OpenSimMirror/libraries/ode-0.9/OPCODE/Ice/IceIndexedTriangle.cpp

549 lines
24 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains a handy indexed triangle class.
* \file IceIndexedTriangle.cpp
* \author Pierre Terdiman
* \date January, 17, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace IceMaths;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains an indexed triangle class.
*
* \class Triangle
* \author Pierre Terdiman
* \version 1.0
* \date 08.15.98
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Flips the winding order.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::Flip()
{
Swap(mVRef[1], mVRef[2]);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle area.
* \param verts [in] the list of indexed vertices
* \return the area
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::Area(const Point* verts) const
{
if(!verts) return 0.0f;
const Point& p0 = verts[0];
const Point& p1 = verts[1];
const Point& p2 = verts[2];
return ((p0-p1)^(p0-p2)).Magnitude() * 0.5f;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle perimeter.
* \param verts [in] the list of indexed vertices
* \return the perimeter
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::Perimeter(const Point* verts) const
{
if(!verts) return 0.0f;
const Point& p0 = verts[0];
const Point& p1 = verts[1];
const Point& p2 = verts[2];
return p0.Distance(p1)
+ p0.Distance(p2)
+ p1.Distance(p2);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle compacity.
* \param verts [in] the list of indexed vertices
* \return the compacity
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::Compacity(const Point* verts) const
{
if(!verts) return 0.0f;
float P = Perimeter(verts);
if(P==0.0f) return 0.0f;
return (4.0f*PI*Area(verts)/(P*P));
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle normal.
* \param verts [in] the list of indexed vertices
* \param normal [out] the computed normal
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::Normal(const Point* verts, Point& normal) const
{
if(!verts) return;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
normal = ((p2-p1)^(p0-p1)).Normalize();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle denormalized normal.
* \param verts [in] the list of indexed vertices
* \param normal [out] the computed normal
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::DenormalizedNormal(const Point* verts, Point& normal) const
{
if(!verts) return;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
normal = ((p2-p1)^(p0-p1));
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle center.
* \param verts [in] the list of indexed vertices
* \param center [out] the computed center
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::Center(const Point* verts, Point& center) const
{
if(!verts) return;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
center = (p0+p1+p2)*INV3;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the centered normal
* \param verts [in] the list of indexed vertices
* \param normal [out] the computed centered normal
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::CenteredNormal(const Point* verts, Point& normal) const
{
if(!verts) return;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
Point Center = (p0+p1+p2)*INV3;
normal = Center + ((p2-p1)^(p0-p1)).Normalize();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes a random point within the triangle.
* \param verts [in] the list of indexed vertices
* \param normal [out] the computed centered normal
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::RandomPoint(const Point* verts, Point& random) const
{
if(!verts) return;
// Random barycentric coords
float Alpha = UnitRandomFloat();
float Beta = UnitRandomFloat();
float Gamma = UnitRandomFloat();
float OneOverTotal = 1.0f / (Alpha + Beta + Gamma);
Alpha *= OneOverTotal;
Beta *= OneOverTotal;
Gamma *= OneOverTotal;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
random = Alpha*p0 + Beta*p1 + Gamma*p2;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes backface culling.
* \param verts [in] the list of indexed vertices
* \param source [in] source point (in local space) from which culling must be computed
* \return true if the triangle is visible from the source point
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::IsVisible(const Point* verts, const Point& source) const
{
// Checkings
if(!verts) return false;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
// Compute denormalized normal
Point Normal = (p2 - p1)^(p0 - p1);
// Backface culling
return (Normal | source) >= 0.0f;
// Same as:
// Plane PL(verts[mVRef[0]], verts[mVRef[1]], verts[mVRef[2]]);
// return PL.Distance(source) > PL.d;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes backface culling.
* \param verts [in] the list of indexed vertices
* \param source [in] source point (in local space) from which culling must be computed
* \return true if the triangle is visible from the source point
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::BackfaceCulling(const Point* verts, const Point& source) const
{
// Checkings
if(!verts) return false;
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
// Compute base
// Point Base = (p0 + p1 + p2)*INV3;
// Compute denormalized normal
Point Normal = (p2 - p1)^(p0 - p1);
// Backface culling
// return (Normal | (source - Base)) >= 0.0f;
return (Normal | (source - p0)) >= 0.0f;
// Same as: (but a bit faster)
// Plane PL(verts[mVRef[0]], verts[mVRef[1]], verts[mVRef[2]]);
// return PL.Distance(source)>0.0f;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the occlusion potential of the triangle.
* \param verts [in] the list of indexed vertices
* \param source [in] source point (in local space) from which occlusion potential must be computed
* \return the occlusion potential
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::ComputeOcclusionPotential(const Point* verts, const Point& view) const
{
if(!verts) return 0.0f;
// Occlusion potential: -(A * (N|V) / d^2)
// A = polygon area
// N = polygon normal
// V = view vector
// d = distance viewpoint-center of polygon
float A = Area(verts);
Point N; Normal(verts, N);
Point C; Center(verts, C);
float d = view.Distance(C);
return -(A*(N|view))/(d*d);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Replaces a vertex reference with another one.
* \param oldref [in] the vertex reference to replace
* \param newref [in] the new vertex reference
* \return true if success, else false if the input vertex reference doesn't belong to the triangle
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::ReplaceVertex(udword oldref, udword newref)
{
if(mVRef[0]==oldref) { mVRef[0] = newref; return true; }
else if(mVRef[1]==oldref) { mVRef[1] = newref; return true; }
else if(mVRef[2]==oldref) { mVRef[2] = newref; return true; }
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Checks whether the triangle is degenerate or not. A degenerate triangle has two common vertex references. This is a zero-area triangle.
* \return true if the triangle is degenerate
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::IsDegenerate() const
{
if(mVRef[0]==mVRef[1]) return true;
if(mVRef[1]==mVRef[2]) return true;
if(mVRef[2]==mVRef[0]) return true;
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Checks whether the input vertex reference belongs to the triangle or not.
* \param ref [in] the vertex reference to look for
* \return true if the triangle contains the vertex reference
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::HasVertex(udword ref) const
{
if(mVRef[0]==ref) return true;
if(mVRef[1]==ref) return true;
if(mVRef[2]==ref) return true;
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Checks whether the input vertex reference belongs to the triangle or not.
* \param ref [in] the vertex reference to look for
* \param index [out] the corresponding index in the triangle
* \return true if the triangle contains the vertex reference
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::HasVertex(udword ref, udword* index) const
{
if(mVRef[0]==ref) { *index = 0; return true; }
if(mVRef[1]==ref) { *index = 1; return true; }
if(mVRef[2]==ref) { *index = 2; return true; }
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Finds an edge in a tri, given two vertex references.
* \param vref0 [in] the edge's first vertex reference
* \param vref1 [in] the edge's second vertex reference
* \return the edge number between 0 and 2, or 0xff if input refs are wrong.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
ubyte IndexedTriangle::FindEdge(udword vref0, udword vref1) const
{
if(mVRef[0]==vref0 && mVRef[1]==vref1) return 0;
else if(mVRef[0]==vref1 && mVRef[1]==vref0) return 0;
else if(mVRef[0]==vref0 && mVRef[2]==vref1) return 1;
else if(mVRef[0]==vref1 && mVRef[2]==vref0) return 1;
else if(mVRef[1]==vref0 && mVRef[2]==vref1) return 2;
else if(mVRef[1]==vref1 && mVRef[2]==vref0) return 2;
return 0xff;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the last reference given the first two.
* \param vref0 [in] the first vertex reference
* \param vref1 [in] the second vertex reference
* \return the last reference, or INVALID_ID if input refs are wrong.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
udword IndexedTriangle::OppositeVertex(udword vref0, udword vref1) const
{
if(mVRef[0]==vref0 && mVRef[1]==vref1) return mVRef[2];
else if(mVRef[0]==vref1 && mVRef[1]==vref0) return mVRef[2];
else if(mVRef[0]==vref0 && mVRef[2]==vref1) return mVRef[1];
else if(mVRef[0]==vref1 && mVRef[2]==vref0) return mVRef[1];
else if(mVRef[1]==vref0 && mVRef[2]==vref1) return mVRef[0];
else if(mVRef[1]==vref1 && mVRef[2]==vref0) return mVRef[0];
return INVALID_ID;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the three sorted vertex references according to an edge number.
* edgenb = 0 => edge 0-1, returns references 0, 1, 2
* edgenb = 1 => edge 0-2, returns references 0, 2, 1
* edgenb = 2 => edge 1-2, returns references 1, 2, 0
*
* \param edgenb [in] the edge number, 0, 1 or 2
* \param vref0 [out] the returned first vertex reference
* \param vref1 [out] the returned second vertex reference
* \param vref2 [out] the returned third vertex reference
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::GetVRefs(ubyte edgenb, udword& vref0, udword& vref1, udword& vref2) const
{
if(edgenb==0)
{
vref0 = mVRef[0];
vref1 = mVRef[1];
vref2 = mVRef[2];
}
else if(edgenb==1)
{
vref0 = mVRef[0];
vref1 = mVRef[2];
vref2 = mVRef[1];
}
else if(edgenb==2)
{
vref0 = mVRef[1];
vref1 = mVRef[2];
vref2 = mVRef[0];
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle's smallest edge length.
* \param verts [in] the list of indexed vertices
* \return the smallest edge length
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::MinEdgeLength(const Point* verts) const
{
if(!verts) return 0.0f;
float Min = MAX_FLOAT;
float Length01 = verts[0].Distance(verts[1]);
float Length02 = verts[0].Distance(verts[2]);
float Length12 = verts[1].Distance(verts[2]);
if(Length01 < Min) Min = Length01;
if(Length02 < Min) Min = Length02;
if(Length12 < Min) Min = Length12;
return Min;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the triangle's largest edge length.
* \param verts [in] the list of indexed vertices
* \return the largest edge length
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::MaxEdgeLength(const Point* verts) const
{
if(!verts) return 0.0f;
float Max = MIN_FLOAT;
float Length01 = verts[0].Distance(verts[1]);
float Length02 = verts[0].Distance(verts[2]);
float Length12 = verts[1].Distance(verts[2]);
if(Length01 > Max) Max = Length01;
if(Length02 > Max) Max = Length02;
if(Length12 > Max) Max = Length12;
return Max;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes a point on the triangle according to the stabbing information.
* \param verts [in] the list of indexed vertices
* \param u,v [in] point's barycentric coordinates
* \param pt [out] point on triangle
* \param nearvtx [out] index of nearest vertex
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void IndexedTriangle::ComputePoint(const Point* verts, float u, float v, Point& pt, udword* nearvtx) const
{
// Checkings
if(!verts) return;
// Get face in local or global space
const Point& p0 = verts[mVRef[0]];
const Point& p1 = verts[mVRef[1]];
const Point& p2 = verts[mVRef[2]];
// Compute point coordinates
pt = (1.0f - u - v)*p0 + u*p1 + v*p2;
// Compute nearest vertex if needed
if(nearvtx)
{
// Compute distance vector
Point d(p0.SquareDistance(pt), // Distance^2 from vertex 0 to point on the face
p1.SquareDistance(pt), // Distance^2 from vertex 1 to point on the face
p2.SquareDistance(pt)); // Distance^2 from vertex 2 to point on the face
// Get smallest distance
*nearvtx = mVRef[d.SmallestAxis()];
}
}
//**************************************
// Angle between two vectors (in radians)
// we use this formula
// uv = |u||v| cos(u,v)
// u ^ v = w
// |w| = |u||v| |sin(u,v)|
//**************************************
float Angle(const Point& u, const Point& v)
{
float NormU = u.Magnitude(); // |u|
float NormV = v.Magnitude(); // |v|
float Product = NormU*NormV; // |u||v|
if(Product==0.0f) return 0.0f;
float OneOverProduct = 1.0f / Product;
// Cosinus
float Cosinus = (u|v) * OneOverProduct;
// Sinus
Point w = u^v;
float NormW = w.Magnitude();
float AbsSinus = NormW * OneOverProduct;
// Remove degeneracy
if(AbsSinus > 1.0f) AbsSinus = 1.0f;
if(AbsSinus < -1.0f) AbsSinus = -1.0f;
if(Cosinus>=0.0f) return asinf(AbsSinus);
else return (PI-asinf(AbsSinus));
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the angle between two triangles.
* \param tri [in] the other triangle
* \param verts [in] the list of indexed vertices
* \return the angle in radians
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
float IndexedTriangle::Angle(const IndexedTriangle& tri, const Point* verts) const
{
// Checkings
if(!verts) return 0.0f;
// Compute face normals
Point n0, n1;
Normal(verts, n0);
tri.Normal(verts, n1);
// Compute angle
float dp = n0|n1;
if(dp>1.0f) return 0.0f;
if(dp<-1.0f) return PI;
return acosf(dp);
// return ::Angle(n0,n1);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Checks a triangle is the same as another one.
* \param tri [in] the other triangle
* \return true if same triangle
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool IndexedTriangle::Equal(const IndexedTriangle& tri) const
{
// Test all vertex references
return (HasVertex(tri.mVRef[0]) &&
HasVertex(tri.mVRef[1]) &&
HasVertex(tri.mVRef[2]));
}