OpenSimMirror/OpenSim/Region/Physics/BulletSPlugin/BSParam.cs

661 lines
38 KiB
C#
Executable File

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Text;
using OpenSim.Region.Physics.Manager;
using OpenMetaverse;
using Nini.Config;
namespace OpenSim.Region.Physics.BulletSPlugin
{
public static class BSParam
{
// Level of Detail values kept as float because that's what the Meshmerizer wants
public static float MeshLOD { get; private set; }
public static float MeshMegaPrimLOD { get; private set; }
public static float MeshMegaPrimThreshold { get; private set; }
public static float SculptLOD { get; private set; }
public static float MinimumObjectMass { get; private set; }
public static float MaximumObjectMass { get; private set; }
public static float MaxLinearVelocity { get; private set; }
public static float MaxAngularVelocity { get; private set; }
public static float MaxAddForceMagnitude { get; private set; }
public static float LinearDamping { get; private set; }
public static float AngularDamping { get; private set; }
public static float DeactivationTime { get; private set; }
public static float LinearSleepingThreshold { get; private set; }
public static float AngularSleepingThreshold { get; private set; }
public static float CcdMotionThreshold { get; private set; }
public static float CcdSweptSphereRadius { get; private set; }
public static float ContactProcessingThreshold { get; private set; }
public static bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed
public static bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes
public static bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects
public static float TerrainImplementation { get; private set; }
public static float TerrainFriction { get; private set; }
public static float TerrainHitFraction { get; private set; }
public static float TerrainRestitution { get; private set; }
public static float TerrainCollisionMargin { get; private set; }
// Avatar parameters
public static float AvatarFriction { get; private set; }
public static float AvatarStandingFriction { get; private set; }
public static float AvatarAlwaysRunFactor { get; private set; }
public static float AvatarDensity { get; private set; }
public static float AvatarRestitution { get; private set; }
public static float AvatarCapsuleWidth { get; private set; }
public static float AvatarCapsuleDepth { get; private set; }
public static float AvatarCapsuleHeight { get; private set; }
public static float AvatarContactProcessingThreshold { get; private set; }
public static float AvatarStepHeight { get; private set; }
public static float AvatarStepApproachFactor { get; private set; }
public static float AvatarStepForceFactor { get; private set; }
public static float VehicleMaxLinearVelocity { get; private set; }
public static float VehicleMaxAngularVelocity { get; private set; }
public static float VehicleAngularDamping { get; private set; }
public static float VehicleDebuggingEnabled { get; private set; }
public static float LinksetImplementation { get; private set; }
public static float LinkConstraintUseFrameOffset { get; private set; }
public static float LinkConstraintEnableTransMotor { get; private set; }
public static float LinkConstraintTransMotorMaxVel { get; private set; }
public static float LinkConstraintTransMotorMaxForce { get; private set; }
public static float LinkConstraintERP { get; private set; }
public static float LinkConstraintCFM { get; private set; }
public static float LinkConstraintSolverIterations { get; private set; }
public static float PID_D { get; private set; } // derivative
public static float PID_P { get; private set; } // proportional
// Various constants that come from that other virtual world that shall not be named.
public const float MinGravityZ = -1f;
public const float MaxGravityZ = 28f;
public const float MinFriction = 0f;
public const float MaxFriction = 255f;
public const float MinDensity = 0.01f;
public const float MaxDensity = 22587f;
public const float MinRestitution = 0f;
public const float MaxRestitution = 1f;
// ===========================================================================
public delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val);
public delegate float ParamGet(BSScene scene);
public delegate void ParamSet(BSScene scene, string paramName, uint localID, float val);
public delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val);
public struct ParameterDefn
{
public string name; // string name of the parameter
public string desc; // a short description of what the parameter means
public float defaultValue; // default value if not specified anywhere else
public ParamUser userParam; // get the value from the configuration file
public ParamGet getter; // return the current value stored for this parameter
public ParamSet setter; // set the current value for this parameter
public SetOnObject onObject; // set the value on an object in the physical domain
public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s)
{
name = n;
desc = d;
defaultValue = v;
userParam = u;
getter = g;
setter = s;
onObject = null;
}
public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o)
{
name = n;
desc = d;
defaultValue = v;
userParam = u;
getter = g;
setter = s;
onObject = o;
}
}
// List of all of the externally visible parameters.
// For each parameter, this table maps a text name to getter and setters.
// To add a new externally referencable/settable parameter, add the paramter storage
// location somewhere in the program and make an entry in this table with the
// getters and setters.
