OpenSimMirror/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs

850 lines
37 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*/
// Ubit 2012
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using OdeAPI;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEDynamics
{
public Vehicle Type
{
get { return m_type; }
}
private OdePrim rootPrim;
private OdeScene _pParentScene;
// Vehicle properties
private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
private Quaternion m_RollreferenceFrame = Quaternion.Identity; // what hell is this ?
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
// HOVER_TERRAIN_ONLY
// HOVER_GLOBAL_HEIGHT
// NO_DEFLECTION_UP
// HOVER_WATER_ONLY
// HOVER_UP_ONLY
// LIMIT_MOTOR_UP
// LIMIT_ROLL_ONLY
private Vector3 m_BlockingEndPoint = Vector3.Zero; // not sl
// Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearFrictionTimescale = new Vector3(1000, 1000, 1000);
private float m_linearMotorDecayTimescale = 120;
private float m_linearMotorTimescale = 1000;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
private Vector3 m_linearMotorOffset = Vector3.Zero;
//Angular properties
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
private float m_angularMotorTimescale = 1000; // motor angular velocity ramp up rate
private float m_angularMotorDecayTimescale = 120; // motor angular velocity decay rate
private Vector3 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); // body angular velocity decay rate
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
//Deflection properties
private float m_angularDeflectionEfficiency = 0;
private float m_angularDeflectionTimescale = 1000;
private float m_linearDeflectionEfficiency = 0;
private float m_linearDeflectionTimescale = 1000;
//Banking properties
private float m_bankingEfficiency = 0;
private float m_bankingMix = 0;
private float m_bankingTimescale = 0;
//Hover and Buoyancy properties
private float m_VhoverHeight = 0f;
private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 1000f;
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
//Attractor properties
private float m_verticalAttractionEfficiency = 1.0f; // damped
private float m_verticalAttractionTimescale = 1000f; // Timescale > 300 means no vert attractor.
// auxiliar
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
private float m_lmEfect = 0; // current linear motor eficiency
private float m_amEfect = 0; // current angular motor eficiency
public ODEDynamics(OdePrim rootp)
{
rootPrim = rootp;
_pParentScene = rootPrim._parent_scene;
}
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
float len;
float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE;
float timestep = _pParentScene.ODE_STEPSIZE;
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
// if (pValue < timestep) pValue = timestep;
// try to make impulses to work a bit better
if (pValue < 0.5f) pValue = 0.5f;
else if (pValue > 120) pValue = 120;
m_angularMotorDecayTimescale = pValue * invtimestep;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
if (pValue < -1f) pValue = -1f;
if (pValue > 1f) pValue = 1f;
m_VehicleBuoyancy = pValue;
break;
case Vehicle.HOVER_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_VhoverEfficiency = pValue;
break;
case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_VhoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
// if (pValue < timestep) pValue = timestep;
// try to make impulses to work a bit better
if (pValue < 0.5f) pValue = 0.5f;
else if (pValue > 120) pValue = 120;
m_linearMotorDecayTimescale = pValue * invtimestep;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0f) pValue = 0f;
