OpenSimMirror/addon-modules/ConvexDecompositionDotNet/float3x3.cs

196 lines
6.3 KiB
C#

/* The MIT License
*
* Copyright (c) 2010 Intel Corporation.
* All rights reserved.
*
* Based on the convexdecomposition library from
* <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace OpenSim.Region.Physics.ConvexDecompositionDotNet
{
public class float3x3
{
public float3 x = new float3();
public float3 y = new float3();
public float3 z = new float3();
public float3x3()
{
}
public float3x3(float xx, float xy, float xz, float yx, float yy, float yz, float zx, float zy, float zz)
{
x = new float3(xx, xy, xz);
y = new float3(yx, yy, yz);
z = new float3(zx, zy, zz);
}
public float3x3(float3 _x, float3 _y, float3 _z)
{
x = new float3(_x);
y = new float3(_y);
z = new float3(_z);
}
public float3 this[int i]
{
get
{
switch (i)
{
case 0: return x;
case 1: return y;
case 2: return z;
}
throw new ArgumentOutOfRangeException();
}
}
public float this[int i, int j]
{
get
{
switch (i)
{
case 0:
switch (j)
{
case 0: return x.x;
case 1: return x.y;
case 2: return x.z;
}
break;
case 1:
switch (j)
{
case 0: return y.x;
case 1: return y.y;
case 2: return y.z;
}
break;
case 2:
switch (j)
{
case 0: return z.x;
case 1: return z.y;
case 2: return z.z;
}
break;
}
throw new ArgumentOutOfRangeException();
}
set
{
switch (i)
{
case 0:
switch (j)
{
case 0: x.x = value; return;
case 1: x.y = value; return;
case 2: x.z = value; return;
}
break;
case 1:
switch (j)
{
case 0: y.x = value; return;
case 1: y.y = value; return;
case 2: y.z = value; return;
}
break;
case 2:
switch (j)
{
case 0: z.x = value; return;
case 1: z.y = value; return;
case 2: z.z = value; return;
}
break;
}
throw new ArgumentOutOfRangeException();
}
}
public static float3x3 Transpose(float3x3 m)
{
return new float3x3(new float3(m.x.x, m.y.x, m.z.x), new float3(m.x.y, m.y.y, m.z.y), new float3(m.x.z, m.y.z, m.z.z));
}
public static float3x3 operator *(float3x3 a, float3x3 b)
{
return new float3x3(a.x * b, a.y * b, a.z * b);
}
public static float3x3 operator *(float3x3 a, float s)
{
return new float3x3(a.x * s, a.y * s, a.z * s);
}
public static float3x3 operator /(float3x3 a, float s)
{
float t = 1f / s;
return new float3x3(a.x * t, a.y * t, a.z * t);
}
public static float3x3 operator +(float3x3 a, float3x3 b)
{
return new float3x3(a.x + b.x, a.y + b.y, a.z + b.z);
}
public static float3x3 operator -(float3x3 a, float3x3 b)
{
return new float3x3(a.x - b.x, a.y - b.y, a.z - b.z);
}
public static float Determinant(float3x3 m)
{
return m.x.x * m.y.y * m.z.z + m.y.x * m.z.y * m.x.z + m.z.x * m.x.y * m.y.z - m.x.x * m.z.y * m.y.z - m.y.x * m.x.y * m.z.z - m.z.x * m.y.y * m.x.z;
}
public static float3x3 Inverse(float3x3 a)
{
float3x3 b = new float3x3();
float d = Determinant(a);
Debug.Assert(d != 0);
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
int i1 = (i + 1) % 3;
int i2 = (i + 2) % 3;
int j1 = (j + 1) % 3;
int j2 = (j + 2) % 3;
// reverse indexs i&j to take transpose
b[i, j] = (a[i1][j1] * a[i2][j2] - a[i1][j2] * a[i2][j1]) / d;
}
}
return b;
}
}
}