// It is easiest to find an existing definition and copy it.
// Parameter values are floats. Booleans are converted to a floating value.
//
// A ParameterDefn() takes the following parameters:
// -- the text name of the parameter. This is used for console input and ini file.
// -- a short text description of the parameter. This shows up in the console listing.
// -- a default value (float)
// -- a delegate for fetching the parameter from the ini file.
// Should handle fetching the right type from the ini file and converting it.
// -- a delegate for getting the value as a float
// -- a delegate for setting the value from a float
// -- an optional delegate to update the value in the world. Most often used to
// push the new value to an in-world object.
//
// The single letter parameters for the delegates are:
// s = BSScene
// o = BSPhysObject
// p = string parameter name
// l = localID of referenced object
// v = value (float)
// cf = parameter configuration class (for fetching values from ini file)
private static ParameterDefn[] ParameterDefinitions =
{
new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { ShouldMeshSculptedPrim = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
(s) => { return BSParam.NumericBool(ShouldMeshSculptedPrim); },
(s,p,l,v) => { ShouldMeshSculptedPrim = BSParam.BoolNumeric(v); } ),
new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { ShouldForceSimplePrimMeshing = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
(s) => { return BSParam.NumericBool(ShouldForceSimplePrimMeshing); },
(s,p,l,v) => { ShouldForceSimplePrimMeshing = BSParam.BoolNumeric(v); } ),
new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, BSParam.BoolNumeric(v)); },
(s) => { return BSParam.NumericBool(ShouldUseHullsForPhysicalObjects); },
(s,p,l,v) => { ShouldUseHullsForPhysicalObjects = BSParam.BoolNumeric(v); } ),
new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)",
8f,
(s,cf,p,v) => { MeshLOD = (float)cf.GetInt(p, (int)v); },
(s) => { return MeshLOD; },
(s,p,l,v) => { MeshLOD = v; } ),
new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters",
16f,
(s,cf,p,v) => { MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); },
(s) => { return MeshMegaPrimLOD; },
(s,p,l,v) => { MeshMegaPrimLOD = v; } ),
new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD",
10f,
(s,cf,p,v) => { MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); },
(s) => { return MeshMegaPrimThreshold; },
(s,p,l,v) => { MeshMegaPrimThreshold = v; } ),
new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)",
32f,
(s,cf,p,v) => { SculptLOD = (float)cf.GetInt(p, (int)v); },
(s) => { return SculptLOD; },
(s,p,l,v) => { SculptLOD = v; } ),
new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps",
10f,
(s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_maxSubSteps; },
(s,p,l,v) => { s.m_maxSubSteps = (int)v; } ),
new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)",
1f / 60f,
(s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); },
(s) => { return (float)s.m_fixedTimeStep; },
(s,p,l,v) => { s.m_fixedTimeStep = v; } ),
new ParameterDefn("NominalFrameRate", "The base frame rate we claim",
55f,
(s,cf,p,v) => { s.NominalFrameRate = cf.GetInt(p, (int)v); },
(s) => { return (float)s.NominalFrameRate; },
(s,p,l,v) => { s.NominalFrameRate = (int)v; } ),
new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame",
2048f,
(s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_maxCollisionsPerFrame; },
(s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ),
new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame",
8000f,
(s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_maxUpdatesPerFrame; },
(s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ),
new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)",
0.0001f,
(s,cf,p,v) => { MinimumObjectMass = cf.GetFloat(p, v); },
(s) => { return (float)MinimumObjectMass; },
(s,p,l,v) => { MinimumObjectMass = v; } ),
new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)",
10000.01f,
(s,cf,p,v) => { MaximumObjectMass = cf.GetFloat(p, v); },
(s) => { return (float)MaximumObjectMass; },
(s,p,l,v) => { MaximumObjectMass = v; } ),
new ParameterDefn("MaxLinearVelocity", "Maximum velocity magnitude that can be assigned to an object",
1000.0f,
(s,cf,p,v) => { MaxLinearVelocity = cf.GetFloat(p, v); },
