1869 lines
72 KiB
C#
1869 lines
72 KiB
C#
/* The MIT License
|
|
*
|
|
* Copyright (c) 2010 Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Based on the convexdecomposition library from
|
|
* <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
|
|
namespace OpenSim.Region.Physics.ConvexDecompositionDotNet
|
|
{
|
|
public static class HullUtils
|
|
{
|
|
public static int argmin(float[] a, int n)
|
|
{
|
|
int r = 0;
|
|
for (int i = 1; i < n; i++)
|
|
{
|
|
if (a[i] < a[r])
|
|
{
|
|
r = i;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
public static float clampf(float a)
|
|
{
|
|
return Math.Min(1.0f, Math.Max(0.0f, a));
|
|
}
|
|
|
|
public static float Round(float a, float precision)
|
|
{
|
|
return (float)Math.Floor(0.5f + a / precision) * precision;
|
|
}
|
|
|
|
public static float Interpolate(float f0, float f1, float alpha)
|
|
{
|
|
return f0 * (1 - alpha) + f1 * alpha;
|
|
}
|
|
|
|
public static void Swap<T>(ref T a, ref T b)
|
|
{
|
|
T tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
}
|
|
|
|
public static bool above(List<float3> vertices, int3 t, float3 p, float epsilon)
|
|
{
|
|
float3 vtx = vertices[t.x];
|
|
float3 n = TriNormal(vtx, vertices[t.y], vertices[t.z]);
|
|
return (float3.dot(n, p - vtx) > epsilon); // EPSILON???
|
|
}
|
|
|
|
public static int hasedge(int3 t, int a, int b)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
int i1 = (i + 1) % 3;
|
|
if (t[i] == a && t[i1] == b)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
public static bool hasvert(int3 t, int v)
|
|
{
|
|
return (t[0] == v || t[1] == v || t[2] == v);
|
|
}
|
|
|
|
public static int shareedge(int3 a, int3 b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
int i1 = (i + 1) % 3;
|
|
if (hasedge(a, b[i1], b[i]) != 0)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
public static void b2bfix(HullTriangle s, HullTriangle t, List<HullTriangle> tris)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
int i1 = (i + 1) % 3;
|
|
int i2 = (i + 2) % 3;
|
|
int a = (s)[i1];
|
|
int b = (s)[i2];
|
|
Debug.Assert(tris[s.neib(a, b)].neib(b, a) == s.id);
|
|
Debug.Assert(tris[t.neib(a, b)].neib(b, a) == t.id);
|
|
tris[s.neib(a, b)].setneib(b, a, t.neib(b, a));
|
|
tris[t.neib(b, a)].setneib(a, b, s.neib(a, b));
|
|
}
|
|
}
|
|
|
|
public static void removeb2b(HullTriangle s, HullTriangle t, List<HullTriangle> tris)
|
|
{
|
|
b2bfix(s, t, tris);
|
|
s.Dispose();
|
|
t.Dispose();
|
|
}
|
|
|
|
public static void checkit(HullTriangle t, List<HullTriangle> tris)
|
|
{
|
|
int i;
|
|
Debug.Assert(tris[t.id] == t);
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
int i1 = (i + 1) % 3;
|
|
int i2 = (i + 2) % 3;
|
|
int a = (t)[i1];
|
|
int b = (t)[i2];
|
|
Debug.Assert(a != b);
|
|
Debug.Assert(tris[t.n[i]].neib(b, a) == t.id);
|
|
}
|
|
}
|
|
|
|
public static void extrude(HullTriangle t0, int v, List<HullTriangle> tris)
|
|
{
|
|
int3 t = t0;
|
|
int n = tris.Count;
|
|
HullTriangle ta = new HullTriangle(v, t[1], t[2], tris);
|
|
ta.n = new int3(t0.n[0], n + 1, n + 2);
|
|
tris[t0.n[0]].setneib(t[1], t[2], n + 0);
|
|
HullTriangle tb = new HullTriangle(v, t[2], t[0], tris);
|
|
tb.n = new int3(t0.n[1], n + 2, n + 0);
|
|
tris[t0.n[1]].setneib(t[2], t[0], n + 1);
|
|
HullTriangle tc = new HullTriangle(v, t[0], t[1], tris);
|
|
tc.n = new int3(t0.n[2], n + 0, n + 1);
|
|
tris[t0.n[2]].setneib(t[0], t[1], n + 2);
|
|
checkit(ta, tris);
|
|
checkit(tb, tris);
|
|
checkit(tc, tris);
|
|
if (hasvert(tris[ta.n[0]], v))
|
|
removeb2b(ta, tris[ta.n[0]], tris);
|
|
if (hasvert(tris[tb.n[0]], v))
|
|
removeb2b(tb, tris[tb.n[0]], tris);
|
|
if (hasvert(tris[tc.n[0]], v))
|
|
removeb2b(tc, tris[tc.n[0]], tris);
|
|
t0.Dispose();
|
|
}
|
|
|
|
public static HullTriangle extrudable(float epsilon, List<HullTriangle> tris)
|
|
{
|
|
int i;
|
|
HullTriangle t = null;
|
|
for (i = 0; i < tris.Count; i++)
|
|
{
|
|
if (t == null || (tris.Count > i && (object)tris[i] != null && t.rise < tris[i].rise))
|
|
{
|
|
t = tris[i];
|
|
}
|
|
}
|
|
return (t.rise > epsilon) ? t : null;
|
|
}
|
|
|
|
public static Quaternion RotationArc(float3 v0, float3 v1)
|
|
{
|
|
Quaternion q = new Quaternion();
|
|
v0 = float3.normalize(v0); // Comment these two lines out if you know its not needed.
|
|
v1 = float3.normalize(v1); // If vector is already unit length then why do it again?
|
|
float3 c = float3.cross(v0, v1);
|
|
float d = float3.dot(v0, v1);
|
|
if (d <= -1.0f) // 180 about x axis
|
|
{
|
|
return new Quaternion(1f, 0f, 0f, 0f);
|
|
}
|
|
float s = (float)Math.Sqrt((1 + d) * 2f);
|
|
q.x = c.x / s;
|
|
q.y = c.y / s;
|
|
q.z = c.z / s;
|
|
q.w = s / 2.0f;
|
|
return q;
|
|
}
|
|
|
|
public static float3 PlaneLineIntersection(Plane plane, float3 p0, float3 p1)
|
|
{
|
|
// returns the point where the line p0-p1 intersects the plane n&d
|
|
float3 dif = p1 - p0;
|
|
float dn = float3.dot(plane.normal, dif);
|
|
float t = -(plane.dist + float3.dot(plane.normal, p0)) / dn;
|
|
return p0 + (dif * t);
|
|
}
|
|
|
|
public static float3 LineProject(float3 p0, float3 p1, float3 a)
|
|
{
|
|
float3 w = new float3();
|
|
w = p1 - p0;
|
|
float t = float3.dot(w, (a - p0)) / (w.x * w.x + w.y * w.y + w.z * w.z);
|
|
return p0 + w * t;
|
|
}
|
|
|
|
public static float3 PlaneProject(Plane plane, float3 point)
|
|
{
|
|
return point - plane.normal * (float3.dot(point, plane.normal) + plane.dist);
|
|
}
|
|
|
|
public static float LineProjectTime(float3 p0, float3 p1, float3 a)
|
|
{
|
|
float3 w = new float3();
|
|
w = p1 - p0;
|
|
float t = float3.dot(w, (a - p0)) / (w.x * w.x + w.y * w.y + w.z * w.z);
|
|
return t;
|
|
}
|
|
|
|
public static float3 ThreePlaneIntersection(Plane p0, Plane p1, Plane p2)
|
|
{
|
|
float3x3 mp = float3x3.Transpose(new float3x3(p0.normal, p1.normal, p2.normal));
|
|
float3x3 mi = float3x3.Inverse(mp);
|
|
float3 b = new float3(p0.dist, p1.dist, p2.dist);
|
|
return -b * mi;
|
|
}
|
|
|
|
public static bool PolyHit(List<float3> vert, float3 v0, float3 v1)
|
|
{
|
|
float3 impact = new float3();
|
|
float3 normal = new float3();
|
|
return PolyHit(vert, v0, v1, out impact, out normal);
|
|
}
|
|
|
|
public static bool PolyHit(List<float3> vert, float3 v0, float3 v1, out float3 impact)
|
|
{
|
|
float3 normal = new float3();
|
|
return PolyHit(vert, v0, v1, out impact, out normal);
|
|
}
|
|
|
|
public static bool PolyHit(List<float3> vert, float3 v0, float3 v1, out float3 impact, out float3 normal)
|
|
{
|
|
float3 the_point = new float3();
|
|
|
|
impact = null;
|
|
normal = null;
|
|
|
|
int i;
|
|
