OpenSimMirror/OpenSim/Region/Physics/UbitOdePlugin/ODEPrim.cs

3258 lines
111 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Revision 2011 by Ubit Umarov
*
*
*/
/*
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*/
//#define SPAM
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Threading;
using log4net;
using OpenMetaverse;
using OdeAPI;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class OdePrim : PhysicsActor
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private bool m_isphysical;
private bool m_fakeisphysical;
protected bool m_building;
private Quaternion m_lastorientation = new Quaternion();
private Quaternion _orientation;
private Vector3 _position;
private Vector3 _velocity;
private Vector3 _torque;
private Vector3 m_lastVelocity;
private Vector3 m_lastposition;
private Vector3 m_rotationalVelocity;
private Vector3 _size;
private Vector3 _acceleration;
private Vector3 m_angularlock = Vector3.One;
private IntPtr Amotor = IntPtr.Zero;
private Vector3 m_force;
private Vector3 m_forceacc;
private Vector3 m_angularForceacc;
private Vector3 m_PIDTarget;
private float m_PIDTau;
private float PID_D = 35f;
private float PID_G = 25f;
private bool m_usePID;
// KF: These next 7 params apply to llSetHoverHeight(float height, integer water, float tau),
// and are for non-VEHICLES only.
private float m_PIDHoverHeight;
private float m_PIDHoverTau;
private bool m_useHoverPID;
private PIDHoverType m_PIDHoverType = PIDHoverType.Ground;
private float m_targetHoverHeight;
private float m_groundHeight;
private float m_waterHeight;
private float m_buoyancy; //KF: m_buoyancy should be set by llSetBuoyancy() for non-vehicle.
private int body_autodisable_frames = 20;
private const CollisionCategories m_default_collisionFlags = (CollisionCategories.Geom
| CollisionCategories.Space
| CollisionCategories.Body
| CollisionCategories.Character
);
private bool m_collidesLand = true;
private bool m_collidesWater;
public bool m_returnCollisions;
// Default we're a Geometry
private CollisionCategories m_collisionCategories = (CollisionCategories.Geom);
// Default, Collide with Other Geometries, spaces and Bodies
private CollisionCategories m_collisionFlags = m_default_collisionFlags;
public bool m_disabled;
public bool m_taintselected;
public uint m_localID;
private PrimitiveBaseShape _pbs;
public OdeScene _parent_scene;
/// <summary>
/// The physics space which contains prim geometry
/// </summary>
public IntPtr m_targetSpace = IntPtr.Zero;
public IntPtr prim_geom;
public IntPtr _triMeshData;
private PhysicsActor _parent;
private List<OdePrim> childrenPrim = new List<OdePrim>();
private bool m_iscolliding;
private bool m_wascolliding;
private bool m_isSelected;
internal bool m_isVolumeDetect; // If true, this prim only detects collisions but doesn't collide actively
private bool m_throttleUpdates;
private int throttleCounter;
public int m_interpenetrationcount;
public float m_collisionscore;
int m_colliderfilter = 0;
public int m_roundsUnderMotionThreshold;
private int m_crossingfailures;
public bool outofBounds;
private float m_density = 10.000006836f; // Aluminum g/cm3;
public bool _zeroFlag;
private bool m_lastUpdateSent;
public IntPtr Body = IntPtr.Zero;
public String Name { get; private set; }
private Vector3 _target_velocity;
public Vector3 primOOBsize; // prim real dimensions from mesh
public Vector3 primOOBoffset; // is centroid out of mesh or rest aabb
public float primOOBradiusSQ;
public d.Mass primdMass; // prim inertia information on it's own referencial
float primMass; // prim own mass
float _mass; // object mass acording to case
public d.Mass objectpMass; // object last computed inertia
private bool hasOOBoffsetFromMesh = false; // if true we did compute it form mesh centroid, else from aabb
public int givefakepos = 0;
private Vector3 fakepos;
public int givefakeori = 0;
private Quaternion fakeori;
public int m_eventsubscription;
private CollisionEventUpdate CollisionEventsThisFrame = new CollisionEventUpdate();
private IntPtr m_linkJoint = IntPtr.Zero;
private IntPtr _linkJointGroup = IntPtr.Zero;
public volatile bool childPrim;
public ODEDynamics m_vehicle;
internal int m_material = (int)Material.Wood;
protected ContactData primContactData = new ContactData { mu = 0f, bounce = 0.1f};
/// <summary>
/// Is this prim subject to physics? Even if not, it's still solid for collision purposes.
/// </summary>
public override bool IsPhysical // this is not reliable for internal use
{
get { return m_fakeisphysical; }
set
{
m_fakeisphysical = value; // we show imediatly to outside that we changed physical
// and also to stop imediatly some updates
// but real change will only happen in taintprocessing
if (!value) // Zero the remembered last velocity
m_lastVelocity = Vector3.Zero;
AddChange(changes.Physical, value);
}
}
public override bool Building // this is not reliable for internal use
{
get { return m_building; }
set
{
if (value)
m_building = true;
AddChange(changes.building, value);
}
}
public override ContactData ContactData
{
get
{
/*
ODEDynamics v;
if(childPrim && _parent !=null)
{
v =((OdePrim)_parent).m_vehicle;
if(v != null && v.Type != Vehicle.TYPE_NONE)
return v.VehiculeContactData;
return primContactData;
}
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
return m_vehicle.VehiculeContactData;
*/
return primContactData;
}
}
public override int PhysicsActorType
{
get { return (int)ActorTypes.Prim; }
set { return; }
}
public override bool SetAlwaysRun
{
get { return false; }
set { return; }
}
public override uint LocalID
{
get
{
return m_localID;
}
set
{
//m_log.Info("[PHYSICS]: Setting TrackerID: " + value);
m_localID = value;
}
}
public override bool Grabbed
{
set { return; }
}
public override bool Selected
{
set
{
if(value)
m_isSelected = value;
AddChange(changes.Selected, value);
}
}
public override bool Flying
{
// no flying prims for you
get { return false; }
set { }
}
public override bool IsColliding
{
get { return m_iscolliding; }
set
{
if (value)
{
m_colliderfilter += 2;
if (m_colliderfilter > 2)
m_colliderfilter = 2;
}
else
{
m_colliderfilter--;
if (m_colliderfilter < 0)
m_colliderfilter = 0;
}
if (m_colliderfilter == 0)
m_iscolliding = false;
else
m_iscolliding = true;
if (m_wascolliding != m_iscolliding)
{
if (m_wascolliding && !m_isSelected && Body != IntPtr.Zero)
d.BodyEnable(Body);
m_wascolliding = m_iscolliding;
}
}
}
public override bool CollidingGround
{
get { return false; }
set { return; }
}
public override bool CollidingObj
{
get { return false; }
set { return; }
}
public override bool ThrottleUpdates
{
get { return m_throttleUpdates; }
set { m_throttleUpdates = value; }
}
public override bool Stopped
{
get { return _zeroFlag; }
}
public override Vector3 Position
{
get
{
if (givefakepos > 0)
return fakepos;
else
return _position;
}
set
{
fakepos = value;
givefakepos++;
AddChange(changes.Position, value);
}
}
