OpenSimMirror/OpenSim/Region/PhysicsModules/ubOdeMeshing/Mesh.cs

637 lines
21 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.InteropServices;
using OpenSim.Region.PhysicsModules.SharedBase;
using PrimMesher;
using OpenMetaverse;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
namespace OpenSim.Region.PhysicsModule.ubODEMeshing
{
public class MeshBuildingData
{
private class vertexcomp : IEqualityComparer<Vertex>
{
public bool Equals(Vertex v1, Vertex v2)
{
if (v1.X == v2.X && v1.Y == v2.Y && v1.Z == v2.Z)
return true;
else
return false;
}
public int GetHashCode(Vertex v)
{
int a = v.X.GetHashCode();
int b = v.Y.GetHashCode();
int c = v.Z.GetHashCode();
return (a << 16) ^ (b << 8) ^ c;
}
}
public Dictionary<Vertex, int> m_vertices;
public List<Triangle> m_triangles;
public float m_obbXmin;
public float m_obbXmax;
public float m_obbYmin;
public float m_obbYmax;
public float m_obbZmin;
public float m_obbZmax;
public Vector3 m_centroid;
public int m_centroidDiv;
public MeshBuildingData()
{
vertexcomp vcomp = new vertexcomp();
m_vertices = new Dictionary<Vertex, int>(vcomp);
m_triangles = new List<Triangle>();
m_centroid = Vector3.Zero;
m_centroidDiv = 0;
m_obbXmin = float.MaxValue;
m_obbXmax = float.MinValue;
m_obbYmin = float.MaxValue;
m_obbYmax = float.MinValue;
m_obbZmin = float.MaxValue;
m_obbZmax = float.MinValue;
}
}
[Serializable()]
public class Mesh : IMesh
{
float[] vertices;
int[] indexes;
Vector3 m_obb;
Vector3 m_obboffset;
[NonSerialized()]
MeshBuildingData m_bdata;
[NonSerialized()]
GCHandle vhandler;
[NonSerialized()]
GCHandle ihandler;
[NonSerialized()]
IntPtr m_verticesPtr = IntPtr.Zero;
[NonSerialized()]
IntPtr m_indicesPtr = IntPtr.Zero;
[NonSerialized()]
int m_vertexCount = 0;
[NonSerialized()]
int m_indexCount = 0;
public int RefCount { get; set; }
public AMeshKey Key { get; set; }
public Mesh(bool forbuild)
{
if(forbuild)
m_bdata = new MeshBuildingData();
m_obb = new Vector3(0.5f, 0.5f, 0.5f);
m_obboffset = Vector3.Zero;
}
public Mesh Scale(Vector3 scale)
{
if (m_verticesPtr == null || m_indicesPtr == null)
return null;
Mesh result = new Mesh(false);
float x = scale.X;
float y = scale.Y;
float z = scale.Z;
float tmp;
tmp = m_obb.X * x;
if(tmp < 0.0005f)
tmp = 0.0005f;
result.m_obb.X = tmp;
tmp = m_obb.Y * y;
if(tmp < 0.0005f)
tmp = 0.0005f;
result.m_obb.Y = tmp;
tmp = m_obb.Z * z;
if(tmp < 0.0005f)
tmp = 0.0005f;
result.m_obb.Z = tmp;
result.m_obboffset.X = m_obboffset.X * x;
result.m_obboffset.Y = m_obboffset.Y * y;
result.m_obboffset.Z = m_obboffset.Z * z;
result.vertices = new float[vertices.Length];
int j = 0;
for (int i = 0; i < m_vertexCount; i++)
{
result.vertices[j] = vertices[j] * x;
j++;
result.vertices[j] = vertices[j] * y;
j++;
result.vertices[j] = vertices[j] * z;
j++;
}
result.indexes = new int[indexes.Length];
indexes.CopyTo(result.indexes,0);
result.pinMemory();
return result;
}
public Mesh Clone()
{
Mesh result = new Mesh(false);
if (m_bdata != null)
{