float3 nrml = new float3(0, 0, 0);
|
|
for (i = 0; i < vert.Count; i++)
|
|
{
|
|
int i1 = (i + 1) % vert.Count;
|
|
int i2 = (i + 2) % vert.Count;
|
|
nrml = nrml + float3.cross(vert[i1] - vert[i], vert[i2] - vert[i1]);
|
|
}
|
|
|
|
float m = float3.magnitude(nrml);
|
|
if (m == 0.0)
|
|
{
|
|
return false;
|
|
}
|
|
nrml = nrml * (1.0f / m);
|
|
float dist = -float3.dot(nrml, vert[0]);
|
|
float d0;
|
|
float d1;
|
|
if ((d0 = float3.dot(v0, nrml) + dist) < 0 || (d1 = float3.dot(v1, nrml) + dist) > 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// By using the cached plane distances d0 and d1
|
|
// we can optimize the following:
|
|
// the_point = planelineintersection(nrml,dist,v0,v1);
|
|
float a = d0 / (d0 - d1);
|
|
the_point = v0 * (1 - a) + v1 * a;
|
|
|
|
|
|
bool inside = true;
|
|
for (int j = 0; inside && j < vert.Count; j++)
|
|
{
|
|
// let inside = 0 if outside
|
|
float3 pp1 = new float3();
|
|
float3 pp2 = new float3();
|
|
float3 side = new float3();
|
|
pp1 = vert[j];
|
|
pp2 = vert[(j + 1) % vert.Count];
|
|
side = float3.cross((pp2 - pp1), (the_point - pp1));
|
|
inside = (float3.dot(nrml, side) >= 0.0);
|
|
}
|
|
if (inside)
|
|
{
|
|
if (normal != null)
|
|
{
|
|
normal = nrml;
|
|
}
|
|
if (impact != null)
|
|
{
|
|
impact = the_point;
|
|
}
|
|
}
|
|
return inside;
|
|
}
|
|
|
|
public static bool BoxInside(float3 p, float3 bmin, float3 bmax)
|
|
{
|
|
return (p.x >= bmin.x && p.x <= bmax.x && p.y >= bmin.y && p.y <= bmax.y && p.z >= bmin.z && p.z <= bmax.z);
|
|
}
|
|
|
|
public static bool BoxIntersect(float3 v0, float3 v1, float3 bmin, float3 bmax, float3 impact)
|
|
{
|
|
if (BoxInside(v0, bmin, bmax))
|
|
{
|
|
impact = v0;
|
|
return true;
|
|
}
|
|
if (v0.x <= bmin.x && v1.x >= bmin.x)
|
|
{
|
|
float a = (bmin.x - v0.x) / (v1.x - v0.x);
|
|
//v.x = bmin.x;
|
|
float vy = (1 - a) * v0.y + a * v1.y;
|
|
float vz = (1 - a) * v0.z + a * v1.z;
|
|
if (vy >= bmin.y && vy <= bmax.y && vz >= bmin.z && vz <= bmax.z)
|
|
{
|
|
impact.x = bmin.x;
|
|
impact.y = vy;
|
|
impact.z = vz;
|
|
return true;
|
|
}
|
|
}
|
|
else if (v0.x >= bmax.x && v1.x <= bmax.x)
|
|
{
|
|
float a = (bmax.x - v0.x) / (v1.x - v0.x);
|
|
//v.x = bmax.x;
|
|
float vy = (1 - a) * v0.y + a * v1.y;
|
|
float vz = (1 - a) * v0.z + a * v1.z;
|
|
if (vy >= bmin.y && vy <= bmax.y && vz >= bmin.z && vz <= bmax.z)
|
|
{
|
|
impact.x = bmax.x;
|
|
impact.y = vy;
|
|
impact.z = vz;
|
|
return true;
|
|
}
|
|
}
|
|
if (v0.y <= bmin.y && v1.y >= bmin.y)
|
|
{
|
|
float a = (bmin.y - v0.y) / (v1.y - v0.y);
|
|
float vx = (1 - a) * v0.x + a * v1.x;
|
|
//v.y = bmin.y;
|
|
float vz = (1 - a) * v0.z + a * v1.z;
|
|
if (vx >= bmin.x && vx <= bmax.x && vz >= bmin.z && vz <= bmax.z)
|
|
{
|
|
impact.x = vx;
|
|
impact.y = bmin.y;
|
|
impact.z = vz;
|
|
return true;
|
|
}
|
|
}
|
|
else if (v0.y >= bmax.y && v1.y <= bmax.y)
|
|
{
|
|
float a = (bmax.y - v0.y) / (v1.y - v0.y);
|
|
float vx = (1 - a) * v0.x + a * v1.x;
|
|
// vy = bmax.y;
|
|
float vz = (1 - a) * v0.z + a * v1.z;
|
|
if (vx >= bmin.x && vx <= bmax.x && vz >= bmin.z && vz <= bmax.z)
|
|
{
|
|
impact.x = vx;
|
|
impact.y = bmax.y;
|
|
impact.z = vz;
|
|
return true;
|
|
}
|
|
}
|
|
if (v0.z <= bmin.z && v1.z >= bmin.z)
|
|
{
|
|
float a = (bmin.z - v0.z) / (v1.z - v0.z);
|
|
float vx = (1 - a) * v0.x + a * v1.x;
|
|
float vy = (1 - a) * v0.y + a * v1.y;
|
|
// v.z = bmin.z;
|
|
if (vy >= bmin.y && vy <= bmax.y && vx >= bmin.x && vx <= bmax.x)
|
|
{
|
|
impact.x = vx;
|
|
impact.y = vy;
|
|
impact.z = bmin.z;
|
|
return true;
|
|
}
|
|
}
|
|
else if (v0.z >= bmax.z && v1.z <= bmax.z)
|
|
{
|
|
float a = (bmax.z - v0.z) / (v1.z - v0.z);
|
|
float vx = (1 - a) * v0.x + a * v1.x;
|
|
float vy = (1 - a) * v0.y + a * v1.y;
|
|
// v.z = bmax.z;
|
|
if (vy >= bmin.y && vy <= bmax.y && vx >= bmin.x && vx <= bmax.x)
|
|
{
|
|
impact.x = vx;
|
|
impact.y = vy;
|
|
impact.z = bmax.z;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public static float DistanceBetweenLines(float3 ustart, float3 udir, float3 vstart, float3 vdir, float3 upoint)
|
|
{
|
|
return DistanceBetweenLines(ustart, udir, vstart, vdir, upoint, null);
|
|
}
|
|
|
|
public static float DistanceBetweenLines(float3 ustart, float3 udir, float3 vstart, float3 vdir)
|
|
{
|
|
return DistanceBetweenLines(ustart, udir, vstart, vdir, null, null);
|
|
}
|
|
|
|
public static float DistanceBetweenLines(float3 ustart, float3 udir, float3 vstart, float3 vdir, float3 upoint, float3 vpoint)
|
|
{
|
|
float3 cp = float3.normalize(float3.cross(udir, vdir));
|
|
|
|
float distu = -float3.dot(cp, ustart);
|
|
float distv = -float3.dot(cp, vstart);
|
|
float dist = (float)Math.Abs(distu - distv);
|
|
if (upoint != null)
|
|
{
|
|
Plane plane = new Plane();
|
|
plane.normal = float3.normalize(float3.cross(vdir, cp));
|
|
plane.dist = -float3.dot(plane.normal, vstart);
|
|
upoint = PlaneLineIntersection(plane, ustart, ustart + udir);
|
|
}
|
|
if (vpoint != null)
|
|
{
|
|
Plane plane = new Plane();
|
|
plane.normal = float3.normalize(float3.cross(udir, cp));
|
|
plane.dist = -float3.dot(plane.normal, ustart);
|
|
vpoint = PlaneLineIntersection(plane, vstart, vstart + vdir);
|
|
}
|
|
return dist;
|
|
}
|
|
|
|
public static float3 TriNormal(float3 v0, float3 v1, float3 v2)
|
|
{
|
|
// return the normal of the triangle
|
|
// inscribed by v0, v1, and v2
|
|
float3 cp = float3.cross(v1 - v0, v2 - v1);
|
|
float m = float3.magnitude(cp);
|
|
if (m == 0)
|
|
return new float3(1, 0, 0);
|
|
return cp * (1.0f / m);
|
|
}
|
|
|
|
public static int PlaneTest(Plane p, float3 v, float planetestepsilon)
|
|
{
|
|
float a = float3.dot(v, p.normal) + p.dist;
|
|
int flag = (a > planetestepsilon) ? (2) : ((a < -planetestepsilon) ? (1) : (0));
|
|
return flag;
|
|
}
|
|
|
|
public static int SplitTest(ref ConvexH convex, Plane plane, float planetestepsilon)
|
|
{
|
|
int flag = 0;
|
|
for (int i = 0; i < convex.vertices.Count; i++)
|
|
{
|
|
flag |= PlaneTest(plane, convex.vertices[i], planetestepsilon);
|
|
}
|
|
return flag;
|
|
}
|
|
|
|
public static Quaternion VirtualTrackBall(float3 cop, float3 cor, float3 dir1, float3 dir2)
|
|
{
|
|
// routine taken from game programming gems.
|
|
// Implement track ball functionality to spin stuf on the screen
|
|
// cop center of projection
|
|
// cor center of rotation
|
|
// dir1 old mouse direction
|
|
// dir2 new mouse direction
|
|
// pretend there is a sphere around cor. Then find the points
|
|
// where dir1 and dir2 intersect that sphere. Find the
|
|
// rotation that takes the first point to the second.
