion.Identity;
|
||||
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
||||
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
|
||||
VehicleFlag.LIMIT_MOTOR_UP);
|
||||
break;
|
||||
case Vehicle.TYPE_BOAT:
|
||||
m_linearFrictionTimescale = new Vector3(10, 3, 2);
|
||||
m_angularFrictionTimescale = new Vector3(10,10,10);
|
||||
// m_lLinMotorVel = Vector3.Zero;
|
||||
m_linearMotorTimescale = 5;
|
||||
m_linearMotorDecayTimescale = 60;
|
||||
m_angularMotorDirection = Vector3.Zero;
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
m_angularMotorTimescale = 4;
|
||||
m_angularMotorDecayTimescale = 4;
|
||||
m_VhoverHeight = 0;
|
||||
// m_VhoverEfficiency = 0.5f;
|
||||
m_VhoverTimescale = 2;
|
||||
m_VehicleBuoyancy = 1;
|
||||
// m_linearDeflectionEfficiency = 0.5f;
|
||||
// m_linearDeflectionTimescale = 3;
|
||||
// m_angularDeflectionEfficiency = 0.5f;
|
||||
// m_angularDeflectionTimescale = 5;
|
||||
m_verticalAttractionEfficiency = 0.5f;
|
||||
m_verticalAttractionTimescale = 5f;
|
||||
// m_bankingEfficiency = -0.3f;
|
||||
// m_bankingMix = 0.8f;
|
||||
// m_bankingTimescale = 1;
|
||||
// m_referenceFrame = Quaternion.Identity;
|
||||
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY |
|
||||
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
||||
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY |
|
||||
VehicleFlag.LIMIT_MOTOR_UP);
|
||||
break;
|
||||
case Vehicle.TYPE_AIRPLANE:
|
||||
m_linearFrictionTimescale = new Vector3(200, 10, 5);
|
||||
m_angularFrictionTimescale = new Vector3(20, 20, 20);
|
||||
// m_lLinMotorVel = Vector3.Zero;
|
||||
m_linearMotorTimescale = 2;
|
||||
m_linearMotorDecayTimescale = 60;
|
||||
m_angularMotorDirection = Vector3.Zero;
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
m_angularMotorTimescale = 4;
|
||||
m_angularMotorDecayTimescale = 4;
|
||||
m_VhoverHeight = 0;
|
||||
// m_VhoverEfficiency = 0.5f;
|
||||
m_VhoverTimescale = 1000;
|
||||
m_VehicleBuoyancy = 0;
|
||||
// m_linearDeflectionEfficiency = 0.5f;
|
||||
// m_linearDeflectionTimescale = 3;
|
||||
// m_angularDeflectionEfficiency = 1;
|
||||
// m_angularDeflectionTimescale = 2;
|
||||
m_verticalAttractionEfficiency = 0.9f;
|
||||
m_verticalAttractionTimescale = 2f;
|
||||
// m_bankingEfficiency = 1;
|
||||
// m_bankingMix = 0.7f;
|
||||
// m_bankingTimescale = 2;
|
||||
// m_referenceFrame = Quaternion.Identity;
|
||||
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
||||
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
||||
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
|
||||
break;
|
||||
case Vehicle.TYPE_BALLOON:
|
||||
m_linearFrictionTimescale = new Vector3(5, 5, 5);
|
||||
m_angularFrictionTimescale = new Vector3(10, 10, 10);
|
||||
m_linearMotorTimescale = 5;
|
||||
m_linearMotorDecayTimescale = 60;
|
||||
m_angularMotorDirection = Vector3.Zero;
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
m_angularMotorTimescale = 6;
|
||||
m_angularMotorDecayTimescale = 10;
|
||||
m_VhoverHeight = 5;
|
||||
// m_VhoverEfficiency = 0.8f;
|
||||
m_VhoverTimescale = 10;
|
||||
m_VehicleBuoyancy = 1;
|
||||
// m_linearDeflectionEfficiency = 0;
|
||||
// m_linearDeflectionTimescale = 5;
|
||||
// m_angularDeflectionEfficiency = 0;
|
||||
// m_angularDeflectionTimescale = 5;
|
||||
m_verticalAttractionEfficiency = 1f;
|
||||
m_verticalAttractionTimescale = 100f;
|
||||
// m_bankingEfficiency = 0;
|
||||
// m_bankingMix = 0.7f;
|
||||
// m_bankingTimescale = 5;
|
||||
// m_referenceFrame = Quaternion.Identity;
|
||||
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
||||
VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
||||
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
||||
break;
|
||||
|
||||
}
|
||||
}//end SetDefaultsForType
|
||||
|
||||
internal void Enable(IntPtr pBody, OdeScene pParentScene)
|
||||
{
|
||||
if (m_type == Vehicle.TYPE_NONE)
|
||||
return;
|
||||