(s) => { return (float)MaxLinearVelocity; },
(s,p,l,v) => { MaxLinearVelocity = v; } ),
new ParameterDefn("MaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to an object",
1000.0f,
(s,cf,p,v) => { MaxAngularVelocity = cf.GetFloat(p, v); },
(s) => { return (float)MaxAngularVelocity; },
(s,p,l,v) => { MaxAngularVelocity = v; } ),
// LL documentation says thie number should be 20f for llApplyImpulse and 200f for llRezObject
new ParameterDefn("MaxAddForceMagnitude", "Maximum force that can be applied by llApplyImpulse (SL says 20f)",
20000.0f,
(s,cf,p,v) => { MaxAddForceMagnitude = cf.GetFloat(p, v); },
(s) => { return (float)MaxAddForceMagnitude; },
(s,p,l,v) => { MaxAddForceMagnitude = v; } ),
new ParameterDefn("PID_D", "Derivitive factor for motion smoothing",
2200f,
(s,cf,p,v) => { PID_D = cf.GetFloat(p, v); },
(s) => { return (float)PID_D; },
(s,p,l,v) => { PID_D = v; } ),
new ParameterDefn("PID_P", "Parameteric factor for motion smoothing",
900f,
(s,cf,p,v) => { PID_P = cf.GetFloat(p, v); },
(s) => { return (float)PID_P; },
(s,p,l,v) => { PID_P = v; } ),
new ParameterDefn("DefaultFriction", "Friction factor used on new objects",
0.2f,
(s,cf,p,v) => { s.UnmanagedParams[0].defaultFriction = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].defaultFriction; },
(s,p,l,v) => { s.UnmanagedParams[0].defaultFriction = v; } ),
new ParameterDefn("DefaultDensity", "Density for new objects" ,
10.000006836f, // Aluminum g/cm3
(s,cf,p,v) => { s.UnmanagedParams[0].defaultDensity = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].defaultDensity; },
(s,p,l,v) => { s.UnmanagedParams[0].defaultDensity = v; } ),
new ParameterDefn("DefaultRestitution", "Bouncyness of an object" ,
0f,
(s,cf,p,v) => { s.UnmanagedParams[0].defaultRestitution = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].defaultRestitution; },
(s,p,l,v) => { s.UnmanagedParams[0].defaultRestitution = v; } ),
new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)",
0.04f,
(s,cf,p,v) => { s.UnmanagedParams[0].collisionMargin = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].collisionMargin; },
(s,p,l,v) => { s.UnmanagedParams[0].collisionMargin = v; } ),
new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)",
-9.80665f,
(s,cf,p,v) => { s.UnmanagedParams[0].gravity = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].gravity; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{s.UnmanagedParams[0].gravity=x;}, p, PhysParameterEntry.APPLY_TO_NONE, v); },
(s,o,v) => { s.PE.SetGravity(o.PhysBody, new Vector3(0f,0f,v)); } ),
new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)",
0f,
(s,cf,p,v) => { LinearDamping = cf.GetFloat(p, v); },
(s) => { return LinearDamping; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearDamping=x;}, p, l, v); },
(s,o,v) => { s.PE.SetDamping(o.PhysBody, v, AngularDamping); } ),
new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)",
0f,
(s,cf,p,v) => { AngularDamping = cf.GetFloat(p, v); },
(s) => { return AngularDamping; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularDamping=x;}, p, l, v); },
(s,o,v) => { s.PE.SetDamping(o.PhysBody, LinearDamping, v); } ),
new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static",
0.2f,
(s,cf,p,v) => { DeactivationTime = cf.GetFloat(p, v); },
(s) => { return DeactivationTime; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{DeactivationTime=x;}, p, l, v); },
(s,o,v) => { s.PE.SetDeactivationTime(o.PhysBody, v); } ),
new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static",
0.8f,
(s,cf,p,v) => { LinearSleepingThreshold = cf.GetFloat(p, v); },
(s) => { return LinearSleepingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{LinearSleepingThreshold=x;}, p, l, v); },
(s,o,v) => { s.PE.SetSleepingThresholds(o.PhysBody, v, v); } ),
new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static",
1.0f,
(s,cf,p,v) => { AngularSleepingThreshold = cf.GetFloat(p, v); },
(s) => { return AngularSleepingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AngularSleepingThreshold=x;}, p, l, v); },
(s,o,v) => { s.PE.SetSleepingThresholds(o.PhysBody, v, v); } ),
new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" ,
0.3f, // set to zero to disable
(s,cf,p,v) => { CcdMotionThreshold = cf.GetFloat(p, v); },