result.m_bdata = new MeshBuildingData();
foreach (Triangle t in m_bdata.m_triangles)
{
result.Add(new Triangle(t.v1.Clone(), t.v2.Clone(), t.v3.Clone()));
}
result.m_bdata.m_centroid = m_bdata.m_centroid;
result.m_bdata.m_centroidDiv = m_bdata.m_centroidDiv;
result.m_bdata.m_obbXmin = m_bdata.m_obbXmin;
result.m_bdata.m_obbXmax = m_bdata.m_obbXmax;
result.m_bdata.m_obbYmin = m_bdata.m_obbYmin;
result.m_bdata.m_obbYmax = m_bdata.m_obbYmax;
result.m_bdata.m_obbZmin = m_bdata.m_obbZmin;
result.m_bdata.m_obbZmax = m_bdata.m_obbZmax;
}
result.m_obb = m_obb;
result.m_obboffset = m_obboffset;
return result;
}
public void addVertexLStats(Vertex v)
{
float x = v.X;
float y = v.Y;
float z = v.Z;
m_bdata.m_centroid.X += x;
m_bdata.m_centroid.Y += y;
m_bdata.m_centroid.Z += z;
m_bdata.m_centroidDiv++;
if (x > m_bdata.m_obbXmax)
m_bdata.m_obbXmax = x;
if (x < m_bdata.m_obbXmin)
m_bdata.m_obbXmin = x;
if (y > m_bdata.m_obbYmax)
m_bdata.m_obbYmax = y;
if (y < m_bdata.m_obbYmin)
m_bdata.m_obbYmin = y;
if (z > m_bdata.m_obbZmax)
m_bdata.m_obbZmax = z;
if (z < m_bdata.m_obbZmin)
m_bdata.m_obbZmin = z;
}
public void Add(Triangle triangle)
{
if (m_indicesPtr != IntPtr.Zero || m_verticesPtr != IntPtr.Zero)
throw new NotSupportedException("Attempt to Add to a pinned Mesh");
triangle.v1.X = (float)Math.Round(triangle.v1.X, 6);
triangle.v1.Y = (float)Math.Round(triangle.v1.Y, 6);
triangle.v1.Z = (float)Math.Round(triangle.v1.Z, 6);
triangle.v2.X = (float)Math.Round(triangle.v2.X, 6);
triangle.v2.Y = (float)Math.Round(triangle.v2.Y, 6);
triangle.v2.Z = (float)Math.Round(triangle.v2.Z, 6);
triangle.v3.X = (float)Math.Round(triangle.v3.X, 6);
triangle.v3.Y = (float)Math.Round(triangle.v3.Y, 6);
triangle.v3.Z = (float)Math.Round(triangle.v3.Z, 6);
if ((triangle.v1.X == triangle.v2.X && triangle.v1.Y == triangle.v2.Y && triangle.v1.Z ==
triangle.v2.Z)
|| (triangle.v1.X == triangle.v3.X && triangle.v1.Y == triangle.v3.Y && triangle.v1.Z ==
triangle.v3.Z)
|| (triangle.v2.X == triangle.v3.X && triangle.v2.Y == triangle.v3.Y && triangle.v2.Z ==
triangle.v3.Z)
)
{
return;
}
if (m_bdata.m_vertices.Count == 0)
{
m_bdata.m_centroidDiv = 0;
m_bdata.m_centroid = Vector3.Zero;
}
if (!m_bdata.m_vertices.ContainsKey(triangle.v1))
{
m_bdata.m_vertices[triangle.v1] = m_bdata.m_vertices.Count;
addVertexLStats(triangle.v1);
}
if (!m_bdata.m_vertices.ContainsKey(triangle.v2))
{
m_bdata.m_vertices[triangle.v2] = m_bdata.m_vertices.Count;
addVertexLStats(triangle.v2);
}
if (!m_bdata.m_vertices.ContainsKey(triangle.v3))
{
m_bdata.m_vertices[triangle.v3] = m_bdata.m_vertices.Count;
addVertexLStats(triangle.v3);
}
m_bdata.m_triangles.Add(triangle);
}
public Vector3 GetCentroid()
{
return m_obboffset;
}
public Vector3 GetOBB()
{
return m_obb;
/*
float x, y, z;
if (m_bdata.m_centroidDiv > 0)
{
x = (m_bdata.m_obbXmax - m_bdata.m_obbXmin) * 0.5f;
y = (m_bdata.m_obbYmax - m_bdata.m_obbYmin) * 0.5f;
z = (m_bdata.m_obbZmax - m_bdata.m_obbZmin) * 0.5f;
}
else // ??