|
||||
m_body = pBody;
|
||||
}
|
||||
|
||||
internal void Step(float pTimestep, OdeScene pParentScene)
|
||||
{
|
||||
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
|
||||
return;
|
||||
frcount++; // used to limit debug comment output
|
||||
if (frcount > 24)
|
||||
frcount = 0;
|
||||
|
||||
MoveLinear(pTimestep, pParentScene);
|
||||
MoveAngular(pTimestep);
|
||||
}// end Step
|
||||
|
||||
internal void Halt()
|
||||
{ // Kill all motions, when non-physical
|
||||
m_linearMotorDirection = Vector3.Zero;
|
||||
m_lLinMotorDVel = Vector3.Zero;
|
||||
m_lLinObjectVel = Vector3.Zero;
|
||||
m_wLinObjectVel = Vector3.Zero;
|
||||
m_angularMotorDirection = Vector3.Zero;
|
||||
m_lastAngularVelocity = Vector3.Zero;
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
}
|
||||
|
||||
private void UpdateLinDecay()
|
||||
{
|
||||
if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X;
|
||||
if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y;
|
||||
if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z;
|
||||
} // else let the motor decay on its own
|
||||
|
||||
private void MoveLinear(float pTimestep, OdeScene _pParentScene)
|
||||
{
|
||||
Vector3 acceleration = new Vector3(0f, 0f, 0f);
|
||||
|
||||
d.Quaternion rot = d.BodyGetQuaternion(Body);
|
||||
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
|
||||
Quaternion irotq = Quaternion.Inverse(rotq);
|
||||
d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame
|
||||
Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z);
|
||||
acceleration = vel_now - m_wLinObjectVel;
|
||||
m_lLinObjectVel = vel_now * irotq;
|
||||
|
||||
if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate
|
||||
{
|
||||
if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f)
|
||||
{
|
||||
float decayfactor = m_linearMotorDecayTimescale/pTimestep;
|
||||
Vector3 decayAmount = (m_lLinMotorDVel/decayfactor);
|
||||
m_lLinMotorDVel -= decayAmount;
|
||||
}
|
||||
else
|
||||
{
|
||||
float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale)));
|
||||
Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep;
|
||||
m_lLinMotorDVel -= decel;
|
||||
}
|
||||
if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
|
||||
{
|
||||
m_lLinMotorDVel = Vector3.Zero;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X;
|
||||
if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y;
|
||||
if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z;
|
||||
}
|
||||
}
|
||||
|
||||
if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) )
|
||||
{
|
||||
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
|
||||
if (m_linearMotorTimescale < 300.0f)
|
||||
{
|
||||
Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel;
|
||||
float linfactor = m_linearMotorTimescale/pTimestep;
|
||||
Vector3 attackAmount = (attack_error/linfactor) * 1.3f;
|
||||
m_lLinObjectVel += attackAmount;
|
||||
}
|
||||
if (m_linearFrictionTimescale.X < 300.0f)
|
||||
{
|
||||
float fricfactor = m_linearFrictionTimescale.X / pTimestep;
|
||||
float fricX = m_lLinObjectVel.X / fricfactor;
|
||||
m_lLinObjectVel.X -= fricX;
|
||||
}
|
||||
if (m_linearFrictionTimescale.Y < 300.0f)
|
||||
{
|
||||
float fricfactor = m_linearFrictionTimescale.Y / pTimestep;
|
||||
float fricY = m_lLinObjectVel.Y / fricfactor;
|
||||
m_lLinObjectVel.Y -= fricY;
|
||||
}
|
||||
if (m_linearFrictionTimescale.Z < 300.0f)
|
||||
{
|
||||
float fricfactor = m_linearFrictionTimescale.Z / pTimestep;
|
||||
//if(frcount == 0) Console.WriteLine("Zfric={0}", fricfactor);
|
||||
float fricZ = m_lLinObjectVel.Z / fricfactor;
|
||||
m_lLinObjectVel.Z -= fricZ;
|
||||
}
|
||||
}
|
||||
m_wLinObjectVel = m_lLinObjectVel * rotq;
|
||||
// Add Gravity and Buoyancy
|
||||
Vector3 grav = Vector3.Zero;
|
||||
if(m_VehicleBuoyancy < 1.0f)
|
||||
{
|
||||
// There is some gravity, make a gravity force vector
|
||||
// that is applied after object velocity.