public override Vector3 Size
{
get { return _size; }
set
{
if (value.IsFinite())
{
AddChange(changes.Size, value);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN Size on object {0}", Name);
}
}
}
public override float Mass
{
get { return _mass; }
}
public override Vector3 Force
{
//get { return Vector3.Zero; }
get { return m_force; }
set
{
if (value.IsFinite())
{
AddChange(changes.Force, value);
}
else
{
m_log.WarnFormat("[PHYSICS]: NaN in Force Applied to an Object {0}", Name);
}
}
}
public override void SetVolumeDetect(int param)
{
AddChange(changes.VolumeDtc,(param != 0));
}
public override Vector3 GeometricCenter
{
get
{
return Vector3.Zero;
}
}
public override Vector3 CenterOfMass
{
get
{
d.Vector3 dtmp;
if (IsPhysical && !childPrim && Body != IntPtr.Zero)
{
dtmp = d.BodyGetPosition(Body);
return new Vector3(dtmp.X, dtmp.Y, dtmp.Z);
}
else if (prim_geom != IntPtr.Zero)
{
d.Quaternion dq;
d.GeomCopyQuaternion(prim_geom, out dq);
Quaternion q;
q.X = dq.X;
q.Y = dq.Y;
q.Z = dq.Z;
q.W = dq.W;
Vector3 vtmp = primOOBoffset * q;
dtmp = d.GeomGetPosition(prim_geom);
return new Vector3(dtmp.X + vtmp.X, dtmp.Y + vtmp.Y, dtmp.Z + vtmp.Z);
}
else
return Vector3.Zero;
}
}
/*
public override Vector3 PrimOOBsize
{
get
{
return primOOBsize;
}
}
public override Vector3 PrimOOBoffset
{
get
{
return primOOBoffset;
}
}
public override float PrimOOBRadiusSQ
{
get
{
return primOOBradiusSQ;
}
}
*/
public override PrimitiveBaseShape Shape
{
set
{
AddChange(changes.Shape, value);
}
}
public override Vector3 Velocity
{
get
{
// Averate previous velocity with the new one so
// client object interpolation works a 'little' better
if (_zeroFlag)
return Vector3.Zero;
/*
Vector3 returnVelocity = Vector3.Zero;
returnVelocity.X = (m_lastVelocity.X + _velocity.X) / 2;
returnVelocity.Y = (m_lastVelocity.Y + _velocity.Y) / 2;
returnVelocity.Z = (m_lastVelocity.Z + _velocity.Z) / 2;
return returnVelocity;
*/
return _velocity;
}
set
{
if (value.IsFinite())
{
AddChange(changes.Velocity, value);
// _velocity = value;
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN Velocity in Object {0}", Name);
}
}
}
public override Vector3 Torque
{
get
{
if (!IsPhysical || Body == IntPtr.Zero)
return Vector3.Zero;
return _torque;
}
set
{
if (value.IsFinite())
{
AddChange(changes.Torque, value);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN Torque in Object {0}", Name);
}
}
}
public override float CollisionScore
{
get { return m_collisionscore; }
set { m_collisionscore = value; }
}
public override bool Kinematic
{
get { return false; }
set { }
}
public override Quaternion Orientation
{
get
{
if (givefakeori>0)
return fakeori;
else
return _orientation;
}
set
{
if (QuaternionIsFinite(value))
{
fakeori = value;
givefakeori++;
AddChange(changes.Orientation, value);
}
else
m_log.WarnFormat("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object {0}", Name);
}
}
public override Vector3 Acceleration
{
get { return _acceleration; }
set { }
}
public override Vector3 RotationalVelocity
{
get
{
Vector3 pv = Vector3.Zero;
if (_zeroFlag)
return pv;
m_lastUpdateSent = false;
if (m_rotationalVelocity.ApproxEquals(pv, 0.0001f))
return pv;
return m_rotationalVelocity;
}
set
{
if (value.IsFinite())
{
m_rotationalVelocity = value;
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN RotationalVelocity in Object {0}", Name);
}
}
}
public override float Buoyancy
{
get { return m_buoyancy; }
set
{
m_buoyancy = value;
}
}
public override bool FloatOnWater
{
set
{
AddChange(changes.CollidesWater, value);
}
}
public override Vector3 PIDTarget
{
set
{
if (value.IsFinite())
{
m_PIDTarget = value;
}
else
m_log.WarnFormat("[PHYSICS]: Got NaN PIDTarget from Scene on Object {0}", Name);
}
}
public override bool PIDActive { set { m_usePID = value; } }
public override float PIDTau { set { m_PIDTau = value; } }
public override float PIDHoverHeight { set { m_PIDHoverHeight = value; ; } }
public override bool PIDHoverActive { set { m_useHoverPID = value; } }
public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } }
public override float PIDHoverTau { set { m_PIDHoverTau = value; } }
public override Quaternion APIDTarget { set { return; } }
public override bool APIDActive { set { return; } }
public override float APIDStrength { set { return; } }
public override float APIDDamping { set { return; } }
public override int VehicleType
{
get
{
if (m_vehicle == null)
return (int)Vehicle.TYPE_NONE;
else
return (int)m_vehicle.Type;
}
set
{
if (m_vehicle == null)
{
if (value != (int)Vehicle.TYPE_NONE)
{
m_vehicle = new ODEDynamics(this);
m_vehicle.ProcessTypeChange((Vehicle)value);
}
}
else
m_vehicle.ProcessTypeChange((Vehicle)value);
}
}
public override void VehicleFloatParam(int param, float value)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessFloatVehicleParam((Vehicle)param, value);
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
public override void VehicleVectorParam(int param, Vector3 value)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessVectorVehicleParam((Vehicle)param, value);
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
public override void VehicleRotationParam(int param, Quaternion rotation)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessRotationVehicleParam((Vehicle)param, rotation);
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
public override void VehicleFlags(int param, bool remove)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessVehicleFlags(param, remove);
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
public void SetAcceleration(Vector3 accel)
{
_acceleration = accel;
}
public override void AddForce(Vector3 force, bool pushforce)
{
if (force.IsFinite())
{
AddChange(changes.AddForce, force / _parent_scene.ODE_STEPSIZE);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got Invalid linear force vector from Scene in Object {0}", Name);
}
//m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString());
}
public override void AddAngularForce(Vector3 force, bool pushforce)
{
if (force.IsFinite())
{
AddChange(changes.AddAngForce, force / _parent_scene.ODE_STEPSIZE);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got Invalid Angular force vector from Scene in Object {0}", Name);
}
}
public override void CrossingFailure()
{
m_crossingfailures++;
changeDisable(false);
}
public override void SetMomentum(Vector3 momentum)
{
}
public override void SetMaterial(int pMaterial)
{
m_material = pMaterial;
primContactData.mu = _parent_scene.m_materialContactsData[pMaterial].mu;
primContactData.bounce = _parent_scene.m_materialContactsData[pMaterial].bounce;
}
public void setPrimForRemoval()
{
AddChange(changes.Remove, null);
}
public override void link(PhysicsActor obj)
{
AddChange(changes.Link, obj);
}
public override void delink()
{
AddChange(changes.DeLink, null);
}
public override void LockAngularMotion(Vector3 axis)
{
// reverse the zero/non zero values for ODE.