if (pValue > 1f) pValue = 1f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
len = m_angularMotorDirection.Length();
if (len > 12.566f)
m_angularMotorDirection *= (12.566f / len);
m_amEfect = 1.0f; // turn it on
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
if (pValue < timestep) pValue = timestep;
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
len = m_linearMotorDirection.Length();
if (len > 30.0f)
m_linearMotorDirection *= (30.0f / len);
m_lmEfect = 1.0f; // turn it on
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
len = m_linearMotorOffset.Length();
if (len > 100.0f)
m_linearMotorOffset *= (100.0f / len);
break;
}
}//end ProcessFloatVehicleParam
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
{
float len;
float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE;
float timestep = _pParentScene.ODE_STEPSIZE;
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
if (pValue.X < timestep) pValue.X = timestep;
if (pValue.Y < timestep) pValue.Y = timestep;
if (pValue.Z < timestep) pValue.Z = timestep;
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// Limit requested angular speed to 2 rps= 4 pi rads/sec
len = m_angularMotorDirection.Length();
if (len > 12.566f)
m_angularMotorDirection *= (12.566f / len);
m_amEfect = 1.0f; // turn it on
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
if (pValue.X < timestep) pValue.X = timestep;
if (pValue.Y < timestep) pValue.Y = timestep;
if (pValue.Z < timestep) pValue.Z = timestep;
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
len = m_linearMotorDirection.Length();
if (len > 30.0f)
m_linearMotorDirection *= (30.0f / len);
m_lmEfect = 1.0f; // turn it on
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
len = m_linearMotorOffset.Length();
if (len > 100.0f)
m_linearMotorOffset *= (100.0f / len);
break;
case Vehicle.BLOCK_EXIT:
m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
}//end ProcessVectorVehicleParam
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
m_referenceFrame = Quaternion.Inverse(pValue);
break;
case Vehicle.ROLL_FRAME:
m_RollreferenceFrame = pValue;
break;
}
}//end ProcessRotationVehicleParam
internal void ProcessVehicleFlags(int pParam, bool remove)
{
if (remove)
{
m_flags &= ~((VehicleFlag)pParam);
}
else
{
m_flags |= (VehicleFlag)pParam;
}
}//end ProcessVehicleFlags
internal void ProcessTypeChange(Vehicle pType)
{
float invtimestep = _pParentScene.ODE_STEPSIZE;
m_lmEfect = 0;
m_amEfect = 0;
m_linearMotorDirection = Vector3.Zero;
m_angularMotorDirection = Vector3.Zero;
m_BlockingEndPoint = Vector3.Zero;
m_RollreferenceFrame = Quaternion.Identity;
m_linearMotorOffset = Vector3.Zero;
m_referenceFrame = Quaternion.Identity;
// Set Defaults For Type
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_NONE:
m_linearFrictionTimescale = new Vector3(1000, 1000, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120 * invtimestep;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 1000 * invtimestep;
m_VhoverHeight = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
m_flags = (VehicleFlag)0;
break;
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120 * invtimestep;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120 * invtimestep;
m_VhoverHeight = 0;
m_VhoverEfficiency = 1;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0;
m_linearDeflectionEfficiency = 1;
m_linearDeflectionTimescale = 1;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 1000;
m_bankingEfficiency = 0;
m_bankingMix = 1;
m_bankingTimescale = 10;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60 * invtimestep;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f * invtimestep;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
m_linearDeflectionEfficiency = 1;
m_linearDeflectionTimescale = 2;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 10f;
m_bankingEfficiency = -0.2f;
m_bankingMix = 1;
m_bankingTimescale = 1;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_UP_ONLY);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60 * invtimestep;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4 * invtimestep;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1;
m_linearDeflectionEfficiency = 0.5f;
m_linearDeflectionTimescale = 3;
m_angularDeflectionEfficiency = 0.5f;
m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5f;
m_bankingEfficiency = -0.3f;
m_bankingMix = 0.8f;
m_bankingTimescale = 1;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT |
VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_ROLL_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
VehicleFlag.LIMIT_MOTOR_UP |
VehicleFlag.HOVER_WATER_ONLY);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60 * invtimestep;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 8 * invtimestep;
m_VhoverHeight = 0;
m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0;
m_linearDeflectionEfficiency = 0.5f;
m_linearDeflectionTimescale = 0.5f;
m_angularDeflectionEfficiency = 1;
m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2f;
m_bankingEfficiency = 1;
m_bankingMix = 0.7f;
m_bankingTimescale = 2;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT |
VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.NO_DEFLECTION_UP |
VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60 * invtimestep;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10 * invtimestep;
m_VhoverHeight = 5;
m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1;
m_linearDeflectionEfficiency = 0;
m_linearDeflectionTimescale = 5 * invtimestep;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0f;
m_verticalAttractionTimescale = 1000f;
m_bankingEfficiency = 0;
m_bankingMix = 0.7f;
m_bankingTimescale = 5;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY |
VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.NO_DEFLECTION_UP |
VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT);
break;
}
}//end SetDefaultsForType
internal void Stop()
{
m_lmEfect = 0;
m_amEfect = 0;
}
public static Vector3 Xrot(Quaternion rot)
{
Vector3 vec;
rot.Normalize(); // just in case
vec.X = 2 * (rot.X * rot.X + rot.W * rot.W) - 1;
vec.Y = 2 * (rot.X * rot.Y + rot.Z * rot.W);
vec.Z = 2 * (rot.X * rot.Z - rot.Y * rot.W);
return vec;
}
public static Vector3 Zrot(Quaternion rot)
{
Vector3 vec;
rot.Normalize(); // just in case
vec.X = 2 * (rot.X * rot.Z + rot.Y * rot.W);
vec.Y = 2 * (rot.Y * rot.Z - rot.X * rot.W);
vec.Z = 2 * (rot.Z * rot.Z + rot.W * rot.W) - 1;
return vec;
}
private const float halfpi = 0.5f * (float)Math.PI;
public static Vector3 ubitRot2Euler(Quaternion rot)
{
// returns roll in X
// pitch in Y
// yaw in Z
Vector3 vec;
// assuming rot is normalised
// rot.Normalize();
float zX = rot.X * rot.Z + rot.Y * rot.W;
if (zX < -0.49999f)
{
vec.X = 0;
vec.Y = -halfpi;
vec.Z = (float)(-2d * Math.Atan(rot.X / rot.W));
}
else if (zX > 0.49999f)
{
vec.X = 0;
vec.Y = halfpi;
vec.Z = (float)(2d * Math.Atan(rot.X / rot.W));
}
else
{
vec.Y = (float)Math.Asin(2 * zX);
float sqw = rot.W * rot.W;
float minuszY = rot.X * rot.W - rot.Y * rot.Z;
float zZ = rot.Z * rot.Z + sqw - 0.5f;
vec.X = (float)Math.Atan2(minuszY, zZ);
float yX = rot.Z * rot.W - rot.X * rot.Y; //( have negative ?)
float yY = rot.X * rot.X + sqw - 0.5f;
vec.Z = (float)Math.Atan2(yX, yY);
}
return vec;
}
public static void GetRollPitch(Quaternion rot, out float roll, out float pitch)
{
// assuming rot is normalised
// rot.Normalize();
float zX = rot.X * rot.Z + rot.Y * rot.W;
if (zX < -0.49999f)
{
roll = 0;
pitch = -halfpi;
}
else if (zX > 0.49999f)
{
roll = 0;
pitch = halfpi;
}
else
{
pitch = (float)Math.Asin(2 * zX);
float minuszY = rot.X * rot.W - rot.Y * rot.Z;
float zZ = rot.Z * rot.Z + rot.W * rot.W - 0.5f;
roll = (float)Math.Atan2(minuszY, zZ);
}
return ;
}
internal void Step()//float pTimestep)
{
IntPtr Body = rootPrim.Body;
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion objrotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
Quaternion rotq = objrotq; // rotq = rotation of object
rotq *= m_referenceFrame; // rotq is now rotation in vehicle reference frame
Quaternion irotq = Quaternion.Inverse(rotq);
d.Vector3 dvtmp;
Vector3 tmpV;
Vector3 curVel; // velocity in world
Vector3 curAngVel; // angular velocity in world
Vector3 force = Vector3.Zero; // actually linear aceleration until mult by mass in world frame
Vector3 torque = Vector3.Zero;// actually angular aceleration until mult by Inertia in vehicle frame
d.Vector3 dtorque = new d.Vector3();
dvtmp = d.BodyGetLinearVel(Body);
curVel.X = dvtmp.X;
curVel.Y = dvtmp.Y;
curVel.Z = dvtmp.Z;
Vector3 curLocalVel = curVel * irotq; // current velocity in local
dvtmp = d.BodyGetAngularVel(Body);
curAngVel.X = dvtmp.X;
curAngVel.Y = dvtmp.Y;
curAngVel.Z = dvtmp.Z;
Vector3 curLocalAngVel = curAngVel * irotq; // current angular velocity in local
// linear motor
if (m_lmEfect > 0.01 && m_linearMotorTimescale < 1000)
{
tmpV = m_linearMotorDirection - curLocalVel; // velocity error
tmpV *= m_lmEfect / m_linearMotorTimescale; // error to correct in this timestep
tmpV *= rotq; // to world
if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0)
tmpV.Z = 0;
if (m_linearMotorOffset.X != 0 || m_linearMotorOffset.Y != 0 || m_linearMotorOffset.Z != 0)
{
// have offset, do it now
tmpV *= rootPrim.Mass;
d.BodyAddForceAtRelPos(Body, tmpV.X, tmpV.Y, tmpV.Z, m_linearMotorOffset.X, m_linearMotorOffset.Y, m_linearMotorOffset.Z);
}
else
{
force.X += tmpV.X;
force.Y += tmpV.Y;
force.Z += tmpV.Z;
}
m_lmEfect *= (1.0f - 1.0f / m_linearMotorDecayTimescale);
}
else
m_lmEfect = 0;
// friction
if (curLocalVel.X != 0 || curLocalVel.Y != 0 || curLocalVel.Z != 0)
{
tmpV.X = -curLocalVel.X / m_linearFrictionTimescale.X;
tmpV.Y = -curLocalVel.Y / m_linearFrictionTimescale.Y;
tmpV.Z = -curLocalVel.Z / m_linearFrictionTimescale.Z;
tmpV *= rotq; // to world
force.X += tmpV.X;
force.Y += tmpV.Y;
force.Z += tmpV.Z;
}
// hover
if (m_VhoverTimescale < 300)
{
d.Vector3 pos = d.BodyGetPosition(Body);
// default to global
float perr = m_VhoverHeight - pos.Z;;
if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
{
perr += _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
}
else if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
{
perr += _pParentScene.GetWaterLevel();
}
else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == 0)
{
float t = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
float w = _pParentScene.GetWaterLevel();
if (t > w)
perr += t;
else
perr += w;
}
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) == 0 || perr > 0)
{
force.Z += (perr / m_VhoverTimescale / m_VhoverTimescale - curVel.Z * m_VhoverEfficiency) / _pParentScene.ODE_STEPSIZE;
force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy);
}
else // no buoyancy
force.Z += _pParentScene.gravityz;
}
else
{
// default gravity and buoancy