|
||||
d.Mass objMass;
|
||||
d.BodyGetMass(Body, out objMass);
|
||||
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
|
||||
grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force
|
||||
} // else its 1.0, no gravity.
|
||||
|
||||
// Check if hovering
|
||||
if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
|
||||
{
|
||||
// We should hover, get the target height
|
||||
d.Vector3 pos = d.BodyGetPosition(Body);
|
||||
if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY)
|
||||
{
|
||||
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
|
||||
}
|
||||
else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY)
|
||||
{
|
||||
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
|
||||
}
|
||||
else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT)
|
||||
{
|
||||
m_VhoverTargetHeight = m_VhoverHeight;
|
||||
}
|
||||
|
||||
if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY)
|
||||
{
|
||||
// If body is aready heigher, use its height as target height
|
||||
if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
|
||||
}
|
||||
|
||||
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
|
||||
// m_VhoverTimescale = 0f; // time to acheive height
|
||||
// pTimestep is time since last frame,in secs
|
||||
float herr0 = pos.Z - m_VhoverTargetHeight;
|
||||
// Replace Vertical speed with correction figure if significant
|
||||
if(Math.Abs(herr0) > 0.01f )
|
||||
{
|
||||
d.Mass objMass;
|
||||
d.BodyGetMass(Body, out objMass);
|
||||
m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
|
||||
//KF: m_VhoverEfficiency is not yet implemented
|
||||
}
|
||||
else
|
||||
{
|
||||
m_wLinObjectVel.Z = 0f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{ // not hovering, Gravity rules
|
||||
m_wLinObjectVel.Z = vel_now.Z;
|
||||
//if(frcount == 0) Console.WriteLine(" Z {0} a.Z {1}", m_wLinObjectVel.Z, acceleration.Z);
|
||||
}
|
||||
// Apply velocity
|
||||
d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z);
|
||||
// apply gravity force
|
||||
d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
|
||||
//if(frcount == 0) Console.WriteLine("Grav {0}", grav);
|
||||
} // end MoveLinear()
|
||||
|
||||
private void UpdateAngDecay()
|
||||
{
|
||||
if (Math.Abs(m_angularMotorDirection.X) > Math.Abs(m_angularMotorDVel.X)) m_angularMotorDVel.X = m_angularMotorDirection.X;
|
||||
if (Math.Abs(m_angularMotorDirection.Y) > Math.Abs(m_angularMotorDVel.Y)) m_angularMotorDVel.Y = m_angularMotorDirection.Y;
|
||||
if (Math.Abs(m_angularMotorDirection.Z) > Math.Abs(m_angularMotorDVel.Z)) m_angularMotorDVel.Z = m_angularMotorDirection.Z;
|
||||
} // else let the motor decay on its own
|
||||
|
||||
private void MoveAngular(float pTimestep)
|
||||
{
|
||||
/*
|
||||
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
|
||||
|
||||
private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL
|
||||
private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL
|
||||
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL
|
||||
|
||||
private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor
|
||||
private Vector3 m_angObjectVel = Vector3.Zero; // what was last applied to body
|
||||
*/
|
||||
//if(frcount == 0) Console.WriteLine("MoveAngular ");
|
||||
|
||||
// Get what the body is doing, this includes 'external' influences
|
||||
d.Quaternion rot = d.BodyGetQuaternion(Body);
|
||||
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
|
||||
Quaternion irotq = Quaternion.Inverse(rotq);
|
||||
d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body);
|
||||
Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z);
|
||||
angObjectVel = angObjectVel * irotq; // ============ Converts to LOCAL rotation
|
||||
|
||||
//if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel);
|
||||
// Vector3 FrAaccel = m_lastAngularVelocity - angObjectVel;
|
||||
// Vector3 initavel = angObjectVel;
|
||||
// Decay Angular Motor 1. In SL this also depends on attack rate! decay ~= 23/Attack.