(s) => { return CcdMotionThreshold; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdMotionThreshold=x;}, p, l, v); },
(s,o,v) => { s.PE.SetCcdMotionThreshold(o.PhysBody, v); } ),
new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" ,
0.2f,
(s,cf,p,v) => { CcdSweptSphereRadius = cf.GetFloat(p, v); },
(s) => { return CcdSweptSphereRadius; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{CcdSweptSphereRadius=x;}, p, l, v); },
(s,o,v) => { s.PE.SetCcdSweptSphereRadius(o.PhysBody, v); } ),
new ParameterDefn("ContactProcessingThreshold", "Distance between contacts before doing collision check" ,
0.1f,
(s,cf,p,v) => { ContactProcessingThreshold = cf.GetFloat(p, v); },
(s) => { return ContactProcessingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{ContactProcessingThreshold=x;}, p, l, v); },
(s,o,v) => { s.PE.SetContactProcessingThreshold(o.PhysBody, v); } ),
new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)",
(float)BSTerrainPhys.TerrainImplementation.Mesh,
(s,cf,p,v) => { TerrainImplementation = cf.GetFloat(p,v); },
(s) => { return TerrainImplementation; },
(s,p,l,v) => { TerrainImplementation = v; } ),
new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" ,
0.3f,
(s,cf,p,v) => { TerrainFriction = cf.GetFloat(p, v); },
(s) => { return TerrainFriction; },
(s,p,l,v) => { TerrainFriction = v; /* TODO: set on real terrain */} ),
new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" ,
0.8f,
(s,cf,p,v) => { TerrainHitFraction = cf.GetFloat(p, v); },
(s) => { return TerrainHitFraction; },
(s,p,l,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("TerrainRestitution", "Bouncyness" ,
0f,
(s,cf,p,v) => { TerrainRestitution = cf.GetFloat(p, v); },
(s) => { return TerrainRestitution; },
(s,p,l,v) => { TerrainRestitution = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" ,
0.04f,
(s,cf,p,v) => { TerrainCollisionMargin = cf.GetFloat(p, v); },
(s) => { return TerrainCollisionMargin; },
(s,p,l,v) => { TerrainCollisionMargin = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.",
0.2f,
(s,cf,p,v) => { AvatarFriction = cf.GetFloat(p, v); },
(s) => { return AvatarFriction; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarFriction=x;}, p, l, v); } ),
new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.",
10.0f,
(s,cf,p,v) => { AvatarStandingFriction = cf.GetFloat(p, v); },
(s) => { return AvatarStandingFriction; },
(s,p,l,v) => { AvatarStandingFriction = v; } ),
new ParameterDefn("AvatarAlwaysRunFactor", "Speed multiplier if avatar is set to always run",
1.3f,
(s,cf,p,v) => { AvatarAlwaysRunFactor = cf.GetFloat(p, v); },
(s) => { return AvatarAlwaysRunFactor; },
(s,p,l,v) => { AvatarAlwaysRunFactor = v; } ),
new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.",
3.5f,
(s,cf,p,v) => { AvatarDensity = cf.GetFloat(p, v); },
(s) => { return AvatarDensity; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarDensity=x;}, p, l, v); } ),
new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.",
0f,
(s,cf,p,v) => { AvatarRestitution = cf.GetFloat(p, v); },
(s) => { return AvatarRestitution; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarRestitution=x;}, p, l, v); } ),
new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule",
0.6f,
(s,cf,p,v) => { AvatarCapsuleWidth = cf.GetFloat(p, v); },
(s) => { return AvatarCapsuleWidth; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleWidth=x;}, p, l, v); } ),
new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule",
0.45f,
(s,cf,p,v) => { AvatarCapsuleDepth = cf.GetFloat(p, v); },
(s) => { return AvatarCapsuleDepth; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleDepth=x;}, p, l, v); } ),
new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar",
1.5f,
(s,cf,p,v) => { AvatarCapsuleHeight = cf.GetFloat(p, v); },
(s) => { return AvatarCapsuleHeight; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarCapsuleHeight=x;}, p, l, v); } ),
new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions",
0.1f,
(s,cf,p,v) => { AvatarContactProcessingThreshold = cf.GetFloat(p, v); },
(s) => { return AvatarContactProcessingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject((x)=>{AvatarContactProcessingThreshold=x;}, p, l, v); } ),
new ParameterDefn("AvatarStepHeight", "Height of a step obstacle to consider step correction",
0.3f,
(s,cf,p,v) => { AvatarStepHeight = cf.GetFloat(p, v); },
