OpenSimMirror/OpenSim/Region/Framework/Scenes/TerrainChannel.cs

565 lines
24 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.IO;
using System.Text;
using System.Reflection;
using System.Xml;
using System.Xml.Serialization;
using OpenSim.Data;
using OpenSim.Framework;
using OpenSim.Region.Framework.Interfaces;
using OpenMetaverse;
using log4net;
namespace OpenSim.Region.Framework.Scenes
{
/// <summary>
/// A new version of the old Channel class, simplified
/// </summary>
public class TerrainChannel : ITerrainChannel
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private static string LogHeader = "[TERRAIN CHANNEL]";
protected TerrainData m_terrainData;
public int Width { get { return m_terrainData.SizeX; } } // X dimension
// Unfortunately, for historical reasons, in this module 'Width' is X and 'Height' is Y
public int Height { get { return m_terrainData.SizeY; } } // Y dimension
public int Altitude { get { return m_terrainData.SizeZ; } } // Y dimension
// Default, not-often-used builder
public TerrainChannel()
{
m_terrainData = new HeightmapTerrainData((int)Constants.RegionSize, (int)Constants.RegionSize, (int)Constants.RegionHeight);
FlatLand();
// PinHeadIsland();
}
// Create terrain of given size
public TerrainChannel(int pX, int pY)
{
m_terrainData = new HeightmapTerrainData(pX, pY, (int)Constants.RegionHeight);
}
// Create terrain of specified size and initialize with specified terrain.
// TODO: join this with the terrain initializers.
public TerrainChannel(String type, int pX, int pY, int pZ)
{
m_terrainData = new HeightmapTerrainData(pX, pY, pZ);
if (type.Equals("flat"))
FlatLand();
else
PinHeadIsland();
}
// Create channel passed a heightmap and expected dimensions of the region.
// The heightmap might not fit the passed size so accomodations must be made.
public TerrainChannel(double[,] pM, int pSizeX, int pSizeY, int pAltitude)
{
int hmSizeX = pM.GetLength(0);
int hmSizeY = pM.GetLength(1);
m_terrainData = new HeightmapTerrainData(pSizeX, pSizeY, pAltitude);
for (int xx = 0; xx < pSizeX; xx++)
for (int yy = 0; yy < pSizeY; yy++)
if (xx > hmSizeX || yy > hmSizeY)
m_terrainData[xx, yy] = TerrainData.DefaultTerrainHeight;
else
m_terrainData[xx, yy] = (float)pM[xx, yy];
}
public TerrainChannel(TerrainData pTerrData)
{
m_terrainData = pTerrData;
}
#region ITerrainChannel Members
// ITerrainChannel.MakeCopy()
public ITerrainChannel MakeCopy()
{
return this.Copy();
}
// ITerrainChannel.GetTerrainData()
public TerrainData GetTerrainData()
{
return m_terrainData;
}
// ITerrainChannel.GetFloatsSerialized()
// This one dimensional version is ordered so height = map[y*sizeX+x];
// DEPRECATED: don't use this function as it does not retain the dimensions of the terrain
// and the caller will probably do the wrong thing if the terrain is not the legacy 256x256.