|
||||
float atk_decayfactor = 23.0f / (m_angularMotorTimescale * pTimestep);
|
||||
m_angularMotorDVel -= m_angularMotorDVel / atk_decayfactor;
|
||||
// Decay Angular Motor 2.
|
||||
if (m_angularMotorDecayTimescale < 300.0f)
|
||||
{
|
||||
//####
|
||||
if ( Vector3.Mag(m_angularMotorDVel) < 1.0f)
|
||||
{
|
||||
float decayfactor = (m_angularMotorDecayTimescale)/pTimestep;
|
||||
Vector3 decayAmount = (m_angularMotorDVel/decayfactor);
|
||||
m_angularMotorDVel -= decayAmount;
|
||||
}
|
||||
else
|
||||
{
|
||||
Vector3 decel = Vector3.Normalize(m_angularMotorDVel) * pTimestep / m_angularMotorDecayTimescale;
|
||||
m_angularMotorDVel -= decel;
|
||||
}
|
||||
|
||||
if (m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f))
|
||||
{
|
||||
m_angularMotorDVel = Vector3.Zero;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (Math.Abs(m_angularMotorDVel.X) < Math.Abs(angObjectVel.X)) angObjectVel.X = m_angularMotorDVel.X;
|
||||
if (Math.Abs(m_angularMotorDVel.Y) < Math.Abs(angObjectVel.Y)) angObjectVel.Y = m_angularMotorDVel.Y;
|
||||
if (Math.Abs(m_angularMotorDVel.Z) < Math.Abs(angObjectVel.Z)) angObjectVel.Z = m_angularMotorDVel.Z;
|
||||
}
|
||||
} // end decay angular motor
|
||||
//if(frcount == 0) Console.WriteLine("MotorDvel {0} Obj {1}", m_angularMotorDVel, angObjectVel);
|
||||
|
||||
//if(frcount == 0) Console.WriteLine("VA = {0}", angObjectVel);
|
||||
// Vertical attractor section
|
||||
Vector3 vertattr = Vector3.Zero;
|
||||
|
||||
if(m_verticalAttractionTimescale < 300)
|
||||
{
|
||||
float VAservo = 1.0f / (m_verticalAttractionTimescale * pTimestep);
|
||||
// get present body rotation
|
||||
// d.Quaternion rot = d.BodyGetQuaternion(Body);
|
||||
// Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
|
||||
// make a vector pointing up
|
||||
Vector3 verterr = Vector3.Zero;
|
||||
verterr.Z = 1.0f;
|
||||
// rotate it to Body Angle
|
||||
verterr = verterr * rotq;
|
||||
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
|
||||
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
|
||||
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
|
||||
|
||||
if (verterr.Z < 0.0f)
|
||||
{ // Deflection from vertical exceeds 90-degrees. This method will ensure stable return to
|
||||
// vertical, BUT for some reason a z-rotation is imparted to the object. TBI.