|
|
float m;
|
|
// compute plane
|
|
float3 nrml = cor - cop;
|
|
float fudgefactor = 1.0f / (float3.magnitude(nrml) * 0.25f); // since trackball proportional to distance from cop
|
|
nrml = float3.normalize(nrml);
|
|
float dist = -float3.dot(nrml, cor);
|
|
float3 u = PlaneLineIntersection(new Plane(nrml, dist), cop, cop + dir1);
|
|
u = u - cor;
|
|
u = u * fudgefactor;
|
|
m = float3.magnitude(u);
|
|
if (m > 1)
|
|
{
|
|
u /= m;
|
|
}
|
|
else
|
|
{
|
|
u = u - (nrml * (float)Math.Sqrt(1 - m * m));
|
|
}
|
|
float3 v = PlaneLineIntersection(new Plane(nrml, dist), cop, cop + dir2);
|
|
v = v - cor;
|
|
v = v * fudgefactor;
|
|
m = float3.magnitude(v);
|
|
if (m > 1)
|
|
{
|
|
v /= m;
|
|
}
|
|
else
|
|
{
|
|
v = v - (nrml * (float)Math.Sqrt(1 - m * m));
|
|
}
|
|
return RotationArc(u, v);
|
|
}
|
|
|
|
public static bool AssertIntact(ConvexH convex, float planetestepsilon)
|
|
{
|
|
int i;
|
|
int estart = 0;
|
|
for (i = 0; i < convex.edges.Count; i++)
|
|
{
|
|
if (convex.edges[estart].p != convex.edges[i].p)
|
|
{
|
|
estart = i;
|
|
}
|
|
int inext = i + 1;
|
|
if (inext >= convex.edges.Count || convex.edges[inext].p != convex.edges[i].p)
|
|
{
|
|
inext = estart;
|
|
}
|
|
Debug.Assert(convex.edges[inext].p == convex.edges[i].p);
|
|
int nb = convex.edges[i].ea;
|
|
Debug.Assert(nb != 255);
|
|
if (nb == 255 || nb == -1)
|
|
return false;
|
|
Debug.Assert(nb != -1);
|
|
Debug.Assert(i == convex.edges[nb].ea);
|
|
}
|
|
for (i = 0; i < convex.edges.Count; i++)
|
|
{
|
|
Debug.Assert((0) == PlaneTest(convex.facets[convex.edges[i].p], convex.vertices[convex.edges[i].v], planetestepsilon));
|
|
if ((0) != PlaneTest(convex.facets[convex.edges[i].p], convex.vertices[convex.edges[i].v], planetestepsilon))
|
|
return false;
|
|
if (convex.edges[estart].p != convex.edges[i].p)
|
|
{
|
|
estart = i;
|
|
}
|
|
int i1 = i + 1;
|
|
if (i1 >= convex.edges.Count || convex.edges[i1].p != convex.edges[i].p)
|
|
{
|
|
i1 = estart;
|
|
}
|
|
int i2 = i1 + 1;
|
|
if (i2 >= convex.edges.Count || convex.edges[i2].p != convex.edges[i].p)
|
|
{
|
|
i2 = estart;
|
|
}
|
|
if (i == i2) // i sliced tangent to an edge and created 2 meaningless edges
|
|
continue;
|
|
float3 localnormal = TriNormal(convex.vertices[convex.edges[i].v], convex.vertices[convex.edges[i1].v], convex.vertices[convex.edges[i2].v]);
|
|
Debug.Assert(float3.dot(localnormal, convex.facets[convex.edges[i].p].normal) > 0);
|
|
if (float3.dot(localnormal, convex.facets[convex.edges[i].p].normal) <= 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public static ConvexH test_btbq(float planetestepsilon)
|
|
{
|
|
// back to back quads
|
|
ConvexH convex = new ConvexH(4, 8, 2);
|
|
convex.vertices[0] = new float3(0, 0, 0);
|
|
convex.vertices[1] = new float3(1, 0, 0);
|
|
convex.vertices[2] = new float3(1, 1, 0);
|
|
convex.vertices[3] = new float3(0, 1, 0);
|
|
convex.facets[0] = new Plane(new float3(0, 0, 1), 0);
|
|
convex.facets[1] = new Plane(new float3(0, 0, -1), 0);
|
|
convex.edges[0] = new ConvexH.HalfEdge(7, 0, 0);
|
|
convex.edges[1] = new ConvexH.HalfEdge(6, 1, 0);
|
|
convex.edges[2] = new ConvexH.HalfEdge(5, 2, 0);
|
|
convex.edges[3] = new ConvexH.HalfEdge(4, 3, 0);
|
|
|
|
convex.edges[4] = new ConvexH.HalfEdge(3, 0, 1);
|
|
convex.edges[5] = new ConvexH.HalfEdge(2, 3, 1);
|
|
convex.edges[6] = new ConvexH.HalfEdge(1, 2, 1);
|
|
convex.edges[7] = new ConvexH.HalfEdge(0, 1, 1);
|
|
AssertIntact(convex, planetestepsilon);
|
|
return convex;
|
|
}
|
|
|
|
public static ConvexH test_cube()
|
|
{
|
|
ConvexH convex = new ConvexH(8, 24, 6);
|
|
convex.vertices[0] = new float3(0, 0, 0);
|
|
convex.vertices[1] = new float3(0, 0, 1);
|
|
convex.vertices[2] = new float3(0, 1, 0);
|
|
convex.vertices[3] = new float3(0, 1, 1);
|
|
convex.vertices[4] = new float3(1, 0, 0);
|
|
convex.vertices[5] = new float3(1, 0, 1);
|
|
convex.vertices[6] = new float3(1, 1, 0);
|
|
convex.vertices[7] = new float3(1, 1, 1);
|
|
|
|
convex.facets[0] = new Plane(new float3(-1, 0, 0), 0);
|
|
convex.facets[1] = new Plane(new float3(1, 0, 0), -1);
|
|
convex.facets[2] = new Plane(new float3(0, -1, 0), 0);
|
|
convex.facets[3] = new Plane(new float3(0, 1, 0), -1);
|
|
convex.facets[4] = new Plane(new float3(0, 0, -1), 0);
|
|
convex.facets[5] = new Plane(new float3(0, 0, 1), -1);
|
|
|
|
convex.edges[0] = new ConvexH.HalfEdge(11, 0, 0);
|
|
convex.edges[1] = new ConvexH.HalfEdge(23, 1, 0);
|
|
convex.edges[2] = new ConvexH.HalfEdge(15, 3, 0);
|
|
convex.edges[3] = new ConvexH.HalfEdge(16, 2, 0);
|
|
|
|
convex.edges[4] = new ConvexH.HalfEdge(13, 6, 1);
|
|
convex.edges[5] = new ConvexH.HalfEdge(21, 7, 1);
|
|
convex.edges[6] = new ConvexH.HalfEdge(9, 5, 1);
|
|
convex.edges[7] = new ConvexH.HalfEdge(18, 4, 1);
|
|
|
|
convex.edges[8] = new ConvexH.HalfEdge(19, 0, 2);
|
|
convex.edges[9] = new ConvexH.HalfEdge(6, 4, 2);
|
|
convex.edges[10] = new ConvexH.HalfEdge(20, 5, 2);
|
|
convex.edges[11] = new ConvexH.HalfEdge(0, 1, 2);
|
|
|
|
convex.edges[12] = new ConvexH.HalfEdge(22, 3, 3);
|
|
convex.edges[13] = new ConvexH.HalfEdge(4, 7, 3);
|
|
convex.edges[14] = new ConvexH.HalfEdge(17, 6, 3);
|
|
convex.edges[15] = new ConvexH.HalfEdge(2, 2, 3);
|
|
|
|
convex.edges[16] = new ConvexH.HalfEdge(3, 0, 4);
|
|
convex.edges[17] = new ConvexH.HalfEdge(14, 2, 4);
|
|
convex.edges[18] = new ConvexH.HalfEdge(7, 6, 4);
|
|
convex.edges[19] = new ConvexH.HalfEdge(8, 4, 4);
|
|
|
|
convex.edges[20] = new ConvexH.HalfEdge(10, 1, 5);
|
|
convex.edges[21] = new ConvexH.HalfEdge(5, 5, 5);
|
|
convex.edges[22] = new ConvexH.HalfEdge(12, 7, 5);
|
|
convex.edges[23] = new ConvexH.HalfEdge(1, 3, 5);
|
|
|
|
return convex;
|
|
}
|
|
|
|
public static ConvexH ConvexHMakeCube(float3 bmin, float3 bmax)
|
|
{
|
|
ConvexH convex = test_cube();
|
|
convex.vertices[0] = new float3(bmin.x, bmin.y, bmin.z);
|
|
convex.vertices[1] = new float3(bmin.x, bmin.y, bmax.z);
|
|
convex.vertices[2] = new float3(bmin.x, bmax.y, bmin.z);
|
|
convex.vertices[3] = new float3(bmin.x, bmax.y, bmax.z);
|
|
convex.vertices[4] = new float3(bmax.x, bmin.y, bmin.z);
|
|
convex.vertices[5] = new float3(bmax.x, bmin.y, bmax.z);
|
|
convex.vertices[6] = new float3(bmax.x, bmax.y, bmin.z);
|
|
convex.vertices[7] = new float3(bmax.x, bmax.y, bmax.z);
|
|
|
|
convex.facets[0] = new Plane(new float3(-1, 0, 0), bmin.x);
|
|
convex.facets[1] = new Plane(new float3(1, 0, 0), -bmax.x);
|
|
convex.facets[2] = new Plane(new float3(0, -1, 0), bmin.y);
|
|
convex.facets[3] = new Plane(new float3(0, 1, 0), -bmax.y);
|
|
convex.facets[4] = new Plane(new float3(0, 0, -1), bmin.z);
|
|
convex.facets[5] = new Plane(new float3(0, 0, 1), -bmax.z);
|
|
return convex;
|
|
}
|
|
|
|
public static ConvexH ConvexHCrop(ref ConvexH convex, Plane slice, float planetestepsilon)
|
|
{
|
|
int i;
|
|
int vertcountunder = 0;
|
|
int vertcountover = 0;
|
|
List<int> vertscoplanar = new List<int>(); // existing vertex members of convex that are coplanar
|
|
List<int> edgesplit = new List<int>(); // existing edges that members of convex that cross the splitplane
|
|
|
|
Debug.Assert(convex.edges.Count < 480);
|
|
|
|
EdgeFlag[] edgeflag = new EdgeFlag[512];
|
|
VertFlag[] vertflag = new VertFlag[256];
|
|
PlaneFlag[] planeflag = new PlaneFlag[128];
|
|
ConvexH.HalfEdge[] tmpunderedges = new ConvexH.HalfEdge[512];
|
|
Plane[] tmpunderplanes = new Plane[128];
|
|
Coplanar[] coplanaredges = new Coplanar[512];
|
|
int coplanaredges_num = 0;
|
|
|
|
List<float3> createdverts = new List<float3>();
|
|
|
|
// do the side-of-plane tests
|
|
for (i = 0; i < convex.vertices.Count; i++)
|
|
{
|
|
vertflag[i].planetest = (byte)PlaneTest(slice, convex.vertices[i], planetestepsilon);
|
|
if (vertflag[i].planetest == (0))
|
|
{
|
|
// ? vertscoplanar.Add(i);
|
|
vertflag[i].undermap = (byte)vertcountunder++;
|
|
vertflag[i].overmap = (byte)vertcountover++;
|
|
}
|
|
else if (vertflag[i].planetest == (1))
|
|
{
|
|
vertflag[i].undermap = (byte)vertcountunder++;
|
|
}
|
|
else
|
|
{
|
|
Debug.Assert(vertflag[i].planetest == (2));
|
|
vertflag[i].overmap = (byte)vertcountover++;
|
|
vertflag[i].undermap = 255; // for debugging purposes
|
|
}
|
|
}
|
|
int vertcountunderold = vertcountunder; // for debugging only
|
|
|
|
int under_edge_count = 0;
|
|
int underplanescount = 0;
|
|
int e0 = 0;
|
|
|
|
for (int currentplane = 0; currentplane < convex.facets.Count; currentplane++)
|
|
{
|
|
int estart = e0;
|
|
int enextface = 0;
|
|
int planeside = 0;
|
|
int e1 = e0 + 1;
|
|
int vout = -1;
|
|
int vin = -1;
|
|
int coplanaredge = -1;
|
|
do
|
|
{
|
|
|
|
if (e1 >= convex.edges.Count || convex.edges[e1].p != currentplane)
|
|
{
|
|
enextface = e1;
|
|
e1 = estart;
|
|
}
|
|
ConvexH.HalfEdge edge0 = convex.edges[e0];
|
|
ConvexH.HalfEdge edge1 = convex.edges[e1];
|
|
ConvexH.HalfEdge edgea = convex.edges[edge0.ea];
|
|
|
|
planeside |= vertflag[edge0.v].planetest;
|
|
//if((vertflag[edge0.v].planetest & vertflag[edge1.v].planetest) == COPLANAR) {
|
|
// assert(ecop==-1);
|
|
// ecop=e;
|
|
//}
|
|
|
|
if (vertflag[edge0.v].planetest == (2) && vertflag[edge1.v].planetest == (2))
|
|
{
|
|
// both endpoints over plane
|
|
edgeflag[e0].undermap = -1;
|
|
}
|
|
else if ((vertflag[edge0.v].planetest | vertflag[edge1.v].planetest) == (1))
|
|
{
|
|
// at least one endpoint under, the other coplanar or under
|
|
|
|
edgeflag[e0].undermap = (short)under_edge_count;
|
|
tmpunderedges[under_edge_count].v = vertflag[edge0.v].undermap;
|
|
tmpunderedges[under_edge_count].p = (byte)underplanescount;
|
|
if (edge0.ea < e0)
|
|
{
|
|
// connect the neighbors
|
|
Debug.Assert(edgeflag[edge0.ea].undermap != -1);
|
|
tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap;
|
|
tmpunderedges[edgeflag[edge0.ea].undermap].ea = (short)under_edge_count;
|
|
}
|
|
under_edge_count++;
|
|
}
|
|
else if ((vertflag[edge0.v].planetest | vertflag[edge1.v].planetest) == (0))
|
|
{
|
|
// both endpoints coplanar
|
|
// must check a 3rd point to see if UNDER
|
|
int e2 = e1 + 1;
|
|
if (e2 >= convex.edges.Count || convex.edges[e2].p != currentplane)
|
|
{
|
|
e2 = estart;
|
|
}
|
|
Debug.Assert(convex.edges[e2].p == currentplane);
|
|
ConvexH.HalfEdge edge2 = convex.edges[e2];
|
|
if (vertflag[edge2.v].planetest == (1))
|
|
{
|
|
|
|
edgeflag[e0].undermap = (short)under_edge_count;
|
|
tmpunderedges[under_edge_count].v = vertflag[edge0.v].undermap;
|
|
tmpunderedges[under_edge_count].p = (byte)underplanescount;
|
|
tmpunderedges[under_edge_count].ea = -1;
|
|
// make sure this edge is added to the "coplanar" list
|
|
coplanaredge = under_edge_count;
|
|
vout = vertflag[edge0.v].undermap;
|
|
vin = vertflag[edge1.v].undermap;
|
|
under_edge_count++;
|
|
}
|
|
else
|
|
{
|
|
edgeflag[e0].undermap = -1;
|
|
}
|
|
}
|
|
else if (vertflag[edge0.v].planetest == (1) && vertflag[edge1.v].planetest == (2))
|
|
{
|
|
// first is under 2nd is over
|
|
|
|
edgeflag[e0].undermap = (short)under_edge_count;
|
|
tmpunderedges[under_edge_count].v = vertflag[edge0.v].undermap;
|
|
tmpunderedges[under_edge_count].p = (byte)underplanescount;
|
|
if (edge0.ea < e0)
|
|
{
|
|
Debug.Assert(edgeflag[edge0.ea].undermap != -1);
|
|
// connect the neighbors
|
|
tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap;
|
|
tmpunderedges[edgeflag[edge0.ea].undermap].ea = (short)under_edge_count;
|
|
vout = tmpunderedges[edgeflag[edge0.ea].undermap].v;
|
|
}
|
|
else
|
|
{
|
|
Plane p0 = convex.facets[edge0.p];
|
|
Plane pa = convex.facets[edgea.p];
|
|
createdverts.Add(ThreePlaneIntersection(p0, pa, slice));
|
|
//createdverts.Add(PlaneProject(slice,PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v])));
|
|
//createdverts.Add(PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v]));
|
|
vout = vertcountunder++;
|
|
}
|
|
under_edge_count++;
|
|
/// hmmm something to think about: i might be able to output this edge regarless of
|
|
// wheter or not we know v-in yet. ok i;ll try this now:
|
|
tmpunderedges[under_edge_count].v = (byte)vout;
|
|
tmpunderedges[under_edge_count].p = (byte)underplanescount;
|
|
tmpunderedges[under_edge_count].ea = -1;
|
|
coplanaredge = under_edge_count;
|
|
under_edge_count++;
|
|
|
|
if (vin != -1)
|
|
{
|
|
// we previously processed an edge where we came under
|
|
// now we know about vout as well
|
|
|
|
// ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!!
|
|
}
|
|
|
|
}
|
|
else if (vertflag[edge0.v].planetest == (0) && vertflag[edge1.v].planetest == (2))
|
|
{
|
|
// first is coplanar 2nd is over
|
|
|
|
edgeflag[e0].undermap = -1;
|
|
vout = vertflag[edge0.v].undermap;
|
|
// I hate this but i have to make sure part of this face is UNDER before ouputting this vert
|
|
int k = estart;
|
|
Debug.Assert(edge0.p == currentplane);
|
|
while (!((planeside & 1) != 0) && k < convex.edges.Count && convex.edges[k].p == edge0.p)
|
|
{
|
|
planeside |= vertflag[convex.edges[k].v].planetest;
|
|
k++;
|
|
}
|
|
if ((planeside & 1) != 0)
|
|
{
|
|
tmpunderedges[under_edge_count].v = (byte)vout;
|
|
tmpunderedges[under_edge_count].p = (byte)underplanescount;
|
|
tmpunderedges[under_edge_count].ea = -1;
|
|
coplanaredge = under_edge_count; // hmmm should make a note of the edge # for later on
|
|
under_edge_count++;
|
|
|
|
}
|
|
}
|
|
else if (vertflag[edge0.v].planetest == (2) && vertflag[edge1.v].planetest == (1))
|
|
{
|
|
// first is over next is under
|
|
// new vertex!!!
|
|
Debug.Assert(vin == -1);
|
|
if (e0 < edge0.ea)
|
|
{
|
|
Plane p0 = convex.facets[edge0.p];
|
|
Plane pa = convex.facets[edgea.p];
|
|
createdverts.Add(ThreePlaneIntersection(p0, pa, slice));
|
|
//createdverts.Add(PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v]));
|
|
//createdverts.Add(PlaneProject(slice,PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v])));
|
|
vin = vertcountunder++;
|
|
}
|
|
else
|
|
{
|
|
// find the new vertex that was created by edge[edge0.ea]
|
|
int nea = edgeflag[edge0.ea].undermap;
|
|
Debug.Assert(tmpunderedges[nea].p == tmpunderedges[nea + 1].p);
|
|
vin = tmpunderedges[nea + 1].v;
|
|
Debug.Assert(vin < vertcountunder);
|
|
Debug.Assert(vin >= vertcountunderold); // for debugging only
|
|
}
|
|
if (vout != -1)
|
|
{
|
|
// we previously processed an edge where we went over
|
|
// now we know vin too
|
|
// ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!!
|
|
}
|
|
// output edge
|
|
tmpunderedges[under_edge_count].v = (byte)vin;
|
|
tmpunderedges[under_edge_count].p = (byte)underplanescount;
|
|
edgeflag[e0].undermap = (short)under_edge_count;
|
|
if (e0 > edge0.ea)
|
|
{
|
|
Debug.Assert(edgeflag[edge0.ea].undermap != -1);
|
|
// connect the neighbors
|
|
tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap;
|
|
tmpunderedges[edgeflag[edge0.ea].undermap].ea = (short)under_edge_count;
|
|
}
|
|
Debug.Assert(edgeflag[e0].undermap == under_edge_count);
|
|
under_edge_count++;
|
|
}
|
|
else if (vertflag[edge0.v].planetest == (2) && vertflag[edge1.v].planetest == (0))
|
|
{
|
|
// first is over next is coplanar
|
|
|
|
edgeflag[e0].undermap = -1;
|
|
vin = vertflag[edge1.v].undermap;
|
|
Debug.Assert(vin != -1);
|
|
if (vout != -1)
|
|
{
|
|
// we previously processed an edge where we came under
|
|
// now we know both endpoints
|
|
// ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!!