(s) => { return AvatarStepHeight; },
(s,p,l,v) => { AvatarStepHeight = v; } ),
new ParameterDefn("AvatarStepApproachFactor", "Factor to control angle of approach to step (0=straight on)",
0.6f,
(s,cf,p,v) => { AvatarStepApproachFactor = cf.GetFloat(p, v); },
(s) => { return AvatarStepApproachFactor; },
(s,p,l,v) => { AvatarStepApproachFactor = v; } ),
new ParameterDefn("AvatarStepForceFactor", "Controls the amount of force up applied to step up onto a step",
2.0f,
(s,cf,p,v) => { AvatarStepForceFactor = cf.GetFloat(p, v); },
(s) => { return AvatarStepForceFactor; },
(s,p,l,v) => { AvatarStepForceFactor = v; } ),
new ParameterDefn("VehicleMaxLinearVelocity", "Maximum velocity magnitude that can be assigned to a vehicle",
1000.0f,
(s,cf,p,v) => { VehicleMaxLinearVelocity = cf.GetFloat(p, v); },
(s) => { return (float)VehicleMaxLinearVelocity; },
(s,p,l,v) => { VehicleMaxLinearVelocity = v; } ),
new ParameterDefn("VehicleMaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to a vehicle",
12.0f,
(s,cf,p,v) => { VehicleMaxAngularVelocity = cf.GetFloat(p, v); },
(s) => { return (float)VehicleMaxAngularVelocity; },
(s,p,l,v) => { VehicleMaxAngularVelocity = v; } ),
new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)",
0.95f,
(s,cf,p,v) => { VehicleAngularDamping = cf.GetFloat(p, v); },
(s) => { return VehicleAngularDamping; },
(s,p,l,v) => { VehicleAngularDamping = v; } ),
new ParameterDefn("VehicleDebuggingEnable", "Turn on/off vehicle debugging",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { VehicleDebuggingEnabled = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return VehicleDebuggingEnabled; },
(s,p,l,v) => { VehicleDebuggingEnabled = v; } ),
new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)",
0f,
(s,cf,p,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].maxPersistantManifoldPoolSize; },
(s,p,l,v) => { s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ),
new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)",
0f,
(s,cf,p,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize; },
(s,p,l,v) => { s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ),
new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation; },
(s,p,l,v) => { s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = v; } ),
new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return s.UnmanagedParams[0].shouldForceUpdateAllAabbs; },
(s,p,l,v) => { s.UnmanagedParams[0].shouldForceUpdateAllAabbs = v; } ),
new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return s.UnmanagedParams[0].shouldRandomizeSolverOrder; },
(s,p,l,v) => { s.UnmanagedParams[0].shouldRandomizeSolverOrder = v; } ),
new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return s.UnmanagedParams[0].shouldSplitSimulationIslands; },
(s,p,l,v) => { s.UnmanagedParams[0].shouldSplitSimulationIslands = v; } ),
new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return s.UnmanagedParams[0].shouldEnableFrictionCaching; },
(s,p,l,v) => { s.UnmanagedParams[0].shouldEnableFrictionCaching = v; } ),
new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)",
0f, // zero says use Bullet default
(s,cf,p,v) => { s.UnmanagedParams[0].numberOfSolverIterations = cf.GetFloat(p, v); },
(s) => { return s.UnmanagedParams[0].numberOfSolverIterations; },
(s,p,l,v) => { s.UnmanagedParams[0].numberOfSolverIterations = v; } ),
new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)",
(float)BSLinkset.LinksetImplementation.Compound,
(s,cf,p,v) => { LinksetImplementation = cf.GetFloat(p,v); },
(s) => { return LinksetImplementation; },
(s,p,l,v) => { LinksetImplementation = v; } ),
new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { LinkConstraintUseFrameOffset = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return LinkConstraintUseFrameOffset; },
(s,p,l,v) => { LinkConstraintUseFrameOffset = v; } ),
new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { LinkConstraintEnableTransMotor = BSParam.NumericBool(cf.GetBoolean(p, BSParam.BoolNumeric(v))); },
(s) => { return LinkConstraintEnableTransMotor; },
(s,p,l,v) => { LinkConstraintEnableTransMotor = v; } ),
new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints",
5.0f,
(s,cf,p,v) => { LinkConstraintTransMotorMaxVel = cf.GetFloat(p, v); },
(s) => { return LinkConstraintTransMotorMaxVel; },