if (axis.IsFinite())
{
axis.X = (axis.X > 0) ? 1f : 0f;
axis.Y = (axis.Y > 0) ? 1f : 0f;
axis.Z = (axis.Z > 0) ? 1f : 0f;
m_log.DebugFormat("[axislock]: <{0},{1},{2}>", axis.X, axis.Y, axis.Z);
AddChange(changes.AngLock, axis);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN locking axis from Scene on Object {0}", Name);
}
}
public override void SubscribeEvents(int ms)
{
m_eventsubscription = ms;
_parent_scene.AddCollisionEventReporting(this);
}
public override void UnSubscribeEvents()
{
_parent_scene.RemoveCollisionEventReporting(this);
m_eventsubscription = 0;
}
public void AddCollisionEvent(uint CollidedWith, ContactPoint contact)
{
if (CollisionEventsThisFrame == null)
CollisionEventsThisFrame = new CollisionEventUpdate();
CollisionEventsThisFrame.AddCollider(CollidedWith, contact);
}
public void SendCollisions()
{
if (CollisionEventsThisFrame == null)
return;
base.SendCollisionUpdate(CollisionEventsThisFrame);
if (CollisionEventsThisFrame.m_objCollisionList.Count == 0)
CollisionEventsThisFrame = null;
else
CollisionEventsThisFrame = new CollisionEventUpdate();
}
public override bool SubscribedEvents()
{
if (m_eventsubscription > 0)
return true;
return false;
}
public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, Vector3 size,
Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical)
{
Name = primName;
m_vehicle = null;
if (!pos.IsFinite())
{
pos = new Vector3(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f),
parent_scene.GetTerrainHeightAtXY(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f)) + 0.5f);
m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Position for {0}", Name);
}
_position = pos;
givefakepos = 0;
PID_D = parent_scene.bodyPIDD;
PID_G = parent_scene.bodyPIDG;
m_density = parent_scene.geomDefaultDensity;
// m_tensor = parent_scene.bodyMotorJointMaxforceTensor;
body_autodisable_frames = parent_scene.bodyFramesAutoDisable;
prim_geom = IntPtr.Zero;
Body = IntPtr.Zero;
if (!size.IsFinite())
{
size = new Vector3(0.5f, 0.5f, 0.5f);
m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Size for {0}", Name);
}
if (size.X <= 0) size.X = 0.01f;
if (size.Y <= 0) size.Y = 0.01f;
if (size.Z <= 0) size.Z = 0.01f;
_size = size;
if (!QuaternionIsFinite(rotation))
{
rotation = Quaternion.Identity;
m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Rotation for {0}", Name);
}
_orientation = rotation;
givefakeori = 0;
_pbs = pbs;
_parent_scene = parent_scene;
m_targetSpace = IntPtr.Zero;
if (pos.Z < 0)
{
m_isphysical = false;
}
else
{
m_isphysical = pisPhysical;
}
m_fakeisphysical = m_isphysical;
m_isVolumeDetect = false;
m_force = Vector3.Zero;
m_iscolliding = false;
m_wascolliding = false;
m_colliderfilter = 0;
hasOOBoffsetFromMesh = false;
_triMeshData = IntPtr.Zero;
primContactData.mu = parent_scene.m_materialContactsData[(int)Material.Wood].mu;
primContactData.bounce = parent_scene.m_materialContactsData[(int)Material.Wood].bounce;
CalcPrimBodyData();
m_building = true; // control must set this to false when done
AddChange(changes.Add, null);
}
private void resetCollisionAccounting()
{
m_collisionscore = 0;
m_interpenetrationcount = 0;
m_disabled = false;
}
private void createAMotor(Vector3 axis)
{
if (Body == IntPtr.Zero)
return;
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
}
int axisnum = 3 - (int)(axis.X + axis.Y + axis.Z);
if (axisnum <= 0)
return;
// stop it
d.BodySetTorque(Body, 0, 0, 0);
d.BodySetAngularVel(Body, 0, 0, 0);
Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero);
d.JointAttach(Amotor, Body, IntPtr.Zero);
d.JointSetAMotorMode(Amotor, 0);
d.JointSetAMotorNumAxes(Amotor, axisnum);
// get current orientation to lock
d.Quaternion dcur = d.BodyGetQuaternion(Body);
Quaternion curr; // crap convertion between identical things
curr.X = dcur.X;
curr.Y = dcur.Y;
curr.Z = dcur.Z;
curr.W = dcur.W;
Vector3 ax;
const int StopERP = 7;
const int StopCFM = 8;
int i = 0;
int j = 0;
if (axis.X == 0)
{
ax = (new Vector3(1, 0, 0)) * curr; // rotate world X to current local X
// ODE should do this with axis relative to body 1 but seems to fail
d.JointSetAMotorAxis(Amotor, 0, 0, ax.X, ax.Y, ax.Z);
d.JointSetAMotorAngle(Amotor, 0, 0);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.LoStop, -0.000001f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.HiStop, 0.000001f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.Vel, 0);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.FudgeFactor, 0.0001f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.Bounce, 0f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.FMax, 5e8f);
d.JointSetAMotorParam(Amotor, (int)StopCFM, 0f);
d.JointSetAMotorParam(Amotor, (int)StopERP, 0.8f);
i++;
j = 256; // odeplugin.cs doesn't have all parameters so this moves to next axis set
}
if (axis.Y == 0)
{
ax = (new Vector3(0, 1, 0)) * curr;
d.JointSetAMotorAxis(Amotor, i, 0, ax.X, ax.Y, ax.Z);
d.JointSetAMotorAngle(Amotor, i, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.LoStop, -0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.HiStop, 0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Vel, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FudgeFactor, 0.0001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Bounce, 0f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FMax, 5e8f);
d.JointSetAMotorParam(Amotor, j + (int)StopCFM, 0f);
d.JointSetAMotorParam(Amotor, j + (int)StopERP, 0.8f);
i++;
j += 256;
}
if (axis.Z == 0)
{
ax = (new Vector3(0, 0, 1)) * curr;
d.JointSetAMotorAxis(Amotor, i, 0, ax.X, ax.Y, ax.Z);
d.JointSetAMotorAngle(Amotor, i, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.LoStop, -0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.HiStop, 0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Vel, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FudgeFactor, 0.0001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Bounce, 0f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FMax, 5e8f);
d.JointSetAMotorParam(Amotor, j + (int)StopCFM, 0f);
d.JointSetAMotorParam(Amotor, j + (int)StopERP, 0.8f);
}
}
private bool setMesh(OdeScene parent_scene)
{
if (Body != IntPtr.Zero)
{
if (childPrim)
{
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildDelink(this,false);
}
}
else
{
DestroyBody();
}
}
IMesh mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true);
if (mesh == null)
{
m_log.WarnFormat("[PHYSICS]: CreateMesh Failed on prim {0} at <{1},{2},{3}>.", Name, _position.X, _position.Y, _position.Z);
return false;
}
IntPtr vertices, indices;
int vertexCount, indexCount;
int vertexStride, triStride;
mesh.getVertexListAsPtrToFloatArray(out vertices, out vertexStride, out vertexCount); // Note, that vertices are fixed in unmanaged heap
mesh.getIndexListAsPtrToIntArray(out indices, out triStride, out indexCount); // Also fixed, needs release after usage
if (vertexCount == 0 || indexCount == 0)
{
m_log.WarnFormat("[PHYSICS]: Got invalid mesh on prim {0} at <{1},{2},{3}>. It can be a sculp with alpha channel in map. Replacing it by a small box.", Name, _position.X, _position.Y, _position.Z);
_size.X = 0.01f;
_size.Y = 0.01f;
_size.Z = 0.01f;
return false;
}
// primOOBoffset = mesh.GetCentroid();
// hasOOBoffsetFromMesh = true;
hasOOBoffsetFromMesh = false;
_triMeshData = d.GeomTriMeshDataCreate();
d.GeomTriMeshDataBuildSimple(_triMeshData, vertices, vertexStride, vertexCount, indices, indexCount, triStride);
d.GeomTriMeshDataPreprocess(_triMeshData);
mesh.releaseSourceMeshData();
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateTriMesh(m_targetSpace, _triMeshData, null, null, null));
}
catch (Exception e)
{
m_log.ErrorFormat("[PHYSICS]: SetGeom Mesh failed for {0} exception: {1}", Name, e);
return false;
}
return true;
}
private void SetGeom(IntPtr geom)
{
prim_geom = geom;
//Console.WriteLine("SetGeom to " + prim_geom + " for " + Name);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
CalcPrimBodyData();
_parent_scene.geom_name_map[prim_geom] = Name;
_parent_scene.actor_name_map[prim_geom] = this;
/*
if (childPrim)
{
if (_parent != null && _parent is OdePrim)
{
OdePrim parent = (OdePrim)_parent;
//Console.WriteLine("SetGeom calls ChildSetGeom");
parent.ChildSetGeom(this);
}
}
*/
}
else
m_log.Warn("Setting bad Geom");
}
/// <summary>
/// Create a geometry for the given mesh in the given target space.
/// </summary>
/// <param name="m_targetSpace"></param>
/// <param name="mesh">If null, then a mesh is used that is based on the profile shape data.</param>
private void CreateGeom()
{
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
bool haveMesh = false;
hasOOBoffsetFromMesh = false;
if (_parent_scene.needsMeshing(_pbs))
{
haveMesh = setMesh(_parent_scene); // this will give a mesh to non trivial known prims
}
if(!haveMesh)
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1
&& _size.X == _size.Y && _size.Y == _size.Z)
{ // it's a sphere
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateSphere(m_targetSpace, _size.X * 0.5f));
}
catch (Exception e)
{
m_log.WarnFormat("[PHYSICS]: Create sphere failed: {0}", e);
return;
}
}
else
{// do it as a box
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
//Console.WriteLine(" CreateGeom 4");
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (Exception e)
{
m_log.Warn("[PHYSICS]: Create box failed: {0}", e);
return;
}
}
}
}
/// <summary>
/// Set a new geometry for this prim.
/// </summary>
/// <param name="geom"></param>
private void RemoveGeom()
{
if (prim_geom != IntPtr.Zero)
{
_parent_scene.geom_name_map.Remove(prim_geom);
_parent_scene.actor_name_map.Remove(prim_geom);
try
{
d.GeomDestroy(prim_geom);
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
}
// catch (System.AccessViolationException)
catch (Exception e)
{
m_log.ErrorFormat("[PHYSICS]: PrimGeom destruction failed for {0} exception {1}", Name,e);
}
prim_geom = IntPtr.Zero;
}
else
{
m_log.ErrorFormat("[PHYSICS]: PrimGeom destruction BAD {0}", Name);
}
Body = IntPtr.Zero;
hasOOBoffsetFromMesh = false;
CalcPrimBodyData();
}
private void ChildSetGeom(OdePrim odePrim)
{
// well..