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
Debug.Assert(false);
|
|
}
|
|
|
|
|
|
e0 = e1;
|
|
e1++; // do the modulo at the beginning of the loop
|
|
|
|
} while (e0 != estart);
|
|
e0 = enextface;
|
|
if ((planeside & 1) != 0)
|
|
{
|
|
planeflag[currentplane].undermap = (byte)underplanescount;
|
|
tmpunderplanes[underplanescount] = convex.facets[currentplane];
|
|
underplanescount++;
|
|
}
|
|
else
|
|
{
|
|
planeflag[currentplane].undermap = 0;
|
|
}
|
|
if (vout >= 0 && (planeside & 1) != 0)
|
|
{
|
|
Debug.Assert(vin >= 0);
|
|
Debug.Assert(coplanaredge >= 0);
|
|
Debug.Assert(coplanaredge != 511);
|
|
coplanaredges[coplanaredges_num].ea = (ushort)coplanaredge;
|
|
coplanaredges[coplanaredges_num].v0 = (byte)vin;
|
|
coplanaredges[coplanaredges_num].v1 = (byte)vout;
|
|
coplanaredges_num++;
|
|
}
|
|
}
|
|
|
|
// add the new plane to the mix:
|
|
if (coplanaredges_num > 0)
|
|
{
|
|
tmpunderplanes[underplanescount++] = slice;
|
|
}
|
|
for (i = 0; i < coplanaredges_num - 1; i++)
|
|
{
|
|
if (coplanaredges[i].v1 != coplanaredges[i + 1].v0)
|
|
{
|
|
int j = 0;
|
|
for (j = i + 2; j < coplanaredges_num; j++)
|
|
{
|
|
if (coplanaredges[i].v1 == coplanaredges[j].v0)
|
|
{
|
|
Coplanar tmp = coplanaredges[i + 1];
|
|
coplanaredges[i + 1] = coplanaredges[j];
|
|
coplanaredges[j] = tmp;
|
|
break;
|
|
}
|
|
}
|
|
if (j >= coplanaredges_num)
|
|
{
|
|
Debug.Assert(j < coplanaredges_num);
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
|
|
ConvexH punder = new ConvexH(vertcountunder, under_edge_count + coplanaredges_num, underplanescount);
|
|
ConvexH under = punder;
|
|
|
|
{
|
|
int k = 0;
|
|
for (i = 0; i < convex.vertices.Count; i++)
|
|
{
|
|
if (vertflag[i].planetest != (2))
|
|
{
|
|
under.vertices[k++] = convex.vertices[i];
|
|
}
|
|
}
|
|
i = 0;
|
|
while (k < vertcountunder)
|
|
{
|
|
under.vertices[k++] = createdverts[i++];
|
|
}
|
|
Debug.Assert(i == createdverts.Count);
|
|
}
|
|
|
|
for (i = 0; i < coplanaredges_num; i++)
|
|
{
|
|
ConvexH.HalfEdge edge = under.edges[under_edge_count + i];
|
|
edge.p = (byte)(underplanescount - 1);
|
|
edge.ea = (short)coplanaredges[i].ea;
|
|
edge.v = (byte)coplanaredges[i].v0;
|
|
under.edges[under_edge_count + i] = edge;
|
|
|
|
tmpunderedges[coplanaredges[i].ea].ea = (short)(under_edge_count + i);
|
|
}
|
|
|
|
under.edges = new List<ConvexH.HalfEdge>(tmpunderedges);
|
|
under.facets = new List<Plane>(tmpunderplanes);
|
|
return punder;
|
|
}
|
|
|
|
public static ConvexH ConvexHDup(ConvexH src)
|
|
{
|
|
ConvexH dst = new ConvexH(src.vertices.Count, src.edges.Count, src.facets.Count);
|
|
dst.vertices = new List<float3>(src.vertices.Count);
|
|
foreach (float3 f in src.vertices)
|
|
dst.vertices.Add(new float3(f));
|
|
dst.edges = new List<ConvexH.HalfEdge>(src.edges.Count);
|
|
foreach (ConvexH.HalfEdge e in src.edges)
|
|
dst.edges.Add(new ConvexH.HalfEdge(e));
|
|
dst.facets = new List<Plane>(src.facets.Count);
|
|
foreach (Plane p in src.facets)
|
|
dst.facets.Add(new Plane(p));
|
|
return dst;
|
|
}
|
|
|
|
public static int candidateplane(List<Plane> planes, int planes_count, ConvexH convex, float epsilon)
|
|
{
|
|
int p = 0;
|
|
float md = 0;
|
|
int i;
|
|
for (i = 0; i < planes_count; i++)
|
|
{
|
|
float d = 0;
|
|
for (int j = 0; j < convex.vertices.Count; j++)
|
|
{
|
|
d = Math.Max(d, float3.dot(convex.vertices[j], planes[i].normal) + planes[i].dist);
|
|
}
|
|
if (i == 0 || d > md)
|
|
{
|
|
p = i;
|
|
md = d;
|
|
}
|
|
}
|
|
return (md > epsilon) ? p : -1;
|
|
}
|
|
|
|
public static float3 orth(float3 v)
|
|
{
|
|
float3 a = float3.cross(v, new float3(0f, 0f, 1f));
|
|
float3 b = float3.cross(v, new float3(0f, 1f, 0f));
|
|
return float3.normalize((float3.magnitude(a) > float3.magnitude(b)) ? a : b);
|
|
}
|
|
|
|
public static int maxdir(List<float3> p, int count, float3 dir)
|
|
{
|
|
Debug.Assert(count != 0);
|
|
int m = 0;
|
|
float currDotm = float3.dot(p[0], dir);
|
|
for (int i = 1; i < count; i++)
|
|
{
|
|
float currDoti = float3.dot(p[i], dir);
|
|
if (currDoti > currDotm)
|
|
{
|
|
currDotm = currDoti;
|
|
m = i;
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
public static int maxdirfiltered(List<float3> p, int count, float3 dir, byte[] allow)
|
|
{
|
|
//Debug.Assert(count != 0);
|
|
int m = 0;
|
|
float currDotm = float3.dot(p[0], dir);
|
|
float currDoti;
|
|
|
|
while (allow[m] == 0)
|
|
m++;
|
|
|
|
for (int i = 1; i < count; i++)
|
|
{
|
|
if (allow[i] != 0)
|
|
{
|
|
currDoti = float3.dot(p[i], dir);
|
|
if (currDoti > currDotm)
|
|
{
|
|
currDotm = currDoti;
|
|
m = i;
|
|
}
|
|
}
|
|
}
|
|
//Debug.Assert(m != -1);
|
|
return m;
|
|
}
|
|
|
|
public static int maxdirsterid(List<float3> p, int count, float3 dir, byte[] allow)
|
|
{
|
|
int m = -1;
|
|
while (m == -1)
|
|
{
|
|
m = maxdirfiltered(p, count, dir, allow);
|
|
if (allow[m] == 3)
|
|
return m;
|
|
float3 u = orth(dir);
|
|
float3 v = float3.cross(u, dir);
|
|
int ma = -1;
|
|
for (float x = 0.0f; x <= 360.0f; x += 45.0f)
|
|
{
|
|
int mb;
|
|
{
|
|
float s = (float)Math.Sin((3.14159264f / 180.0f) * (x));
|
|
float c = (float)Math.Cos((3.14159264f / 180.0f) * (x));
|
|
mb = maxdirfiltered(p, count, dir + (u * s + v * c) * 0.025f, allow);
|
|
}
|
|
if (ma == m && mb == m)
|
|
{
|
|
allow[m] = 3;
|
|
return m;
|
|
}
|
|
if (ma != -1 && ma != mb) // Yuck - this is really ugly
|
|
{
|
|
int mc = ma;
|
|
for (float xx = x - 40.0f; xx <= x; xx += 5.0f)
|
|
{
|
|
float s = (float)Math.Sin((3.14159264f / 180.0f) * (xx));
|
|
float c = (float)Math.Cos((3.14159264f / 180.0f) * (xx));
|
|
int md = maxdirfiltered(p, count, dir + (u * s + v * c) * 0.025f, allow);
|
|
if (mc == m && md == m)
|
|
{
|
|
allow[m] = 3;
|
|
return m;
|
|
}
|
|
mc = md;
|
|
}
|
|
}
|
|
ma = mb;
|
|
}
|
|
allow[m] = 0;
|
|
m = -1;
|
|
}
|
|
|
|
Debug.Assert(false);
|
|
return m;
|
|
}
|
|
|
|
public static int4 FindSimplex(List<float3> verts, byte[] allow)
|
|
{
|
|
float3[] basis = new float3[3];
|
|
basis[0] = new float3(0.01f, 0.02f, 1.0f);
|
|
int p0 = maxdirsterid(verts, verts.Count, basis[0], allow);
|
|
int p1 = maxdirsterid(verts, verts.Count, -basis[0], allow);
|
|
basis[0] = verts[p0] - verts[p1];
|
|
if (p0 == p1 || basis[0] == new float3(0, 0, 0))
|
|
return new int4(-1, -1, -1, -1);
|
|
basis[1] = float3.cross(new float3(1, 0.02f, 0), basis[0]);
|
|
basis[2] = float3.cross(new float3(-0.02f, 1, 0), basis[0]);
|
|
basis[1] = float3.normalize((float3.magnitude(basis[1]) > float3.magnitude(basis[2])) ? basis[1] : basis[2]);
|
|
int p2 = maxdirsterid(verts, verts.Count, basis[1], allow);
|
|
if (p2 == p0 || p2 == p1)
|
|
{
|
|
p2 = maxdirsterid(verts, verts.Count, -basis[1], allow);
|
|
}
|
|
if (p2 == p0 || p2 == p1)
|
|
return new int4(-1, -1, -1, -1);
|
|
basis[1] = verts[p2] - verts[p0];
|
|
basis[2] = float3.normalize(float3.cross(basis[1], basis[0]));
|
|
int p3 = maxdirsterid(verts, verts.Count, basis[2], allow);
|
|
if (p3 == p0 || p3 == p1 || p3 == p2)
|
|
p3 = maxdirsterid(verts, verts.Count, -basis[2], allow);
|
|
if (p3 == p0 || p3 == p1 || p3 == p2)
|
|
return new int4(-1, -1, -1, -1);
|
|
Debug.Assert(!(p0 == p1 || p0 == p2 || p0 == p3 || p1 == p2 || p1 == p3 || p2 == p3));
|
|
if (float3.dot(verts[p3] - verts[p0], float3.cross(verts[p1] - verts[p0], verts[p2] - verts[p0])) < 0)
|
|
{
|
|
Swap(ref p2, ref p3);
|
|
}
|
|
return new int4(p0, p1, p2, p3);
|
|
}
|
|
|
|
public static float GetDist(float px, float py, float pz, float3 p2)
|
|
{
|
|
float dx = px - p2.x;
|
|
float dy = py - p2.y;
|
|
float dz = pz - p2.z;
|
|
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
public static void ReleaseHull(PHullResult result)
|
|
{
|
|
if (result.Indices != null)
|
|
result.Indices = null;
|
|
if (result.Vertices != null)
|
|
result.Vertices = null;
|
|
}
|
|
|
|
public static int calchullgen(List<float3> verts, int vlimit, List<HullTriangle> tris)
|
|
{
|
|
if (verts.Count < 4)
|
|
return 0;
|
|
if (vlimit == 0)
|
|
vlimit = 1000000000;
|
|
int j;
|
|
float3 bmin = new float3(verts[0]);
|
|
float3 bmax = new float3(verts[0]);
|
|
List<int> isextreme = new List<int>(verts.Count);
|
|
byte[] allow = new byte[verts.Count];
|
|
for (j = 0; j < verts.Count; j++)
|
|
{
|
|
allow[j] = 1;
|
|
isextreme.Add(0);
|
|
bmin = float3.VectorMin(bmin, verts[j]);
|
|
bmax = float3.VectorMax(bmax, verts[j]);
|
|
}
|
|
float epsilon = float3.magnitude(bmax - bmin) * 0.001f;
|
|
|
|
int4 p = FindSimplex(verts, allow);
|
|
if (p.x == -1) // simplex failed
|
|
return 0;
|
|
|
|
float3 center = (verts[p[0]] + verts[p[1]] + verts[p[2]] + verts[p[3]]) / 4.0f; // a valid interior point
|
|
HullTriangle t0 = new HullTriangle(p[2], p[3], p[1], tris);
|
|
t0.n = new int3(2, 3, 1);
|
|
HullTriangle t1 = new HullTriangle(p[3], p[2], p[0], tris);
|
|
t1.n = new int3(3, 2, 0);
|
|
HullTriangle t2 = new HullTriangle(p[0], p[1], p[3], tris);
|
|
t2.n = new int3(0, 1, 3);
|
|
HullTriangle t3 = new HullTriangle(p[1], p[0], p[2], tris);
|
|
t3.n = new int3(1, 0, 2);
|
|
isextreme[p[0]] = isextreme[p[1]] = isextreme[p[2]] = isextreme[p[3]] = 1;
|
|
checkit(t0, tris);
|
|
checkit(t1, tris);
|
|
checkit(t2, tris);
|
|
checkit(t3, tris);
|
|
|
|
for (j = 0; j < tris.Count; j++)
|
|
{
|
|
HullTriangle t = tris[j];
|
|
Debug.Assert((object)t != null);
|
|
Debug.Assert(t.vmax < 0);
|
|
float3 n = TriNormal(verts[(t)[0]], verts[(t)[1]], verts[(t)[2]]);
|
|
t.vmax = maxdirsterid(verts, verts.Count, n, allow);
|
|
t.rise = float3.dot(n, verts[t.vmax] - verts[(t)[0]]);
|
|
}
|
|
HullTriangle te;
|
|
vlimit -= 4;
|
|
while (vlimit > 0 && (te = extrudable(epsilon, tris)) != null)
|
|
{
|
|
int3 ti = te;
|
|
int v = te.vmax;
|
|
Debug.Assert(isextreme[v] == 0); // wtf we've already done this vertex
|
|
isextreme[v] = 1;
|
|
//if(v==p0 || v==p1 || v==p2 || v==p3) continue; // done these already
|
|
j = tris.Count;
|
|
while (j-- != 0)
|
|
{
|
|
if (tris.Count <= j || (object)tris[j] == null)
|
|
continue;
|
|
int3 t = tris[j];
|
|
if (above(verts, t, verts[v], 0.01f * epsilon))
|
|
{
|
|
extrude(tris[j], v, tris);
|
|
}
|
|
}
|
|
// now check for those degenerate cases where we have a flipped triangle or a really skinny triangle
|
|
j = tris.Count;
|
|
while (j-- != 0)
|
|
{
|
|
if (tris.Count <= j || (object)tris[j] == null)
|
|
continue;
|
|
if (!hasvert(tris[j], v))
|
|
break;
|
|
int3 nt = tris[j];
|
|
if (above(verts, nt, center, 0.01f * epsilon) || float3.magnitude(float3.cross(verts[nt[1]] - verts[nt[0]], verts[nt[2]] - verts[nt[1]])) < epsilon * epsilon * 0.1f)
|
|
{
|
|
HullTriangle nb = tris[tris[j].n[0]];
|
|
Debug.Assert(nb != null);
|
|
Debug.Assert(!hasvert(nb, v));
|
|
Debug.Assert(nb.id < j);
|
|
extrude(nb, v, tris);
|
|
j = tris.Count;
|
|
}
|
|
}
|
|
j = tris.Count;
|
|
while (j-- != 0)
|
|
{
|
|
HullTriangle t = tris[j];
|
|
if (t == null)
|
|
continue;
|
|
if (t.vmax >= 0)
|
|
break;
|
|
float3 n = TriNormal(verts[(t)[0]], verts[(t)[1]], verts[(t)[2]]);
|
|
t.vmax = maxdirsterid(verts, verts.Count, n, allow);
|
|
if (isextreme[t.vmax] != 0)
|
|
{
|
|
t.vmax = -1; // already done that vertex - algorithm needs to be able to terminate.
|
|
}
|
|
else
|
|
{
|
|
t.rise = float3.dot(n, verts[t.vmax] - verts[(t)[0]]);
|
|
}
|
|
}
|
|
vlimit--;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
public static bool calchull(List<float3> verts, out List<int> tris_out, int vlimit, List<HullTriangle> tris)
|
|
{
|
|
tris_out = null;
|
|
|
|
int rc = calchullgen(verts, vlimit, tris);
|
|
if (rc == 0)
|
|
return false;
|
|
List<int> ts = new List<int>();
|
|
for (int i = 0; i < tris.Count; i++)
|
|
{
|
|
if ((object)tris[i] != null)
|
|
{
|
|
for (int j = 0; j < 3; j++)
|
|
ts.Add((tris[i])[j]);
|
|
tris[i] = null;
|
|
}
|
|
}
|
|
|
|
tris_out = ts;
|
|
tris.Clear();
|
|
return true;
|
|
}
|
|
|
|
public static int calchullpbev(List<float3> verts, int vlimit, out List<Plane> planes, float bevangle, List<HullTriangle> tris)
|
|
{
|
|
int i;
|
|
int j;
|
|
planes = new List<Plane>();
|
|
int rc = calchullgen(verts, vlimit, tris);
|
|
if (rc == 0)
|
|
return 0;
|
|
for (i = 0; i < tris.Count; i++)
|
|
{
|
|
if (tris[i] != null)
|
|
{
|
|
Plane p = new Plane();
|
|
HullTriangle t = tris[i];
|
|
p.normal = TriNormal(verts[(t)[0]], verts[(t)[1]], verts[(t)[2]]);
|
|
p.dist = -float3.dot(p.normal, verts[(t)[0]]);
|
|
planes.Add(p);
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
if (t.n[j] < t.id)
|
|
continue;
|
|
HullTriangle s = tris[t.n[j]];
|
|
float3 snormal = TriNormal(verts[(s)[0]], verts[(s)[1]], verts[(s)[2]]);
|
|
if (float3.dot(snormal, p.normal) >= Math.Cos(bevangle * (3.14159264f / 180.0f)))
|
|
continue;
|
|
float3 n = float3.normalize(snormal + p.normal);
|
|
planes.Add(new Plane(n, -float3.dot(n, verts[maxdir(verts, verts.Count, n)])));
|
|
}
|
|
}
|
|
}
|
|
|
|
tris.Clear();
|
|
return 1;
|
|
}
|
|
|
|
public static int overhull(List<Plane> planes, List<float3> verts, int maxplanes, out List<float3> verts_out, out List<int> faces_out, float inflate)
|
|
{
|
|
verts_out = null;
|
|
faces_out = null;
|
|
|
|
int i;
|
|
int j;
|
|
if (verts.Count < 4)
|
|
return 0;
|
|
maxplanes = Math.Min(maxplanes, planes.Count);
|
|
float3 bmin = new float3(verts[0]);
|
|
float3 bmax = new float3(verts[0]);
|
|
for (i = 0; i < verts.Count; i++)
|
|
{
|
|
bmin = float3.VectorMin(bmin, verts[i]);
|
|
bmax = float3.VectorMax(bmax, verts[i]);
|
|
}
|
|
// float diameter = magnitude(bmax-bmin);
|
|
// inflate *=diameter; // RELATIVE INFLATION
|
|
bmin -= new float3(inflate, inflate, inflate);
|
|
bmax += new float3(inflate, inflate, inflate);
|
|
for (i = 0; i < planes.Count; i++)
|
|
{
|
|
planes[i].dist -= inflate;
|
|
}
|
|
float3 emin = new float3(bmin);
|
|
float3 emax = new float3(bmax);
|
|
float epsilon = float3.magnitude(emax - emin) * 0.025f;
|
|
float planetestepsilon = float3.magnitude(emax - emin) * (0.001f);
|
|
// todo: add bounding cube planes to force bevel. or try instead not adding the diameter expansion ??? must think.
|
|
// ConvexH *convex = ConvexHMakeCube(bmin - float3(diameter,diameter,diameter),bmax+float3(diameter,diameter,diameter));
|
|
ConvexH c = ConvexHMakeCube(new float3(bmin), new float3(bmax));
|
|
int k;
|
|
while (maxplanes-- != 0 && (k = candidateplane(planes, planes.Count, c, epsilon)) >= 0)
|
|
{
|
|
ConvexH tmp = c;
|
|
c = ConvexHCrop(ref tmp, planes[k], planetestepsilon);
|
|
if (c == null) // might want to debug this case better!!!
|
|
{
|
|
c = tmp;
|
|
break;
|
|
}
|
|
if (AssertIntact(c, planetestepsilon) == false) // might want to debug this case better too!!!
|
|
{
|
|
c = tmp;
|
|
break;
|
|
}
|
|
tmp.edges = null;
|
|
tmp.facets = null;
|
|
tmp.vertices = null;
|
|
}
|
|
|
|
Debug.Assert(AssertIntact(c, planetestepsilon));
|
|
//return c;
|
|
//C++ TO C# CONVERTER TODO TASK: The memory management function 'malloc' has no equivalent in C#:
|
|
faces_out = new List<int>(); //(int)malloc(sizeof(int) * (1 + c.facets.Count + c.edges.Count)); // new int[1+c->facets.count+c->edges.count];
|
|
int faces_count_out = 0;
|
|
i = 0;
|
|
faces_out[faces_count_out++] = -1;
|
|
k = 0;
|
|
while (i < c.edges.Count)
|
|
{
|
|
j = 1;
|
|
while (j + i < c.edges.Count && c.edges[i].p == c.edges[i + j].p)
|
|
{
|
|
j++;
|
|
}
|
|
faces_out[faces_count_out++] = j;
|
|
while (j-- != 0)
|
|
{
|
|
faces_out[faces_count_out++] = c.edges[i].v;
|
|
i++;
|
|
}
|
|
k++;
|
|
}
|
|
faces_out[0] = k; // number of faces.
|
|
Debug.Assert(k == c.facets.Count);
|
|
Debug.Assert(faces_count_out == 1 + c.facets.Count + c.edges.Count);
|
|
verts_out = c.vertices; // new float3[c->vertices.count];
|
|
int verts_count_out = c.vertices.Count;
|
|
for (i = 0; i < c.vertices.Count; i++)
|
|
{
|
|
verts_out[i] = new float3(c.vertices[i]);
|
|
}
|
|
|
|
c.edges = null;
|
|
c.facets = null;
|
|
c.vertices = null;
|
|
return 1;
|
|
}
|
|
|
|
public static int overhullv(List<float3> verts, int maxplanes, out List<float3> verts_out, out List<int> faces_out, float inflate, float bevangle, int vlimit, List<HullTriangle> tris)
|
|
{
|
|
verts_out = null;
|
|
faces_out = null;
|
|
|
|
if (verts.Count == 0)
|
|
return 0;
|
|
List<Plane> planes = new List<Plane>();
|
|
int rc = calchullpbev(verts, vlimit, out planes, bevangle, tris);
|
|
if (rc == 0)
|
|
return 0;
|
|
return overhull(planes, verts, maxplanes, out verts_out, out faces_out, inflate);
|
|
}
|
|
|
|
public static void addPoint(ref uint vcount, List<float3> p, float x, float y, float z)
|
|
{
|
|
p.Add(new float3(x, y, z));
|
|
vcount++;
|
|
}
|
|
|
|
public static bool ComputeHull(List<float3> vertices, ref PHullResult result, int vlimit, float inflate)
|
|
{
|
|
List<HullTriangle> tris = new List<HullTriangle>();
|
|
List<int> faces;
|
|
List<float3> verts_out;
|
|
|
|
if (inflate == 0.0f)
|
|
{
|
|
List<int> tris_out;
|
|
bool ret = calchull(vertices, out tris_out, vlimit, tris);
|
|
if (ret == false)
|
|
return false;
|
|
|
|
result.Indices = tris_out;
|
|
result.Vertices = vertices;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
int ret = overhullv(vertices, 35, out verts_out, out faces, inflate, 120.0f, vlimit, tris);
|
|
if (ret == 0)
|
|
return false;
|
|
|
|
List<int3> tris2 = new List<int3>();
|
|
int n = faces[0];
|
|
int k = 1;
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
int pn = faces[k++];
|
|
for (int j = 2; j < pn; j++)
|
|
tris2.Add(new int3(faces[k], faces[k + j - 1], faces[k + j]));
|
|
k += pn;
|
|
}
|
|
Debug.Assert(tris2.Count == faces.Count - 1 - (n * 3));
|
|
|
|
result.Indices = new List<int>(tris2.Count * 3);
|
|
for (int i = 0; i < tris2.Count; i++)
|
|
{
|
|
result.Indices.Add(tris2[i].x);
|
|
result.Indices.Add(tris2[i].y);
|
|
result.Indices.Add(tris2[i].z);
|
|
}
|
|
result.Vertices = verts_out;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
private static bool CleanupVertices(List<float3> svertices, out List<float3> vertices, float normalepsilon, out float3 scale)
|
|
{
|
|
const float EPSILON = 0.000001f;
|
|
|
|
vertices = new List<float3>();
|
|
scale = new float3(1f, 1f, 1f);
|
|
|
|
if (svertices.Count == 0)
|
|
return false;
|
|
|
|
uint vcount = 0;
|
|
|
|
float[] recip = new float[3];
|
|
|
|
float[] bmin = { Single.MaxValue, Single.MaxValue, Single.MaxValue };
|
|
float[] bmax = { Single.MinValue, Single.MinValue, Single.MinValue };
|
|
|
|
for (int i = 0; i < svertices.Count; i++)
|
|
{
|
|
float3 p = svertices[i];
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
if (p[j] < bmin[j])
|
|
bmin[j] = p[j];
|
|
if (p[j] > bmax[j])
|
|
bmax[j] = p[j];
|
|
}
|
|
}
|
|
|
|
float dx = bmax[0] - bmin[0];
|
|
float dy = bmax[1] - bmin[1];
|
|
float dz = bmax[2] - bmin[2];
|
|
|
|
float3 center = new float3();
|
|
|
|
center.x = dx * 0.5f + bmin[0];
|
|
center.y = dy * 0.5f + bmin[1];
|
|
center.z = dz * 0.5f + bmin[2];
|
|
|
|
if (dx < EPSILON || dy < EPSILON || dz < EPSILON || svertices.Count < 3)
|
|
{
|
|
float len = Single.MaxValue;
|
|
|
|
if (dx > EPSILON && dx < len)
|
|
len = dx;
|
|
if (dy > EPSILON && dy < len)
|
|
len = dy;
|
|
if (dz > EPSILON && dz < len)
|
|
len = dz;
|
|
|
|
if (len == Single.MaxValue)
|
|
{
|
|
dx = dy = dz = 0.01f; // one centimeter
|
|
}
|
|
else
|
|
{
|
|
if (dx < EPSILON) // 1/5th the shortest non-zero edge.
|
|
dx = len * 0.05f;
|
|
if (dy < EPSILON)
|
|
dy = len * 0.05f;
|
|
if (dz < EPSILON)
|
|
dz = len * 0.05f;
|
|
}
|
|
|
|
float x1 = center[0] - dx;
|
|
float x2 = center[0] + dx;
|
|
|
|
float y1 = center[1] - dy;
|
|
float y2 = center[1] + dy;
|
|
|
|
float z1 = center[2] - dz;
|
|
float z2 = center[2] + dz;
|
|
|
|
addPoint(ref vcount, vertices, x1, y1, z1);
|
|
addPoint(ref vcount, vertices, x2, y1, z1);
|
|
addPoint(ref vcount, vertices, x2, y2, z1);
|
|
addPoint(ref vcount, vertices, x1, y2, z1);
|
|
addPoint(ref vcount, vertices, x1, y1, z2);
|
|
addPoint(ref vcount, vertices, x2, y1, z2);
|
|
addPoint(ref vcount, vertices, x2, y2, z2);
|
|
addPoint(ref vcount, vertices, x1, y2, z2);
|
|
|
|
return true; // return cube
|
|
}
|
|
else
|
|
{
|
|
scale.x = dx;
|
|
scale.y = dy;
|
|
scale.z = dz;
|
|
|
|
recip[0] = 1f / dx;
|
|
recip[1] = 1f / dy;
|
|
recip[2] = 1f / dz;
|
|
|
|
center.x *= recip[0];
|
|
center.y *= recip[1];
|
|
center.z *= recip[2];
|
|
}
|
|
|
|
for (int i = 0; i < svertices.Count; i++)
|
|
{
|
|
float3 p = svertices[i];
|
|
|
|
float px = p[0];
|
|
float py = p[1];
|
|
float pz = p[2];
|
|
|
|
px = px * recip[0]; // normalize
|
|
py = py * recip[1]; // normalize
|
|
pz = pz * recip[2]; // normalize
|
|
|
|
if (true)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < vcount; j++)
|
|
{
|
|
float3 v = vertices[j];
|
|
|
|
float x = v[0];
|
|
float y = v[1];
|
|
float z = v[2];
|
|
|
|
float dx1 = Math.Abs(x - px);
|
|
float dy1 = Math.Abs(y - py);
|
|
float dz1 = Math.Abs(z - pz);
|
|
|
|
if (dx1 < normalepsilon && dy1 < normalepsilon && dz1 < normalepsilon)
|
|
{
|
|
// ok, it is close enough to the old one
|
|
// now let us see if it is further from the center of the point cloud than the one we already recorded.
|
|
// in which case we keep this one instead.
|
|
float dist1 = GetDist(px, py, pz, center);
|
|
float dist2 = GetDist(v[0], v[1], v[2], center);
|
|
|
|
if (dist1 > dist2)
|
|
{
|
|
v.x = px;
|
|
v.y = py;
|
|
v.z = pz;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j == vcount)
|
|
{
|
|
float3 dest = new float3(px, py, pz);
|
|
vertices.Add(dest);
|
|
vcount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ok..now make sure we didn't prune so many vertices it is now invalid.
|
|
if (true)
|
|
{
|
|
float[] bmin2 = { Single.MaxValue, Single.MaxValue, Single.MaxValue };
|
|
float[] bmax2 = { Single.MinValue, Single.MinValue, Single.MinValue };
|
|
|
|
for (int i = 0; i < vcount; i++)
|
|
{
|
|
float3 p = vertices[i];
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
if (p[j] < bmin2[j])
|
|
bmin2[j] = p[j];
|
|
if (p[j] > bmax2[j])
|
|
bmax2[j] = p[j];
|
|
}
|
|
}
|
|
|
|
float dx2 = bmax2[0] - bmin2[0];
|
|
float dy2 = bmax2[1] - bmin2[1];
|
|
float dz2 = bmax2[2] - bmin2[2];
|
|
|
|
if (dx2 < EPSILON || dy2 < EPSILON || dz2 < EPSILON || vcount < 3)
|
|
{
|
|
float cx = dx2 * 0.5f + bmin2[0];
|
|
float cy = dy2 * 0.5f + bmin2[1];
|
|
float cz = dz2 * 0.5f + bmin2[2];
|
|
|
|
float len = Single.MaxValue;
|
|
|
|
if (dx2 >= EPSILON && dx2 < len)
|
|
len = dx2;
|
|
if (dy2 >= EPSILON && dy2 < len)
|
|
len = dy2;
|
|
if (dz2 >= EPSILON && dz2 < len)
|
|
len = dz2;
|
|
|
|
if (len == Single.MaxValue)
|
|
{
|
|
dx2 = dy2 = dz2 = 0.01f; // one centimeter
|
|
}
|
|
else
|
|
{
|
|
if (dx2 < EPSILON) // 1/5th the shortest non-zero edge.
|
|
dx2 = len * 0.05f;
|
|
if (dy2 < EPSILON)
|
|
dy2 = len * 0.05f;
|
|
if (dz2 < EPSILON)
|
|
dz2 = len * 0.05f;
|
|
}
|
|
|
|
float x1 = cx - dx2;
|
|
float x2 = cx + dx2;
|
|
|
|
float y1 = cy - dy2;
|
|
float y2 = cy + dy2;
|
|
|
|
float z1 = cz - dz2;
|
|
float z2 = cz + dz2;
|
|
|
|
vcount = 0; // add box
|
|
|
|
addPoint(ref vcount, vertices, x1, y1, z1);
|
|
addPoint(ref vcount, vertices, x2, y1, z1);
|
|
addPoint(ref vcount, vertices, x2, y2, z1);
|
|
addPoint(ref vcount, vertices, x1, y2, z1);
|
|
addPoint(ref vcount, vertices, x1, y1, z2);
|
|
addPoint(ref vcount, vertices, x2, y1, z2);
|
|
addPoint(ref vcount, vertices, x2, y2, z2);
|
|
addPoint(ref vcount, vertices, x1, y2, z2);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private static void BringOutYourDead(List<float3> verts, out List<float3> overts, List<int> indices)
|
|
{
|
|
int[] used = new int[verts.Count];
|
|
int ocount = 0;
|
|
|
|
overts = new List<float3>();
|
|
|
|
for (int i = 0; i < indices.Count; i++)
|
|
{
|
|
int v = indices[i]; // original array index
|
|
|
|
Debug.Assert(v >= 0 && v < verts.Count);
|
|
|
|
if (used[v] != 0) // if already remapped
|
|
{
|
|
indices[i] = used[v] - 1; // index to new array
|
|
}
|
|
else
|
|
{
|
|
indices[i] = ocount; // new index mapping
|
|
|
|
overts.Add(verts[v]); // copy old vert to new vert array
|
|
|
|
ocount++; // increment output vert count
|
|
|
|
Debug.Assert(ocount >= 0 && ocount <= verts.Count);
|
|
|
|
used[v] = ocount; // assign new index remapping
|
|
}
|
|
}
|
|
}
|
|
|
|
public static HullError CreateConvexHull(HullDesc desc, ref HullResult result)
|
|
{
|
|
HullError ret = HullError.QE_FAIL;
|
|
|
|
PHullResult hr = new PHullResult();
|
|
|
|
uint vcount = (uint)desc.Vertices.Count;
|
|
if (vcount < 8)
|
|
vcount = 8;
|
|
|
|
List<float3> vsource;
|
|
float3 scale = new float3();
|
|
|
|
bool ok = CleanupVertices(desc.Vertices, out vsource, desc.NormalEpsilon, out scale); // normalize point cloud, remove duplicates!
|
|
|
|
if (ok)
|
|
{
|
|
if (true) // scale vertices back to their original size.
|
|
{
|
|
for (int i = 0; i < vsource.Count; i++)
|
|
{
|
|
float3 v = vsource[i];
|
|
v.x *= scale[0];
|
|
v.y *= scale[1];
|
|
v.z *= scale[2];
|
|
}
|
|
}
|
|
|
|
float skinwidth = 0;
|
|
if (desc.HasHullFlag(HullFlag.QF_SKIN_WIDTH))
|
|
skinwidth = desc.SkinWidth;
|
|
|
|
ok = ComputeHull(vsource, ref hr, (int)desc.MaxVertices, skinwidth);
|
|
|
|
if (ok)
|
|
{
|
|
List<float3> vscratch;
|
|
BringOutYourDead(hr.Vertices, out vscratch, hr.Indices);
|
|
|
|
ret = HullError.QE_OK;
|
|
|
|
if (desc.HasHullFlag(HullFlag.QF_TRIANGLES)) // if he wants the results as triangle!
|
|
{
|
|
result.Polygons = false;
|
|
result.Indices = hr.Indices;
|
|
result.OutputVertices = vscratch;
|
|
}
|
|
else
|
|
{
|
|
result.Polygons = true;
|
|
result.OutputVertices = vscratch;
|
|
|
|
if (true)
|
|
{
|
|
List<int> source = hr.Indices;
|
|
List<int> dest = new List<int>();
|
|
for (int i = 0; i < hr.Indices.Count / 3; i++)
|
|
{
|
|
dest.Add(3);
|
|
dest.Add(source[i * 3 + 0]);
|
|
dest.Add(source[i * 3 + 1]);
|
|
dest.Add(source[i * 3 + 2]);
|
|
}
|
|
|
|
result.Indices = dest;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
}
|