(s,p,l,v) => { LinkConstraintTransMotorMaxVel = v; } ),
new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints",
0.1f,
(s,cf,p,v) => { LinkConstraintTransMotorMaxForce = cf.GetFloat(p, v); },
(s) => { return LinkConstraintTransMotorMaxForce; },
(s,p,l,v) => { LinkConstraintTransMotorMaxForce = v; } ),
new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1",
0.1f,
(s,cf,p,v) => { LinkConstraintCFM = cf.GetFloat(p, v); },
(s) => { return LinkConstraintCFM; },
(s,p,l,v) => { LinkConstraintCFM = v; } ),
new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2",
0.1f,
(s,cf,p,v) => { LinkConstraintERP = cf.GetFloat(p, v); },
(s) => { return LinkConstraintERP; },
(s,p,l,v) => { LinkConstraintERP = v; } ),
new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)",
40,
(s,cf,p,v) => { LinkConstraintSolverIterations = cf.GetFloat(p, v); },
(s) => { return LinkConstraintSolverIterations; },
(s,p,l,v) => { LinkConstraintSolverIterations = v; } ),
new ParameterDefn("PhysicsMetricFrames", "Frames between outputting detailed phys metrics. (0 is off)",
0f,
(s,cf,p,v) => { s.PhysicsMetricDumpFrames = cf.GetFloat(p, (int)v); },
(s) => { return (float)s.PhysicsMetricDumpFrames; },
(s,p,l,v) => { s.PhysicsMetricDumpFrames = (int)v; } ),
new ParameterDefn("ResetBroadphasePool", "Setting this is any value resets the broadphase collision pool",
0f,
(s,cf,p,v) => { ; },
(s) => { return 0f; },
(s,p,l,v) => { BSParam.ResetBroadphasePoolTainted(s, v); } ),
new ParameterDefn("ResetConstraintSolver", "Setting this is any value resets the constraint solver",
0f,
(s,cf,p,v) => { ; },
(s) => { return 0f; },
(s,p,l,v) => { BSParam.ResetConstraintSolverTainted(s, v); } ),
};
// Convert a boolean to our numeric true and false values
public static float NumericBool(bool b)
{
return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse);
}
// Convert numeric true and false values to a boolean
public static bool BoolNumeric(float b)
{
return (b == ConfigurationParameters.numericTrue ? true : false);
}
private static void ResetBroadphasePoolTainted(BSScene pPhysScene, float v)
{
BSScene physScene = pPhysScene;
physScene.TaintedObject("BSParam.ResetBroadphasePoolTainted", delegate()
{
physScene.PE.ResetBroadphasePool(physScene.World);
});
}
private static void ResetConstraintSolverTainted(BSScene pPhysScene, float v)
{
BSScene physScene = pPhysScene;
physScene.TaintedObject("BSParam.ResetConstraintSolver", delegate()
{
physScene.PE.ResetConstraintSolver(physScene.World);
});
}
// Search through the parameter definitions and return the matching
// ParameterDefn structure.
// Case does not matter as names are compared after converting to lower case.
// Returns 'false' if the parameter is not found.
internal static bool TryGetParameter(string paramName, out ParameterDefn defn)
{
bool ret = false;
ParameterDefn foundDefn = new ParameterDefn();
string pName = paramName.ToLower();
foreach (ParameterDefn parm in ParameterDefinitions)
{
if (pName == parm.name.ToLower())
{
foundDefn = parm;
ret = true;
break;
}
}
defn = foundDefn;
return ret;
}
// Pass through the settable parameters and set the default values
internal static void SetParameterDefaultValues(BSScene physicsScene)
{
foreach (ParameterDefn parm in ParameterDefinitions)
{
parm.setter(physicsScene, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue);
}
}
// Get user set values out of the ini file.
internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg)
{
foreach (ParameterDefn parm in ParameterDefinitions)
{
parm.userParam(physicsScene, cfg, parm.name, parm.defaultValue);
}
}
internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1];
// This creates an array in the correct format for returning the list of
// parameters. This is used by the 'list' option of the 'physics' command.
internal static void BuildParameterTable()
{
if (SettableParameters.Length < ParameterDefinitions.Length)
{
List<PhysParameterEntry> entries = new List<PhysParameterEntry>();
for (int ii = 0; ii < ParameterDefinitions.Length; ii++)
{
ParameterDefn pd = ParameterDefinitions[ii];
entries.Add(new PhysParameterEntry(pd.name, pd.desc));
}
// make the list in alphabetical order for estetic reasons
entries.Sort(delegate(PhysParameterEntry ppe1, PhysParameterEntry ppe2)
{
return ppe1.name.CompareTo(ppe2.name);
});
SettableParameters = entries.ToArray();
}
}
}
}