DestroyBody();
MakeBody();
}
//sets non physical prim m_targetSpace to right space in spaces grid for static prims
// should only be called for non physical prims unless they are becoming non physical
private void SetInStaticSpace(OdePrim prim)
{
IntPtr targetSpace = _parent_scene.MoveGeomToStaticSpace(prim.prim_geom, prim._position, prim.m_targetSpace);
prim.m_targetSpace = targetSpace;
d.GeomEnable(prim_geom);
}
public void enableBodySoft()
{
if (!childPrim)
{
if (m_isphysical && Body != IntPtr.Zero && prim_geom != IntPtr.Zero)
{
if (m_targetSpace != _parent_scene.ActiveSpace)
{
m_targetSpace = _parent_scene.ActiveSpace;
foreach (OdePrim prm in childrenPrim)
{
if (prm.prim_geom != IntPtr.Zero)
{
d.SpaceAdd(m_targetSpace, prm.prim_geom);
prm.m_targetSpace = m_targetSpace;
}
}
d.SpaceAdd(m_targetSpace, prim_geom);
}
d.GeomEnable(prim_geom);
foreach (OdePrim prm in childrenPrim)
d.GeomEnable(prm.prim_geom);
d.BodyEnable(Body);
}
}
resetCollisionAccounting(); // this sets m_disable to false
}
private void disableBodySoft()
{
m_disabled = true;
if (!childPrim)
{
if (m_isphysical && Body != IntPtr.Zero && prim_geom != IntPtr.Zero)
{
if (m_targetSpace == _parent_scene.ActiveSpace)
{
foreach (OdePrim prm in childrenPrim)
{
if (prm.m_targetSpace != IntPtr.Zero && prm.prim_geom != IntPtr.Zero)
{
d.SpaceRemove(prm.m_targetSpace, prm.prim_geom);
prm.m_targetSpace = IntPtr.Zero;
}
}
d.SpaceRemove(m_targetSpace, prim_geom);
m_targetSpace = IntPtr.Zero;
}
d.GeomDisable(prim_geom);
foreach (OdePrim prm in childrenPrim)
d.GeomDisable(prm.prim_geom);
d.BodyDisable(Body);
}
}
}
private void MakeBody()
{
if (!m_isphysical) // only physical get bodies
return;
if (childPrim) // child prims don't get bodies;
return;
if (m_building)
return;
if (prim_geom == IntPtr.Zero)
{
m_log.Warn("[PHYSICS]: Unable to link the linkset. Root has no geom yet");
return;
}
if (Body != IntPtr.Zero)
{
d.BodyDestroy(Body);
Body = IntPtr.Zero;
m_log.Warn("[PHYSICS]: MakeBody called having a body");
}
if (d.GeomGetBody(prim_geom) != IntPtr.Zero)
{
d.GeomSetBody(prim_geom, IntPtr.Zero);
m_log.Warn("[PHYSICS]: MakeBody root geom already had a body");
}
d.Matrix3 mymat = new d.Matrix3();
d.Quaternion myrot = new d.Quaternion();
d.Mass objdmass = new d.Mass { };
Body = d.BodyCreate(_parent_scene.world);
DMassDup(ref primdMass, out objdmass);
// rotate inertia
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.RfromQ(out mymat, ref myrot);
d.MassRotate(ref objdmass, ref mymat);
// set the body rotation and position
d.BodySetRotation(Body, ref mymat);
// recompute full object inertia if needed
if (childrenPrim.Count > 0)
{
d.Matrix3 mat = new d.Matrix3();
d.Quaternion quat = new d.Quaternion();
d.Mass tmpdmass = new d.Mass { };
Vector3 rcm;
rcm.X = _position.X + objdmass.c.X;
rcm.Y = _position.Y + objdmass.c.Y;
rcm.Z = _position.Z + objdmass.c.Z;
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
if (prm.prim_geom == IntPtr.Zero)
{
m_log.Warn("[PHYSICS]: Unable to link one of the linkset elements, skipping it. No geom yet");
continue;
}
DMassCopy(ref prm.primdMass, ref tmpdmass);
// apply prim current rotation to inertia
quat.X = prm._orientation.X;
quat.Y = prm._orientation.Y;
quat.Z = prm._orientation.Z;
quat.W = prm._orientation.W;
d.RfromQ(out mat, ref quat);
d.MassRotate(ref tmpdmass, ref mat);
Vector3 ppos = prm._position;
ppos.X += tmpdmass.c.X - rcm.X;
ppos.Y += tmpdmass.c.Y - rcm.Y;
ppos.Z += tmpdmass.c.Z - rcm.Z;
// refer inertia to root prim center of mass position
d.MassTranslate(ref tmpdmass,
ppos.X,
ppos.Y,
ppos.Z);
d.MassAdd(ref objdmass, ref tmpdmass); // add to total object inertia
// fix prim colision cats
if (d.GeomGetBody(prm.prim_geom) != IntPtr.Zero)
{
d.GeomSetBody(prm.prim_geom, IntPtr.Zero);
m_log.Warn("[PHYSICS]: MakeBody child geom already had a body");
}
d.GeomClearOffset(prm.prim_geom);
d.GeomSetBody(prm.prim_geom, Body);
prm.Body = Body;
d.GeomSetOffsetWorldRotation(prm.prim_geom, ref mat); // set relative rotation
}
}
}
d.GeomClearOffset(prim_geom); // make sure we don't have a hidden offset
// associate root geom with body
d.GeomSetBody(prim_geom, Body);
d.BodySetPosition(Body, _position.X + objdmass.c.X, _position.Y + objdmass.c.Y, _position.Z + objdmass.c.Z);
d.GeomSetOffsetWorldPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body
myrot.W = -myrot.W;
d.RfromQ(out mymat, ref myrot);
d.MassRotate(ref objdmass, ref mymat);
d.BodySetMass(Body, ref objdmass);
_mass = objdmass.mass;
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
// disconnect from world gravity so we can apply buoyancy
d.BodySetGravityMode(Body, false);
d.BodySetAutoDisableFlag(Body, true);
d.BodySetAutoDisableSteps(Body, body_autodisable_frames);
// d.BodySetLinearDampingThreshold(Body, 0.01f);
// d.BodySetAngularDampingThreshold(Body, 0.001f);
d.BodySetDamping(Body, .001f, .0002f);
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
m_interpenetrationcount = 0;
m_collisionscore = 0;
m_disabled = false;
if (m_targetSpace != _parent_scene.ActiveSpace)
{
if (m_targetSpace != IntPtr.Zero)
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
if (d.SpaceQuery(m_targetSpace, prim_geom))
d.SpaceRemove(m_targetSpace, prim_geom);
}
m_targetSpace = _parent_scene.ActiveSpace;
d.SpaceAdd(m_targetSpace, prim_geom);
}
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
if (prm.prim_geom == IntPtr.Zero)
continue;
Vector3 ppos = prm._position;
d.GeomSetOffsetWorldPosition(prm.prim_geom, ppos.X, ppos.Y, ppos.Z); // set relative position
prm.m_collisionCategories |= CollisionCategories.Body;
prm.m_collisionFlags |= (CollisionCategories.Land | CollisionCategories.Wind);
d.GeomSetCategoryBits(prm.prim_geom, (int)prm.m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (int)prm.m_collisionFlags);
if (prm.m_targetSpace != _parent_scene.ActiveSpace)
{
if (prm.m_targetSpace != IntPtr.Zero)
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
if (d.SpaceQuery(prm.m_targetSpace, prm.prim_geom))
d.SpaceRemove(prm.m_targetSpace, prm.prim_geom);
}
prm.m_targetSpace = _parent_scene.ActiveSpace;
d.SpaceAdd(m_targetSpace, prm.prim_geom);
}
d.GeomEnable(prm.prim_geom);
prm.m_disabled = false;
prm.m_interpenetrationcount = 0;
prm.m_collisionscore = 0;
_parent_scene.addActivePrim(prm);
}
}
// The body doesn't already have a finite rotation mode set here
if ((!m_angularlock.ApproxEquals(Vector3.One, 0.0f)) && _parent == null)
{
createAMotor(m_angularlock);
}
d.GeomEnable(prim_geom);
m_disabled = false;
_parent_scene.addActivePrim(this);
}
private void DestroyBody()
{
if (Body != IntPtr.Zero)
{
_parent_scene.remActivePrim(this);
m_collisionCategories &= ~CollisionCategories.Body;
m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
UpdateDataFromGeom();
d.GeomSetBody(prim_geom, IntPtr.Zero);
SetInStaticSpace(this);
}
if (!childPrim)
{
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
_parent_scene.remActivePrim(prm);
prm.m_collisionCategories &= ~CollisionCategories.Body;
prm.m_collisionFlags &= ~(CollisionCategories.Wind | CollisionCategories.Land);
if (prm.prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prm.prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (int)m_collisionFlags);
prm.UpdateDataFromGeom();
SetInStaticSpace(prm);
}
prm.Body = IntPtr.Zero;
prm._mass = prm.primMass;
prm.m_collisionscore = 0;
}
}
d.BodyDestroy(Body);
}
Body = IntPtr.Zero;
}
_mass = primMass;
m_disabled = true;
m_collisionscore = 0;
}
#region Mass Calculation
private float CalculatePrimVolume()
{
float volume = _size.X * _size.Y * _size.Z; // default
float tmp;
float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f;
float hollowVolume = hollowAmount * hollowAmount;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// default box
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= (0.5f * .5f);
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
//a tube
volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - 2.0e-2f * (float)(200 - _pbs.PathScaleY);
volume -= volume * tmp * tmp;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= 0.5f * 0.5f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.78539816339f; // elipse base
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.52359877559829887307710723054658f;
}
break;
case ProfileShape.EquilateralTriangle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.32475953f;
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.32475953f;
volume *= 0.01f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
default:
break;
}
float taperX1;
float taperY1;
float taperX;
float taperY;
float pathBegin;
float pathEnd;
float profileBegin;
float profileEnd;
if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible)
{
taperX1 = _pbs.PathScaleX * 0.01f;
if (taperX1 > 1.0f)
taperX1 = 2.0f - taperX1;
taperX = 1.0f - taperX1;
taperY1 = _pbs.PathScaleY * 0.01f;
if (taperY1 > 1.0f)
taperY1 = 2.0f - taperY1;
taperY = 1.0f - taperY1;
}
else
{
taperX = _pbs.PathTaperX * 0.01f;
if (taperX < 0.0f)
taperX = -taperX;
taperX1 = 1.0f - taperX;
taperY = _pbs.PathTaperY * 0.01f;
if (taperY < 0.0f)
taperY = -taperY;
taperY1 = 1.0f - taperY;
}
volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);
pathBegin = (float)_pbs.PathBegin * 2.0e-5f;
pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f;
volume *= (pathEnd - pathBegin);
// this is crude aproximation
profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f;
profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f;
volume *= (profileEnd - profileBegin);
return volume;
}
private void CalcPrimBodyData()
{
float volume;
if (prim_geom == IntPtr.Zero)
{
// Ubit let's have a initial basic OOB
primOOBsize.X = _size.X;
primOOBsize.Y = _size.Y;
primOOBsize.Z = _size.Z;
primOOBoffset = Vector3.Zero;
}
else
{
d.AABB AABB;
d.GeomGetAABB(prim_geom, out AABB); // get the AABB from engine geom
primOOBsize.X = (AABB.MaxX - AABB.MinX);
primOOBsize.Y = (AABB.MaxY - AABB.MinY);
primOOBsize.Z = (AABB.MaxZ - AABB.MinZ);
if (!hasOOBoffsetFromMesh)
{
primOOBoffset.X = (AABB.MaxX + AABB.MinX) * 0.5f;
primOOBoffset.Y = (AABB.MaxY + AABB.MinY) * 0.5f;
primOOBoffset.Z = (AABB.MaxZ + AABB.MinZ) * 0.5f;
}
}
// also its own inertia and mass
// keep using basic shape mass for now
volume = CalculatePrimVolume();
primMass = m_density * volume;
if (primMass <= 0)
primMass = 0.0001f;//ckrinke: Mass must be greater then zero.
if (primMass > _parent_scene.maximumMassObject)
primMass = _parent_scene.maximumMassObject;
_mass = primMass; // just in case
d.MassSetBoxTotal(out primdMass, primMass, primOOBsize.X, primOOBsize.Y, primOOBsize.Z);
d.MassTranslate(ref primdMass,
primOOBoffset.X,
primOOBoffset.Y,
primOOBoffset.Z);
primOOBsize *= 0.5f; // let obb size be a corner coords
primOOBradiusSQ = primOOBsize.LengthSquared();
}
#endregion
/// <summary>
/// Add a child prim to this parent prim.
/// </summary>
/// <param name="prim">Child prim</param>
// I'm the parent
// prim is the child
public void ParentPrim(OdePrim prim)
{
//Console.WriteLine("ParentPrim " + m_primName);
if (this.m_localID != prim.m_localID)
{
DestroyBody(); // for now we need to rebuil entire object on link change
lock (childrenPrim)
{
// adopt the prim
if (!childrenPrim.Contains(prim))
childrenPrim.Add(prim);
// see if this prim has kids and adopt them also
// should not happen for now
foreach (OdePrim prm in prim.childrenPrim)
{
if (!childrenPrim.Contains(prm))
{
if (prm.Body != IntPtr.Zero)
{
if (prm.prim_geom != IntPtr.Zero)
d.GeomSetBody(prm.prim_geom, IntPtr.Zero);
if(prm.Body != prim.Body)
prm.DestroyBody(); // don't loose bodies around
prm.Body = IntPtr.Zero;
}
childrenPrim.Add(prm);
prm._parent = this;
}
}
}
//Remove old children from the prim
prim.childrenPrim.Clear();
if (prim.Body != IntPtr.Zero)
{
if (prim.prim_geom != IntPtr.Zero)
d.GeomSetBody(prim.prim_geom, IntPtr.Zero);
prim.DestroyBody(); // don't loose bodies around
prim.Body = IntPtr.Zero;
}
prim.childPrim = true;
prim._parent = this;
MakeBody(); // full nasty reconstruction
}
}
private void UpdateChildsfromgeom()
{
if (childrenPrim.Count > 0)
{
foreach (OdePrim prm in childrenPrim)
prm.UpdateDataFromGeom();
}
}
private void UpdateDataFromGeom()
{
if (prim_geom != IntPtr.Zero)
{
d.Vector3 lpos;
d.GeomCopyPosition(prim_geom, out lpos);
_position.X = lpos.X;
_position.Y = lpos.Y;
_position.Z = lpos.Z;
d.Quaternion qtmp = new d.Quaternion { };
d.GeomCopyQuaternion(prim_geom, out qtmp);
_orientation.W = qtmp.W;
_orientation.X = qtmp.X;
_orientation.Y = qtmp.Y;
_orientation.Z = qtmp.Z;
}
}
private void ChildDelink(OdePrim odePrim, bool remakebodies)
{
// Okay, we have a delinked child.. destroy all body and remake
if (odePrim != this && !childrenPrim.Contains(odePrim))
return;
DestroyBody();
if (odePrim == this) // delinking the root prim
{
OdePrim newroot = null;
lock (childrenPrim)
{
if (childrenPrim.Count > 0)
{
newroot = childrenPrim[0];
childrenPrim.RemoveAt(0);
foreach (OdePrim prm in childrenPrim)
{
newroot.childrenPrim.Add(prm);
}
childrenPrim.Clear();
}
if (newroot != null)
{
newroot.childPrim = false;
newroot._parent = null;
if (remakebodies)
newroot.MakeBody();
}
}
}
else
{
lock (childrenPrim)
{
childrenPrim.Remove(odePrim);
odePrim.childPrim = false;
odePrim._parent = null;
// odePrim.UpdateDataFromGeom();
if (remakebodies)
odePrim.MakeBody();
}
}
if (remakebodies)
MakeBody();
}
protected void ChildRemove(OdePrim odePrim, bool reMakeBody)
{
// Okay, we have a delinked child.. destroy all body and remake
if (odePrim != this && !childrenPrim.Contains(odePrim))
return;
DestroyBody();
if (odePrim == this)
{
OdePrim newroot = null;
lock (childrenPrim)
{
if (childrenPrim.Count > 0)
{
newroot = childrenPrim[0];
childrenPrim.RemoveAt(0);
foreach (OdePrim prm in childrenPrim)
{
newroot.childrenPrim.Add(prm);
}
childrenPrim.Clear();
}
if (newroot != null)
{
newroot.childPrim = false;
newroot._parent = null;
newroot.MakeBody();
}
}
if (reMakeBody)
MakeBody();
return;
}
else
{
lock (childrenPrim)
{
childrenPrim.Remove(odePrim);
odePrim.childPrim = false;
odePrim._parent = null;
if (reMakeBody)
odePrim.MakeBody();
}
}
MakeBody();
}
#region changes
private void changeadd()
{
CreateGeom();
if (prim_geom != IntPtr.Zero)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
// _parent_scene.actor_name_map[prim_geom] = (PhysicsActor)this;
if (!m_isphysical)
SetInStaticSpace(this);
}
// m_building = false; // REMOVE THIS LATER
if (m_isphysical && Body == IntPtr.Zero)
{
/*
if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
changeShape(_pbs);
}
else
{
*/
MakeBody();
// }
}
}
private void changeAngularLock(Vector3 newLock)
{
// do we have a Physical object?
if (Body != IntPtr.Zero)
{
//Check that we have a Parent
//If we have a parent then we're not authorative here
if (_parent == null)
{
if (!newLock.ApproxEquals(Vector3.One, 0f))
{
createAMotor(newLock);
}
else
{
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
}
}
}
}
// Store this for later in case we get turned into a separate body
m_angularlock = newLock;
}
private void changeLink(OdePrim NewParent)
{
if (_parent == null && NewParent != null)
{
NewParent.ParentPrim(this);
}
else if (_parent != null)
{
if (_parent is OdePrim)
{
if (NewParent != _parent)
{
(_parent as OdePrim).ChildDelink(this,false); // for now...
childPrim = false;
if (NewParent != null)
{
NewParent.ParentPrim(this);
}
}
}
}
_parent = NewParent;
}
private void Stop()
{
if(!childPrim)
{
m_force = Vector3.Zero;
m_forceacc = Vector3.Zero;
m_angularForceacc = Vector3.Zero;
_torque = Vector3.Zero;
_velocity = Vector3.Zero;
_acceleration = Vector3.Zero;
m_rotationalVelocity = Vector3.Zero;
_target_velocity = Vector3.Zero;
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
m_vehicle.Stop();
}
if (Body != IntPtr.Zero)
{
d.BodySetForce(Body, 0f, 0f, 0f);
d.BodySetTorque(Body, 0f, 0f, 0f);
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetAngularVel(Body, 0f, 0f, 0f);
}
}
private void changeSelectedStatus(bool newval)
{
m_isSelected = newval;
Stop();
if (newval)
{
m_collisionCategories = CollisionCategories.Selected;
m_collisionFlags = (CollisionCategories.Sensor | CollisionCategories.Space);
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
disableBodySoft();
}
else
{
m_collisionCategories = CollisionCategories.Geom;
if (m_isphysical)
m_collisionCategories |= CollisionCategories.Body;
m_collisionFlags = m_default_collisionFlags;
if (m_collidesLand)
m_collisionFlags |= CollisionCategories.Land;
if (m_collidesWater)
m_collisionFlags |= CollisionCategories.Water;
if (prim_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(prim_geom, (int)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
enableBodySoft();
}
resetCollisionAccounting();
}
private void changePosition(Vector3 newPos)
{
if (m_isphysical)
{
if (childPrim) // inertia is messed, must rebuild
{
if (m_building)
{
_position = newPos;
}
}
else
{
if (_position != newPos)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
}
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
if (prim_geom != IntPtr.Zero)
{
if (newPos != _position)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
m_targetSpace = _parent_scene.MoveGeomToStaticSpace(prim_geom, _position, m_targetSpace);
}
}
}
givefakepos--;
if (givefakepos < 0)
givefakepos = 0;
// changeSelectedStatus();
resetCollisionAccounting();
}
private void changeOrientation(Quaternion newOri)
{
if (m_isphysical)
{
if (childPrim) // inertia is messed, must rebuild
{
if (m_building)
{
_orientation = newOri;
}
}
else
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
if (Body != IntPtr.Zero && !m_angularlock.ApproxEquals(Vector3.One, 0f))
createAMotor(m_angularlock);
}
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
if (prim_geom != IntPtr.Zero)
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
}
}
}
givefakeori--;
if (givefakeori < 0)
givefakeori = 0;
resetCollisionAccounting();
}
private void changePositionAndOrientation(Vector3 newPos, Quaternion newOri)
{
if (m_isphysical)
{
if (childPrim && m_building) // inertia is messed, must rebuild
{
_position = newPos;
_orientation = newOri;
}
else
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
if (Body != IntPtr.Zero && !m_angularlock.ApproxEquals(Vector3.One, 0f))
createAMotor(m_angularlock);
}
if (_position != newPos)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
}
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
// string primScenAvatarIn = _parent_scene.whichspaceamIin(_position);
// int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position);
if (prim_geom != IntPtr.Zero)
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
}
if (newPos != _position)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
m_targetSpace = _parent_scene.MoveGeomToStaticSpace(prim_geom, _position, m_targetSpace);
}
}
}
givefakepos--;
if (givefakepos < 0)
givefakepos = 0;
givefakeori--;
if (givefakeori < 0)
givefakeori = 0;
resetCollisionAccounting();
}
private void changeDisable(bool disable)
{
if (disable)
{
if (!m_disabled)
disableBodySoft();
}
else
{
if (m_disabled)
enableBodySoft();
}
}
private void changePhysicsStatus(bool NewStatus)
{
m_isphysical = NewStatus;
if (!childPrim)
{
if (NewStatus)
{
if (Body == IntPtr.Zero)
{
/*
if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
changeShape(_pbs);
}
else
*/
{
MakeBody();
}
}
}
else
{
if (Body != IntPtr.Zero)
{
// UpdateChildsfromgeom();
/* if (_pbs.SculptEntry && _parent_scene.meshSculptedPrim)
{
changeShape(_pbs);
}
else
*/
DestroyBody();
}
}
}
resetCollisionAccounting();
}
private void changeprimsizeshape()
{
OdePrim parent = (OdePrim)_parent;
bool chp = childPrim;
if (chp)
{
if (parent != null)
{
parent.DestroyBody();
}
}
else
{
DestroyBody();
}
RemoveGeom();
// we don't need to do space calculation because the client sends a position update also.
if (_size.X <= 0)
_size.X = 0.01f;
if (_size.Y <= 0)
_size.Y = 0.01f;
if (_size.Z <= 0)
_size.Z = 0.01f;
// Construction of new prim
CreateGeom();
if (prim_geom != IntPtr.Zero)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
}
if (chp)
{
if (parent != null)
{
parent.MakeBody();
}
}
else
MakeBody();
resetCollisionAccounting();
}
private void changeSize(Vector3 newSize)
{
_size = newSize;
changeprimsizeshape();
}
private void changeShape(PrimitiveBaseShape newShape)
{
_pbs = newShape;
changeprimsizeshape();
}
private void changeFloatOnWater(bool newval)
{
m_collidesWater = newval;
if (prim_geom != IntPtr.Zero)
{
if (m_collidesWater)
{
m_collisionFlags |= CollisionCategories.Water;
}
else
{
m_collisionFlags &= ~CollisionCategories.Water;
}
d.GeomSetCollideBits(prim_geom, (int)m_collisionFlags);
}
}
private void changeSetTorque(Vector3 newtorque)
{
if (!m_isSelected)
{
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
_torque = newtorque;
}
}
private void changeForce(Vector3 force)
{
m_force = force;
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
private void changeAddForce(Vector3 force)
{
m_forceacc += force;
if (!m_isSelected)
{
lock (this)
{
//m_log.Info("[PHYSICS]: dequeing forcelist");
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
m_collisionscore = 0;
m_interpenetrationcount = 0;
}
}
private void changeAddAngularForce(Vector3 aforce)
{
m_angularForceacc += aforce;
if (!m_isSelected)
{
lock (this)
{
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
m_collisionscore = 0;
m_interpenetrationcount = 0;
}
}
private void changevelocity(Vector3 newVel)
{
if (!m_isSelected)
{
if (Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
d.BodySetLinearVel(Body, newVel.X, newVel.Y, newVel.Z);
}
//resetCollisionAccounting();
}
_velocity = newVel;
}
private void changeVolumedetetion(bool newVolDtc)
{
m_isVolumeDetect = newVolDtc;
}
protected void changeBuilding(bool newbuilding)
{
if ((bool)newbuilding)
{
m_building = true;
DestroyBody();
}
else
{
m_building = false;
if (!childPrim)
MakeBody();
}
if (!childPrim && childrenPrim.Count > 0)
{
foreach (OdePrim prm in childrenPrim)
prm.changeBuilding(m_building); // call directly
}
}
#endregion
public void Move()
{
if (!childPrim && m_isphysical && Body != IntPtr.Zero &&
!m_disabled && !m_isSelected && d.BodyIsEnabled(Body) && !m_building) // KF: Only move root prims.
{
// if (!d.BodyIsEnabled(Body)) d.BodyEnable(Body); // KF add 161009
float timestep = _parent_scene.ODE_STEPSIZE;
float fx = 0;
float fy = 0;
float fz = 0;
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
{
// 'VEHICLES' are dealt with in ODEDynamics.cs
m_vehicle.Step();
}
else
{
float m_mass = _mass;
// fz = 0f;
//m_log.Info(m_collisionFlags.ToString());
if (m_usePID)
{
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
if ((m_PIDTau < 1) && (m_PIDTau != 0))
{
//PID_G = PID_G / m_PIDTau;
m_PIDTau = 1;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
d.Vector3 vel = d.BodyGetLinearVel(Body);
d.Vector3 pos = d.BodyGetPosition(Body);
_target_velocity =
new Vector3(
(m_PIDTarget.X - pos.X) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Y - pos.Y) * ((PID_G - m_PIDTau) * timestep),
(m_PIDTarget.Z - pos.Z) * ((PID_G - m_PIDTau) * timestep)
);
// if velocity is zero, use position control; otherwise, velocity control
if (_target_velocity.ApproxEquals(Vector3.Zero, 0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
//fx = (_target_velocity.X - vel.X) * (PID_D) + (_zeroPosition.X - pos.X) * (PID_P * 2);
//fy = (_target_velocity.Y - vel.Y) * (PID_D) + (_zeroPosition.Y - pos.Y) * (PID_P * 2);
//fz = fz + (_target_velocity.Z - vel.Z) * (PID_D) + (_zeroPosition.Z - pos.Z) * PID_P;
d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z);
d.BodySetLinearVel(Body, 0, 0, 0);
d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
// We're flying and colliding with something
fx = ((_target_velocity.X) - vel.X) * (PID_D);
fy = ((_target_velocity.Y) - vel.Y) * (PID_D);
// vec.Z = (_target_velocity.Z - vel.Z) * PID_D + (_zeroPosition.Z - pos.Z) * PID_P;
fz = ((_target_velocity.Z - vel.Z) * (PID_D));
}
} // end if (m_usePID)
// Hover PID Controller needs to be mutually exlusive to MoveTo PID controller
else if (m_useHoverPID)
{
//Console.WriteLine("Hover " + Name);
// If we're using the PID controller, then we have no gravity
// no lock; for now it's only called from within Simulate()
// If the PID Controller isn't active then we set our force
// calculating base velocity to the current position
if ((m_PIDTau < 1))
{
PID_G = PID_G / m_PIDTau;
}
if ((PID_G - m_PIDTau) <= 0)
{
PID_G = m_PIDTau + 1;
}
// Where are we, and where are we headed?
d.Vector3 pos = d.BodyGetPosition(Body);
d.Vector3 vel = d.BodyGetLinearVel(Body);
// Non-Vehicles have a limited set of Hover options.
// determine what our target height really is based on HoverType
switch (m_PIDHoverType)
{
case PIDHoverType.Ground:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
break;
case PIDHoverType.GroundAndWater:
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(pos.X, pos.Y);
m_waterHeight = _parent_scene.GetWaterLevel();
if (m_groundHeight > m_waterHeight)
{
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
}
else
{
m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight;
}
break;
} // end switch (m_PIDHoverType)
_target_velocity =
new Vector3(0.0f, 0.0f,
(m_targetHoverHeight - pos.Z) * ((PID_G - m_PIDHoverTau) * timestep)
);
// if velocity is zero, use position control; otherwise, velocity control
if (_target_velocity.ApproxEquals(Vector3.Zero, 0.1f))
{
// keep track of where we stopped. No more slippin' & slidin'
// We only want to deactivate the PID Controller if we think we want to have our surrogate
// react to the physics scene by moving it's position.
// Avatar to Avatar collisions
// Prim to avatar collisions
d.BodySetPosition(Body, pos.X, pos.Y, m_targetHoverHeight);
d.BodySetLinearVel(Body, vel.X, vel.Y, 0);
// ? d.BodyAddForce(Body, 0, 0, fz);
return;
}
else
{
_zeroFlag = false;
// We're flying and colliding with something
fz = ((_target_velocity.Z - vel.Z) * (PID_D));
}
}
else
{
float b = (1.0f - m_buoyancy);
fx = _parent_scene.gravityx * b;
fy = _parent_scene.gravityy * b;
fz = _parent_scene.gravityz * b;
}
fx *= m_mass;
fy *= m_mass;
fz *= m_mass;
// constant force
fx += m_force.X;
fy += m_force.Y;
fz += m_force.Z;
fx += m_forceacc.X;
fy += m_forceacc.Y;
fz += m_forceacc.Z;
m_forceacc = Vector3.Zero;
//m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString());
if (fx != 0 || fy != 0 || fz != 0)
{
d.BodyAddForce(Body, fx, fy, fz);
//Console.WriteLine("AddForce " + fx + "," + fy + "," + fz);
}
Vector3 trq;
trq = _torque;
trq += m_angularForceacc;
m_angularForceacc = Vector3.Zero;
if (trq.X != 0 || trq.Y != 0 || trq.Z != 0)
{
d.BodyAddTorque(Body, trq.X, trq.Y, trq.Z);
}
}
}
else
{ // is not physical, or is not a body or is selected
// _zeroPosition = d.BodyGetPosition(Body);
return;
//Console.WriteLine("Nothing " + Name);
}
}
public void UpdatePositionAndVelocity(float simulatedtime)
{
// no lock; called from Simulate() -- if you call this from elsewhere, gotta lock or do Monitor.Enter/Exit!