|
||||
//Console.WriteLine("InvertFlip");
|
||||
verterr.X = 2.0f - verterr.X;
|
||||
verterr.Y = 2.0f - verterr.Y;
|
||||
}
|
||||
verterr *= 0.5f;
|
||||
// verterror is 0 (no error) to +/- 1 (max error at 180-deg tilt)
|
||||
|
||||
if ((!angObjectVel.ApproxEquals(Vector3.Zero, 0.001f)) || (verterr.Z < 0.49f))
|
||||
{
|
||||
//if(frcount == 0)
|
||||
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
|
||||
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
|
||||
vertattr.X = verterr.Y;
|
||||
vertattr.Y = - verterr.X;
|
||||
vertattr.Z = 0f;
|
||||
//if(frcount == 0) Console.WriteLine("VAerr=" + verterr);
|
||||
|
||||
// scaling appears better usingsquare-law
|
||||
float damped = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency;
|
||||
float bounce = 1.0f - damped;
|
||||
// 0 = crit damp, 1 = bouncy
|
||||
float oavz = angObjectVel.Z; // retain z velocity
|
||||
angObjectVel = (angObjectVel + (vertattr * VAservo * 0.0333f)) * bounce; // The time-scaled correction, which sums, therefore is bouncy
|
||||
angObjectVel = angObjectVel + (vertattr * VAservo * 0.0667f * damped); // damped, good @ < 90.
|
||||
angObjectVel.Z = oavz;
|
||||
//if(frcount == 0) Console.WriteLine("VA+");
|
||||
//Console.WriteLine("VAttr {0} OAvel {1}", vertattr, angObjectVel);
|
||||
}
|
||||
else
|
||||
{
|
||||
// else error is very small
|
||||
angObjectVel.X = 0f;
|
||||
angObjectVel.Y = 0f;
|
||||
//if(frcount == 0) Console.WriteLine("VA0");
|
||||
}
|
||||
} // else vertical attractor is off
|
||||
//if(frcount == 0) Console.WriteLine("V1 = {0}", angObjectVel);
|
||||
|
||||
if ( (! m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! angObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) )
|
||||
{ // if motor or object have motion
|
||||
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
|
||||
|
||||
if (m_angularMotorTimescale < 300.0f)
|
||||
{
|
||||
Vector3 attack_error = m_angularMotorDVel - angObjectVel;
|
||||
float angfactor = m_angularMotorTimescale/pTimestep;
|
||||
Vector3 attackAmount = (attack_error/angfactor);
|
||||
angObjectVel += attackAmount;
|
||||
//if(frcount == 0) Console.WriteLine("Accel {0} Attk {1}",FrAaccel, attackAmount);
|
||||
//if(frcount == 0) Console.WriteLine("V2+= {0}", angObjectVel);
|
||||
}
|
||||
|
||||
angObjectVel.X -= angObjectVel.X / (m_angularFrictionTimescale.X * 0.7f / pTimestep);
|
||||
angObjectVel.Y -= angObjectVel.Y / (m_angularFrictionTimescale.Y * 0.7f / pTimestep);
|
||||
angObjectVel.Z -= angObjectVel.Z / (m_angularFrictionTimescale.Z * 0.7f / pTimestep);
|
||||
} // else no signif. motion
|
||||
|
||||
//if(frcount == 0) Console.WriteLine("Dmotor {0} Obj {1}", m_angularMotorDVel, angObjectVel);
|
||||
// Bank section tba
|
||||
// Deflection section tba
|
||||
//if(frcount == 0) Console.WriteLine("V3 = {0}", angObjectVel);
|
||||
|
||||
m_lastAngularVelocity = angObjectVel;
|
||||
/*
|
||||
if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.0001f))
|
||||
{
|
||||
if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
|
||||
}
|
||||
*/
|
||||
//if(frcount == 0) Console.WriteLine("angularLock {0}", m_angularLock);
|
||||
|
||||
if (!m_angularLock.ApproxEquals(Vector3.One, 0.003f))
|
||||
{
|
||||
if (m_angularLock.X == 0)
|
||||
m_lastAngularVelocity.X = 0f;
|
||||
if (m_angularLock.Y == 0)
|
||||
m_lastAngularVelocity.Y = 0f;
|
||||
if (m_angularLock.Z == 0)
|
||||
m_lastAngularVelocity.Z = 0f;
|
||||
}
|
||||
// Apply to the body
|
||||
// Vector3 aInc = m_lastAngularVelocity - initavel;
|
||||
//if(frcount == 0) Console.WriteLine("Inc {0}", aInc);
|
||||
m_lastAngularVelocity = m_lastAngularVelocity * rotq; // ================ Converts to WORLD rotation
|
||||
|
||||
d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
|
||||
//if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity);
|
||||
|
||||
} //end MoveAngular
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue