OpenSimMirror/libraries/ode-0.9/OPCODE/Ice/IceUtils.h

257 lines
11 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains misc. useful macros & defines.
* \file IceUtils.h
* \author Pierre Terdiman (collected from various sources)
* \date April, 4, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include Guard
#ifndef __ICEUTILS_H__
#define __ICEUTILS_H__
#define START_RUNONCE { static bool __RunOnce__ = false; if(!__RunOnce__){
#define END_RUNONCE __RunOnce__ = true;}}
//! Reverse all the bits in a 32 bit word (from Steve Baker's Cute Code Collection)
//! (each line can be done in any order.
inline_ void ReverseBits(udword& n)
{
n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa);
n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc);
n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0);
n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00);
n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000);
// Etc for larger intergers (64 bits in Java)
// NOTE: the >> operation must be unsigned! (>>> in java)
}
//! Count the number of '1' bits in a 32 bit word (from Steve Baker's Cute Code Collection)
inline_ udword CountBits(udword n)
{
// This relies of the fact that the count of n bits can NOT overflow
// an n bit interger. EG: 1 bit count takes a 1 bit interger, 2 bit counts
// 2 bit interger, 3 bit count requires only a 2 bit interger.
// So we add all bit pairs, then each nible, then each byte etc...
n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1);
n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2);
n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4);
n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8);
n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16);
// Etc for larger intergers (64 bits in Java)
// NOTE: the >> operation must be unsigned! (>>> in java)
return n;
}
//! Even faster?
inline_ udword CountBits2(udword bits)
{
bits = bits - ((bits >> 1) & 0x55555555);
bits = ((bits >> 2) & 0x33333333) + (bits & 0x33333333);
bits = ((bits >> 4) + bits) & 0x0F0F0F0F;
return (bits * 0x01010101) >> 24;
}
//! Spread out bits. EG 00001111 -> 0101010101
//! 00001010 -> 0100010000
//! This is used to interleve to intergers to produce a `Morten Key'
//! used in Space Filling Curves (See DrDobbs Journal, July 1999)
//! Order is important.
inline_ void SpreadBits(udword& n)
{
n = ( n & 0x0000ffff) | (( n & 0xffff0000) << 16);
n = ( n & 0x000000ff) | (( n & 0x0000ff00) << 8);
n = ( n & 0x000f000f) | (( n & 0x00f000f0) << 4);
n = ( n & 0x03030303) | (( n & 0x0c0c0c0c) << 2);
n = ( n & 0x11111111) | (( n & 0x22222222) << 1);
}
// Next Largest Power of 2
// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
// largest power of 2. For a 32-bit value:
inline_ udword nlpo2(udword x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x+1;
}
//! Test to see if a number is an exact power of two (from Steve Baker's Cute Code Collection)
inline_ bool IsPowerOfTwo(udword n) { return ((n&(n-1))==0); }
//! Zero the least significant '1' bit in a word. (from Steve Baker's Cute Code Collection)
inline_ void ZeroLeastSetBit(udword& n) { n&=(n-1); }
//! Set the least significant N bits in a word. (from Steve Baker's Cute Code Collection)
inline_ void SetLeastNBits(udword& x, udword n) { x|=~(~0<<n); }
//! Classic XOR swap (from Steve Baker's Cute Code Collection)
//! x ^= y; /* x' = (x^y) */
//! y ^= x; /* y' = (y^(x^y)) = x */
//! x ^= y; /* x' = (x^y)^x = y */
inline_ void Swap(udword& x, udword& y) { x ^= y; y ^= x; x ^= y; }
//! Little/Big endian (from Steve Baker's Cute Code Collection)
//!
//! Extra comments by Kenny Hoff:
//! Determines the byte-ordering of the current machine (little or big endian)
//! by setting an integer value to 1 (so least significant bit is now 1); take
//! the address of the int and cast to a byte pointer (treat integer as an
//! array of four bytes); check the value of the first byte (must be 0 or 1).
//! If the value is 1, then the first byte least significant byte and this
//! implies LITTLE endian. If the value is 0, the first byte is the most
//! significant byte, BIG endian. Examples:
//! integer 1 on BIG endian: 00000000 00000000 00000000 00000001
//! integer 1 on LITTLE endian: 00000001 00000000 00000000 00000000
//!---------------------------------------------------------------------------
//! int IsLittleEndian() { int x=1; return ( ((char*)(&x))[0] ); }
inline_ char LittleEndian() { int i = 1; return *((char*)&i); }
//!< Alternative abs function
inline_ udword abs_(sdword x) { sdword y= x >> 31; return (x^y)-y; }
//!< Alternative min function
inline_ sdword min_(sdword a, sdword b) { sdword delta = b-a; return a + (delta&(delta>>31)); }
// Determine if one of the bytes in a 4 byte word is zero
inline_ BOOL HasNullByte(udword x) { return ((x + 0xfefefeff) & (~x) & 0x80808080); }
// To find the smallest 1 bit in a word EG: ~~~~~~10---0 => 0----010---0
inline_ udword LowestOneBit(udword w) { return ((w) & (~(w)+1)); }
// inline_ udword LowestOneBit_(udword w) { return ((w) & (-(w))); }
// Most Significant 1 Bit
// Given a binary integer value x, the most significant 1 bit (highest numbered element of a bit set)
// can be computed using a SWAR algorithm that recursively "folds" the upper bits into the lower bits.
// This process yields a bit vector with the same most significant 1 as x, but all 1's below it.
// Bitwise AND of the original value with the complement of the "folded" value shifted down by one
// yields the most significant bit. For a 32-bit value:
inline_ udword msb32(udword x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return (x & ~(x >> 1));
}
/*
"Just call it repeatedly with various input values and always with the same variable as "memory".
The sharpness determines the degree of filtering, where 0 completely filters out the input, and 1
does no filtering at all.
I seem to recall from college that this is called an IIR (Infinite Impulse Response) filter. As opposed
to the more typical FIR (Finite Impulse Response).
Also, I'd say that you can make more intelligent and interesting filters than this, for example filters
that remove wrong responses from the mouse because it's being moved too fast. You'd want such a filter
to be applied before this one, of course."
(JCAB on Flipcode)
*/
inline_ float FeedbackFilter(float val, float& memory, float sharpness)
{
ASSERT(sharpness>=0.0f && sharpness<=1.0f && "Invalid sharpness value in feedback filter");
if(sharpness<0.0f) sharpness = 0.0f;
else if(sharpness>1.0f) sharpness = 1.0f;
return memory = val * sharpness + memory * (1.0f - sharpness);
}
//! If you can guarantee that your input domain (i.e. value of x) is slightly
//! limited (abs(x) must be < ((1<<31u)-32767)), then you can use the
//! following code to clamp the resulting value into [-32768,+32767] range:
inline_ int ClampToInt16(int x)
{
// ASSERT(abs(x) < (int)((1<<31u)-32767));
int delta = 32767 - x;
x += (delta>>31) & delta;
delta = x + 32768;
x -= (delta>>31) & delta;
return x;
}
// Generic functions
template<class Type> inline_ void TSwap(Type& a, Type& b) { const Type c = a; a = b; b = c; }
template<class Type> inline_ Type TClamp(const Type& x, const Type& lo, const Type& hi) { return ((x<lo) ? lo : (x>hi) ? hi : x); }
template<class Type> inline_ void TSort(Type& a, Type& b)
{
if(a>b) TSwap(a, b);
}
template<class Type> inline_ void TSort(Type& a, Type& b, Type& c)
{
if(a>b) TSwap(a, b);
if(b>c) TSwap(b, c);
if(a>b) TSwap(a, b);
if(b>c) TSwap(b, c);
}
// Prevent nasty user-manipulations (strategy borrowed from Charles Bloom)
// #define PREVENT_COPY(curclass) void operator = (const curclass& object) { ASSERT(!"Bad use of operator ="); }
// ... actually this is better !
#define PREVENT_COPY(cur_class) private: cur_class(const cur_class& object); cur_class& operator=(const cur_class& object);
//! TO BE DOCUMENTED
#define OFFSET_OF(Class, Member) (size_t)&(((Class*)0)->Member)
//! TO BE DOCUMENTED
#define ARRAYSIZE(p) (sizeof(p)/sizeof(p[0]))
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns the alignment of the input address.
* \fn Alignment()
* \param address [in] address to check
* \return the best alignment (e.g. 1 for odd addresses, etc)
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FUNCTION ICECORE_API udword Alignment(udword address);
#define IS_ALIGNED_2(x) ((x&1)==0)
#define IS_ALIGNED_4(x) ((x&3)==0)
#define IS_ALIGNED_8(x) ((x&7)==0)
inline_ void _prefetch(void const* ptr) { (void)*(char const volatile *)ptr; }
// Compute implicit coords from an index:
// The idea is to get back 2D coords from a 1D index.
// For example:
//
// 0 1 2 ... nbu-1
// nbu nbu+1 i ...
//
// We have i, we're looking for the equivalent (u=2, v=1) location.
// i = u + v*nbu
// <=> i/nbu = u/nbu + v
// Since 0 <= u < nbu, u/nbu = 0 (integer)
// Hence: v = i/nbu
// Then we simply put it back in the original equation to compute u = i - v*nbu
inline_ void Compute2DCoords(udword& u, udword& v, udword i, udword nbu)
{
v = i / nbu;
u = i - (v * nbu);
}
// In 3D: i = u + v*nbu + w*nbu*nbv
// <=> i/(nbu*nbv) = u/(nbu*nbv) + v/nbv + w
// u/(nbu*nbv) is null since u/nbu was null already.
// v/nbv is null as well for the same reason.
// Hence w = i/(nbu*nbv)
// Then we're left with a 2D problem: i' = i - w*nbu*nbv = u + v*nbu
inline_ void Compute3DCoords(udword& u, udword& v, udword& w, udword i, udword nbu, udword nbu_nbv)
{
w = i / (nbu_nbv);
Compute2DCoords(u, v, i - (w * nbu_nbv), nbu);
}
#endif // __ICEUTILS_H__