if (_parent == null && !m_disabled && !m_building)
{
if (Body != IntPtr.Zero)
{
if (m_crossingfailures != 0 && m_crossingfailures < 5)
{
_position.X = Util.Clip(_position.X, 0.4f, _parent_scene.WorldExtents.X - 0.4f);
_position.Y = Util.Clip(_position.Y, 0.4f, _parent_scene.WorldExtents.Y - 0.4f);
_position.Z = Util.Clip(_position.Z + 0.2f, -100f, 50000f);
float tmp = _parent_scene.GetTerrainHeightAtXY(_position.X, _position.Y);
if (_position.Z < tmp)
_position.Z = tmp + 0.2f;
m_lastposition = _position;
m_lastorientation = _orientation;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_lastVelocity = _velocity;
m_rotationalVelocity = _velocity;
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
m_vehicle.Stop();
m_crossingfailures = 0; // do this only once
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
enableBodySoft();
base.RequestPhysicsterseUpdate();
return;
}
else if (m_crossingfailures != 0)
{
return;
}
Vector3 pv = Vector3.Zero;
bool lastZeroFlag = _zeroFlag;
d.Vector3 lpos;
d.GeomCopyPosition(prim_geom,out lpos); // root position that is seem by rest of simulator
// we need to use root position since that's all the rest of scene uses
if ( lpos.X < 0f || lpos.X > _parent_scene.WorldExtents.X
|| lpos.Y < 0f || lpos.Y > _parent_scene.WorldExtents.Y
)
{
// we are outside current region
// we can't let it keeping moving and having colisions
// since it can be stucked between something like terrain and edge
// so lets stop and disable it until something else kicks it
if (m_crossingfailures == 0)
{
_position.X = Util.Clip(lpos.X, -0.5f, _parent_scene.WorldExtents.X + 0.5f);
_position.Y = Util.Clip(lpos.Y, -0.5f, _parent_scene.WorldExtents.Y + 0.5f);
_position.Z = Util.Clip(lpos.Z, -100f, 50000f);
m_lastposition = _position;
m_lastorientation = _orientation;
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
disableBodySoft(); // stop collisions
m_crossingfailures++; // do this only once
base.RequestPhysicsterseUpdate();
return;
}
}
if (lpos.Z < -100 || lpos.Z > 100000f)
{
lpos.Z = Util.Clip(lpos.Z, -100f, 50000f);
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0); // stop it
d.BodySetPosition(Body, lpos.X, lpos.Y, lpos.Z); // put it somewhere
m_lastposition = _position;
m_lastorientation = _orientation;
base.RequestPhysicsterseUpdate();
m_throttleUpdates = false;
throttleCounter = 0;
_zeroFlag = true;
disableBodySoft(); // disable it and colisions
base.RaiseOutOfBounds(_position);
return;
}
d.Quaternion ori;
d.GeomCopyQuaternion(prim_geom, out ori);
d.Vector3 vel = d.BodyGetLinearVel(Body);
d.Vector3 rotvel = d.BodyGetAngularVel(Body);
if ((Math.Abs(m_lastposition.X - lpos.X) < 0.01)
&& (Math.Abs(m_lastposition.Y - lpos.Y) < 0.01)
&& (Math.Abs(m_lastposition.Z - lpos.Z) < 0.01)
&& (Math.Abs(m_lastorientation.X - ori.X) < 0.0001)
&& (Math.Abs(m_lastorientation.Y - ori.Y) < 0.0001)
&& (Math.Abs(m_lastorientation.Z - ori.Z) < 0.0001)
)
{
_zeroFlag = true;
//Console.WriteLine("ZFT 2");
m_throttleUpdates = false;
}
else
{
//m_log.Debug(Math.Abs(m_lastposition.X - l_position.X).ToString());
_zeroFlag = false;
m_lastUpdateSent = false;
//m_throttleUpdates = false;
}
if (_zeroFlag)
{
m_lastposition = _position;
m_lastorientation = _orientation;
_velocity.X = 0.0f;
_velocity.Y = 0.0f;
_velocity.Z = 0.0f;
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
if (!m_lastUpdateSent)
{
m_throttleUpdates = false;
throttleCounter = 0;
m_rotationalVelocity = pv;
base.RequestPhysicsterseUpdate();
m_lastUpdateSent = true;
}
}
else
{
if (lastZeroFlag != _zeroFlag)
{
base.RequestPhysicsterseUpdate();
}
m_lastVelocity = _velocity;
_position.X = lpos.X;
_position.Y = lpos.Y;
_position.Z = lpos.Z;
_velocity.X = vel.X;
_velocity.Y = vel.Y;
_velocity.Z = vel.Z;
_orientation.X = ori.X;
_orientation.Y = ori.Y;
_orientation.Z = ori.Z;
_orientation.W = ori.W;
_acceleration = ((_velocity - m_lastVelocity) / simulatedtime);
if (m_rotationalVelocity.ApproxEquals(pv, 0.0001f))
{
m_rotationalVelocity = pv;
}
else
{
m_rotationalVelocity.X = rotvel.X;
m_rotationalVelocity.Y = rotvel.Y;
m_rotationalVelocity.Z = rotvel.Z;
}
m_lastUpdateSent = false;
if (!m_throttleUpdates || throttleCounter > _parent_scene.geomUpdatesPerThrottledUpdate)
{
m_lastposition = _position;
m_lastorientation = _orientation;
base.RequestPhysicsterseUpdate();
}
else
{
throttleCounter++;
}
}
}
else if (!m_lastUpdateSent || !_zeroFlag)
{
// Not a body.. so Make sure the client isn't interpolating
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
_zeroFlag = true;
if (!m_lastUpdateSent)
{
m_throttleUpdates = false;
throttleCounter = 0;
base.RequestPhysicsterseUpdate();
m_lastUpdateSent = true;
}
}
}
}
internal static bool QuaternionIsFinite(Quaternion q)
{
if (Single.IsNaN(q.X) || Single.IsInfinity(q.X))
return false;
if (Single.IsNaN(q.Y) || Single.IsInfinity(q.Y))
return false;
if (Single.IsNaN(q.Z) || Single.IsInfinity(q.Z))
return false;
if (Single.IsNaN(q.W) || Single.IsInfinity(q.W))
return false;
return true;
}
internal static void DMassCopy(ref d.Mass src, ref d.Mass dst)
{
dst.c.W = src.c.W;
dst.c.X = src.c.X;
dst.c.Y = src.c.Y;
dst.c.Z = src.c.Z;
dst.mass = src.mass;
dst.I.M00 = src.I.M00;
dst.I.M01 = src.I.M01;
dst.I.M02 = src.I.M02;
dst.I.M10 = src.I.M10;
dst.I.M11 = src.I.M11;
dst.I.M12 = src.I.M12;
dst.I.M20 = src.I.M20;
dst.I.M21 = src.I.M21;
dst.I.M22 = src.I.M22;
}
private static void DMassDup(ref d.Mass src, out d.Mass dst)
{
dst = new d.Mass { };
dst.c.W = src.c.W;
dst.c.X = src.c.X;
dst.c.Y = src.c.Y;
dst.c.Z = src.c.Z;
dst.mass = src.mass;
dst.I.M00 = src.I.M00;
dst.I.M01 = src.I.M01;
dst.I.M02 = src.I.M02;
dst.I.M10 = src.I.M10;
dst.I.M11 = src.I.M11;
dst.I.M12 = src.I.M12;
dst.I.M20 = src.I.M20;
dst.I.M21 = src.I.M21;
dst.I.M22 = src.I.M22;
}
private void donullchange()
{
}
public bool DoAChange(changes what, object arg)
{
if (prim_geom == IntPtr.Zero && what != changes.Add && what != changes.Remove)
{
return false;
}
// nasty switch
switch (what)
{
case changes.Add:
changeadd();
break;
case changes.Remove:
//If its being removed, we don't want to rebuild the physical rep at all, so ignore this stuff...
//When we return true, it destroys all of the prims in the linkset anyway
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildRemove(this,false);
}
else
ChildRemove(this,false);
RemoveGeom();
m_targetSpace = IntPtr.Zero;
if (m_eventsubscription > 0)
UnSubscribeEvents();
return true;
case changes.Link:
OdePrim tmp = (OdePrim)arg;
changeLink(tmp);
break;
case changes.DeLink:
changeLink(null);
break;
case changes.Position:
changePosition((Vector3)arg);
break;
case changes.Orientation:
changeOrientation((Quaternion)arg);
break;
case changes.PosOffset:
donullchange();
break;
case changes.OriOffset:
donullchange();
break;
case changes.Velocity:
changevelocity((Vector3)arg);
break;
// case changes.Acceleration:
// changeacceleration((Vector3)arg);
// break;
// case changes.AngVelocity:
// changeangvelocity((Vector3)arg);
// break;
case changes.Force:
changeForce((Vector3)arg);
break;
case changes.Torque:
changeSetTorque((Vector3)arg);
break;
case changes.AddForce:
changeAddForce((Vector3)arg);
break;
case changes.AddAngForce:
changeAddAngularForce((Vector3)arg);
break;
case changes.AngLock:
changeAngularLock((Vector3)arg);
break;
case changes.Size:
changeSize((Vector3)arg);
break;
case changes.Shape:
changeShape((PrimitiveBaseShape) arg);
break;
case changes.CollidesWater:
changeFloatOnWater((bool)arg);
break;
case changes.VolumeDtc:
changeVolumedetetion((bool)arg);
break;
case changes.Physical:
changePhysicsStatus((bool)arg);
break;
case changes.Selected:
changeSelectedStatus((bool)arg);
break;
case changes.disabled:
changeDisable((bool) arg);
break;
case changes.building:
changeBuilding((bool)arg);
break;
case changes.Null:
donullchange();
break;
default:
donullchange();
break;
}
return false;
}
public void AddChange(changes what, object arg)
{
_parent_scene.AddChange(this, what, arg);
}
}
}