force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy);
}
// linear deflection
if (m_linearDeflectionEfficiency > 0)
{
float len = curVel.Length();
Vector3 atAxis;
atAxis = Xrot(rotq); // where are we pointing to
atAxis *= len; // make it same size as world velocity vector
tmpV = -atAxis; // oposite direction
atAxis -= curVel; // error to one direction
len = atAxis.LengthSquared();
tmpV -= curVel; // error to oposite
float lens = tmpV.LengthSquared();
if (len > 0.01 || lens > 0.01) // do nothing if close enougth
{
if (len < lens)
tmpV = atAxis;
tmpV *= (m_linearDeflectionEfficiency / m_linearDeflectionTimescale); // error to correct in this timestep
force.X += tmpV.X;
force.Y += tmpV.Y;
if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) == 0)
force.Z += tmpV.Z;
}
}
// angular motor
if (m_amEfect > 0.01 && m_angularMotorTimescale < 1000)
{
tmpV = m_angularMotorDirection - curLocalAngVel; // velocity error
tmpV *= m_amEfect / m_angularMotorTimescale; // error to correct in this timestep
torque.X += tmpV.X;
torque.Y += tmpV.Y;
torque.Z += tmpV.Z;
m_amEfect *= (1 - 1.0f / m_angularMotorDecayTimescale);
}
else
m_amEfect = 0;
// angular friction
if (curLocalAngVel.X != 0 || curLocalAngVel.Y != 0 || curLocalAngVel.Z != 0)
{
torque.X -= curLocalAngVel.X / m_angularFrictionTimescale.X;
torque.Y -= curLocalAngVel.Y / m_angularFrictionTimescale.Y;
torque.Z -= curLocalAngVel.Z / m_angularFrictionTimescale.Z;
}
// angular deflection
if (m_angularDeflectionEfficiency > 0)
{
Vector3 dirv;
if (curLocalVel.X > 0.01f)
dirv = curLocalVel;
else if (curLocalVel.X < -0.01f)
// use oposite
dirv = -curLocalVel;
else
{
// make it fall into small positive x case
dirv.X = 0.01f;
dirv.Y = curLocalVel.Y;
dirv.Z = curLocalVel.Z;
}
float ftmp = m_angularDeflectionEfficiency / m_angularDeflectionTimescale;
if (Math.Abs(dirv.Z) > 0.01)
{
torque.Y += - (float)Math.Atan2(dirv.Z, dirv.X) * ftmp;
}
if (Math.Abs(dirv.Y) > 0.01)
{
torque.Z += (float)Math.Atan2(dirv.Y, dirv.X) * ftmp;
}
}
// vertical atractor
if (m_verticalAttractionTimescale < 300)
{
float roll;
float pitch;
GetRollPitch(irotq, out roll, out pitch);
float ftmp = 1.0f / m_verticalAttractionTimescale / m_verticalAttractionTimescale / _pParentScene.ODE_STEPSIZE;
float ftmp2 = m_verticalAttractionEfficiency / _pParentScene.ODE_STEPSIZE;
if (Math.Abs(roll) > 0.01) // roll
{
torque.X -= -roll * ftmp + curLocalAngVel.X * ftmp2;
}
if (Math.Abs(pitch) > 0.01 && ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) == 0)) // pitch
{
torque.Y -= -pitch * ftmp + curLocalAngVel.Y * ftmp2;
}
if (m_bankingEfficiency != 0 && Math.Abs(roll) > 0.01)
{
float broll = roll * m_bankingEfficiency; ;
if (m_bankingMix != 0)
{
float vfact = Math.Abs(curLocalVel.X) / 10.0f;
if (vfact > 1.0f) vfact = 1.0f;
if (curLocalVel.X >= 0)
broll *= ((1 - m_bankingMix) + vfact);
else
broll *= -((1 - m_bankingMix) + vfact);
}
broll = (broll - curLocalAngVel.Z) / m_bankingTimescale;
// torque.Z += broll;
// make z rot be in world Z not local as seems to be in sl
tmpV.X = 0;
tmpV.Y = 0;
tmpV.Z = broll;
tmpV *= irotq;
torque.X += tmpV.X;
torque.Y += tmpV.Y;
torque.Z += tmpV.Z;
}
}
d.Mass dmass;
d.BodyGetMass(Body,out dmass);
if (force.X != 0 || force.Y != 0 || force.Z != 0)
{
force *= dmass.mass;
d.BodySetForce(Body, force.X, force.Y, force.Z);
}
if (torque.X != 0 || torque.Y != 0 || torque.Z != 0)
{
torque *= m_referenceFrame; // to object frame
dtorque.X = torque.X;
dtorque.Y = torque.Y;
dtorque.Z = torque.Z;
d.MultiplyM3V3(out dvtmp, ref dmass.I, ref dtorque);
d.BodyAddRelTorque(Body, dvtmp.X, dvtmp.Y, dvtmp.Z); // add torque in object frame
}
}
}
}