OpenSimMirror/addon-modules/ConvexDecompositionDotNet/Plane.cs

100 lines
3.1 KiB
C#

/* The MIT License
*
* Copyright (c) 2010 Intel Corporation.
* All rights reserved.
*
* Based on the convexdecomposition library from
* <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
namespace OpenSim.Region.Physics.ConvexDecompositionDotNet
{
public class Plane
{
public float3 normal = new float3();
public float dist; // distance below origin - the D from plane equasion Ax+By+Cz+D=0
public Plane(float3 n, float d)
{
normal = new float3(n);
dist = d;
}
public Plane(Plane p)
{
normal = new float3(p.normal);
dist = p.dist;
}
public Plane()
{
dist = 0;
}
public void Transform(float3 position, Quaternion orientation)
{
// Transforms the plane to the space defined by the
// given position/orientation
float3 newNormal = Quaternion.Inverse(orientation) * normal;
float3 origin = Quaternion.Inverse(orientation) * (-normal * dist - position);
normal = newNormal;
dist = -float3.dot(newNormal, origin);
}
public override int GetHashCode()
{
return normal.GetHashCode() ^ dist.GetHashCode();
}
public override bool Equals(object obj)
{
Plane p = obj as Plane;
if (p == null)
return false;
return this == p;
}
public static bool operator ==(Plane a, Plane b)
{
return (a.normal == b.normal && a.dist == b.dist);
}
public static bool operator !=(Plane a, Plane b)
{
return !(a == b);
}
public static Plane PlaneFlip(Plane plane)
{
return new Plane(-plane.normal, -plane.dist);
}
public static bool coplanar(Plane a, Plane b)
{
return (a == b || a == PlaneFlip(b));
}
}
}