{
x = 0.5f;
y = 0.5f;
z = 0.5f;
}
return new Vector3(x, y, z);
*/
}
public int numberVertices()
{
return m_bdata.m_vertices.Count;
}
public int numberTriangles()
{
return m_bdata.m_triangles.Count;
}
public List<Vector3> getVertexList()
{
List<Vector3> result = new List<Vector3>();
foreach (Vertex v in m_bdata.m_vertices.Keys)
{
result.Add(new Vector3(v.X, v.Y, v.Z));
}
return result;
}
public float[] getVertexListAsFloat()
{
if (m_bdata.m_vertices == null)
throw new NotSupportedException();
float[] result = new float[m_bdata.m_vertices.Count * 3];
foreach (KeyValuePair<Vertex, int> kvp in m_bdata.m_vertices)
{
Vertex v = kvp.Key;
int i = kvp.Value;
result[3 * i + 0] = v.X;
result[3 * i + 1] = v.Y;
result[3 * i + 2] = v.Z;
}
return result;
}
public float[] getVertexListAsFloatLocked()
{
return null;
}
public void getVertexListAsPtrToFloatArray(out IntPtr _vertices, out int vertexStride, out int vertexCount)
{
// A vertex is 3 floats
vertexStride = 3 * sizeof(float);
// If there isn't an unmanaged array allocated yet, do it now
if (m_verticesPtr == IntPtr.Zero && m_bdata != null)
{
vertices = getVertexListAsFloat();
// Each vertex is 3 elements (floats)
m_vertexCount = vertices.Length / 3;
vhandler = GCHandle.Alloc(vertices, GCHandleType.Pinned);
m_verticesPtr = vhandler.AddrOfPinnedObject();
GC.AddMemoryPressure(Buffer.ByteLength(vertices));
}
_vertices = m_verticesPtr;
vertexCount = m_vertexCount;
}
public int[] getIndexListAsInt()
{
if (m_bdata.m_triangles == null)
throw new NotSupportedException();
int[] result = new int[m_bdata.m_triangles.Count * 3];
for (int i = 0; i < m_bdata.m_triangles.Count; i++)
{
Triangle t = m_bdata.m_triangles[i];
result[3 * i + 0] = m_bdata.m_vertices[t.v1];
result[3 * i + 1] = m_bdata.m_vertices[t.v2];
result[3 * i + 2] = m_bdata.m_vertices[t.v3];
}
return result;
}
/// <summary>
/// creates a list of index values that defines triangle faces. THIS METHOD FREES ALL NON-PINNED MESH DATA
/// </summary>
/// <returns></returns>
public int[] getIndexListAsIntLocked()
{
return null;
}
public void getIndexListAsPtrToIntArray(out IntPtr indices, out int triStride, out int indexCount)
{
// If there isn't an unmanaged array allocated yet, do it now
if (m_indicesPtr == IntPtr.Zero && m_bdata != null)
{
indexes = getIndexListAsInt();
m_indexCount = indexes.Length;
ihandler = GCHandle.Alloc(indexes, GCHandleType.Pinned);
m_indicesPtr = ihandler.AddrOfPinnedObject();
GC.AddMemoryPressure(Buffer.ByteLength(indexes));
}
// A triangle is 3 ints (indices)
triStride = 3 * sizeof(int);
indices = m_indicesPtr;
indexCount = m_indexCount;
}
public void releasePinned()
{
if (m_verticesPtr != IntPtr.Zero)
{
vhandler.Free();
GC.RemoveMemoryPressure(Buffer.ByteLength(vertices));
vertices = null;
m_verticesPtr = IntPtr.Zero;
}
if (m_indicesPtr != IntPtr.Zero)
{
ihandler.Free();
GC.RemoveMemoryPressure(Buffer.ByteLength(indexes));
indexes = null;
m_indicesPtr = IntPtr.Zero;
}
}
/// <summary>
/// frees up the source mesh data to minimize memory - call this method after calling get*Locked() functions
/// </summary>
public void releaseSourceMeshData()
{
if (m_bdata != null)
{
m_bdata.m_triangles = null;
m_bdata.m_vertices = null;
}
}
public void releaseBuildingMeshData()
{
if (m_bdata != null)
{
m_bdata.m_triangles = null;
m_bdata.m_vertices = null;
m_bdata = null;
}
}
public void Append(IMesh newMesh)
{
if (m_indicesPtr != IntPtr.Zero || m_verticesPtr != IntPtr.Zero)
throw new NotSupportedException("Attempt to Append to a pinned Mesh");
if (!(newMesh is Mesh))
return;
foreach (Triangle t in ((Mesh)newMesh).m_bdata.m_triangles)
Add(t);
}
// Do a linear transformation of mesh.
public void TransformLinear(float[,] matrix, float[] offset)
{
if (m_indicesPtr != IntPtr.Zero || m_verticesPtr != IntPtr.Zero)
throw new NotSupportedException("Attempt to TransformLinear a pinned Mesh");
foreach (Vertex v in m_bdata.m_vertices.Keys)
{
if (v == null)
continue;
float x, y, z;
x = v.X*matrix[0, 0] + v.Y*matrix[1, 0] + v.Z*matrix[2, 0];
y = v.X*matrix[0, 1] + v.Y*matrix[1, 1] + v.Z*matrix[2, 1];
z = v.X*matrix[0, 2] + v.Y*matrix[1, 2] + v.Z*matrix[2, 2];
v.X = x + offset[0];
v.Y = y + offset[1];
v.Z = z + offset[2];
}
}
public void DumpRaw(String path, String name, String title)
{
if (path == null)
return;
if (m_bdata == null)
return;
String fileName = name + "_" + title + ".raw";
String completePath = System.IO.Path.Combine(path, fileName);
StreamWriter sw = new StreamWriter(completePath);
foreach (Triangle t in m_bdata.m_triangles)
{
String s = t.ToStringRaw();
sw.WriteLine(s);
}
sw.Close();
}
public void TrimExcess()
{
m_bdata.m_triangles.TrimExcess();
}
public void pinMemory()
{
m_vertexCount = vertices.Length / 3;
vhandler = GCHandle.Alloc(vertices, GCHandleType.Pinned);
m_verticesPtr = vhandler.AddrOfPinnedObject();
GC.AddMemoryPressure(Buffer.ByteLength(vertices));
m_indexCount = indexes.Length;
ihandler = GCHandle.Alloc(indexes, GCHandleType.Pinned);
m_indicesPtr = ihandler.AddrOfPinnedObject();
GC.AddMemoryPressure(Buffer.ByteLength(indexes));
}
public void PrepForOde()
{
// If there isn't an unmanaged array allocated yet, do it now
if (m_verticesPtr == IntPtr.Zero)
vertices = getVertexListAsFloat();
// If there isn't an unmanaged array allocated yet, do it now
if (m_indicesPtr == IntPtr.Zero)
indexes = getIndexListAsInt();
float x, y, z;
if (m_bdata.m_centroidDiv > 0)
{
m_obboffset = new Vector3(m_bdata.m_centroid.X / m_bdata.m_centroidDiv, m_bdata.m_centroid.Y / m_bdata.m_centroidDiv, m_bdata.m_centroid.Z / m_bdata.m_centroidDiv);
x = (m_bdata.m_obbXmax - m_bdata.m_obbXmin) * 0.5f;
if(x < 0.0005f)
x = 0.0005f;
y = (m_bdata.m_obbYmax - m_bdata.m_obbYmin) * 0.5f;
if(y < 0.0005f)
y = 0.0005f;
z = (m_bdata.m_obbZmax - m_bdata.m_obbZmin) * 0.5f;
if(z < 0.0005f)
z = 0.0005f;
}
else
{
m_obboffset = Vector3.Zero;
x = 0.5f;
y = 0.5f;
z = 0.5f;
}
m_obb = new Vector3(x, y, z);
releaseBuildingMeshData();
pinMemory();
}
public bool ToStream(Stream st)
{
if (m_indicesPtr == IntPtr.Zero || m_verticesPtr == IntPtr.Zero)
return false;
bool ok = true;
try
{
using(BinaryWriter bw = new BinaryWriter(st))
{
bw.Write(m_vertexCount);
bw.Write(m_indexCount);
for (int i = 0; i < 3 * m_vertexCount; i++)
bw.Write(vertices[i]);
for (int i = 0; i < m_indexCount; i++)
bw.Write(indexes[i]);
bw.Write(m_obb.X);
bw.Write(m_obb.Y);
bw.Write(m_obb.Z);
bw.Write(m_obboffset.X);
bw.Write(m_obboffset.Y);
bw.Write(m_obboffset.Z);
bw.Flush();
bw.Close();
}
}
catch
{
ok = false;
}
return ok;
}
public static Mesh FromStream(Stream st, AMeshKey key)
{
Mesh mesh = new Mesh(false);
bool ok = true;
try
{
using(BinaryReader br = new BinaryReader(st))
{
mesh.m_vertexCount = br.ReadInt32();
mesh.m_indexCount = br.ReadInt32();
int n = 3 * mesh.m_vertexCount;
mesh.vertices = new float[n];
for (int i = 0; i < n; i++)
mesh.vertices[i] = br.ReadSingle();
mesh.indexes = new int[mesh.m_indexCount];
for (int i = 0; i < mesh.m_indexCount; i++)
mesh.indexes[i] = br.ReadInt32();
mesh.m_obb.X = br.ReadSingle();
mesh.m_obb.Y = br.ReadSingle();
mesh.m_obb.Z = br.ReadSingle();
mesh.m_obboffset.X = br.ReadSingle();
mesh.m_obboffset.Y = br.ReadSingle();
mesh.m_obboffset.Z = br.ReadSingle();
}
}
catch
{
ok = false;
}
if (ok)
{
mesh.pinMemory();
mesh.Key = key;
mesh.RefCount = 1;
return mesh;
}
mesh.vertices = null;
mesh.indexes = null;
return null;
}
}
}