public float[] GetFloatsSerialised()
{
return m_terrainData.GetFloatsSerialized();
}
// ITerrainChannel.GetDoubles()
public double[,] GetDoubles()
{
double[,] heights = new double[Width, Height];
int idx = 0; // index into serialized array
for (int ii = 0; ii < Width; ii++)
{
for (int jj = 0; jj < Height; jj++)
{
heights[ii, jj] = (double)m_terrainData[ii, jj];
idx++;
}
}
return heights;
}
// ITerrainChannel.this[x,y]
public double this[int x, int y]
{
get {
if (x < 0 || x >= Width || y < 0 || y >= Height)
return 0;
return (double)m_terrainData[x, y];
}
set
{
if (Double.IsNaN(value) || Double.IsInfinity(value))
return;
m_terrainData[x, y] = (float)value;
}
}
// ITerrainChannel.GetHieghtAtXYZ(x, y, z)
public float GetHeightAtXYZ(float x, float y, float z)
{
if (x < 0 || x >= Width || y < 0 || y >= Height)
return 0;
return m_terrainData[(int)x, (int)y];
}
// ITerrainChannel.Tainted()
public bool Tainted(int x, int y)
{
return m_terrainData.IsTaintedAt(x, y);
}
// ITerrainChannel.SaveToXmlString()
public string SaveToXmlString()
{
XmlWriterSettings settings = new XmlWriterSettings();
settings.Encoding = Util.UTF8;
using (StringWriter sw = new StringWriter())
{
using (XmlWriter writer = XmlWriter.Create(sw, settings))
{
WriteXml(writer);
}
string output = sw.ToString();
return output;
}
}
// ITerrainChannel.LoadFromXmlString()
public void LoadFromXmlString(string data)
{
using(StringReader sr = new StringReader(data))
{
using(XmlTextReader reader = new XmlTextReader(sr))
ReadXml(reader);
}
}
// ITerrainChannel.Merge
public void Merge(ITerrainChannel newTerrain, Vector3 displacement, float radianRotation, Vector2 rotationDisplacement)
{
m_log.DebugFormat("{0} Merge. inSize=<{1},{2}>, disp={3}, rot={4}, rotDisp={5}, outSize=<{6},{7}>", LogHeader,
newTerrain.Width, newTerrain.Height,
displacement, radianRotation, rotationDisplacement,
m_terrainData.SizeX, m_terrainData.SizeY);
for (int xx = 0; xx < newTerrain.Width; xx++)
{
for (int yy = 0; yy < newTerrain.Height; yy++)
{
int dispX = (int)displacement.X;
int dispY = (int)displacement.Y;
float newHeight = (float)newTerrain[xx, yy] + displacement.Z;
if (radianRotation == 0)
{
// If no rotation, place the new height in the specified location
dispX += xx;
dispY += yy;
if (dispX >= 0 && dispX < m_terrainData.SizeX && dispY >= 0 && dispY < m_terrainData.SizeY)
{
m_terrainData[dispX, dispY] = newHeight;
}
}
else
{
// If rotating, we have to smooth the result because the conversion
// to ints will mean heightmap entries will not get changed
// First compute the rotation location for the new height.
dispX += (int)(rotationDisplacement.X
+ ((float)xx - rotationDisplacement.X) * Math.Cos(radianRotation)
- ((float)yy - rotationDisplacement.Y) * Math.Sin(radianRotation) );
dispY += (int)(rotationDisplacement.Y
+ ((float)xx - rotationDisplacement.X) * Math.Sin(radianRotation)
+ ((float)yy - rotationDisplacement.Y) * Math.Cos(radianRotation) );
if (dispX >= 0 && dispX < m_terrainData.SizeX && dispY >= 0 && dispY < m_terrainData.SizeY)
{
float oldHeight = m_terrainData[dispX, dispY];
// Smooth the heights around this location if the old height is far from this one
for (int sxx = dispX - 2; sxx < dispX + 2; sxx++)
{
for (int syy = dispY - 2; syy < dispY + 2; syy++)
{
if (sxx >= 0 && sxx < m_terrainData.SizeX && syy >= 0 && syy < m_terrainData.SizeY)
{
if (sxx == dispX && syy == dispY)
{
// Set height for the exact rotated point
m_terrainData[dispX, dispY] = newHeight;
}
else
{
if (Math.Abs(m_terrainData[sxx, syy] - newHeight) > 1f)
{
// If the adjacent height is far off, force it to this height
m_terrainData[sxx, syy] = newHeight;
}
}
}
}
}
}
if (dispX >= 0 && dispX < m_terrainData.SizeX && dispY >= 0 && dispY < m_terrainData.SizeY)
{
m_terrainData[dispX, dispY] = (float)newTerrain[xx, yy];
}
}
}
}
}
/// <summary>
/// A new version of terrain merge that processes the terrain in a specific order and corrects the problems with rotated terrains
/// having 'holes' in that need to be smoothed. The correct way to rotate something is to iterate over the target, taking data from
/// the source, not the other way around. This ensures that the target has no holes in it.
/// The processing order of an incoming terrain is:
/// 1. Apply rotation
/// 2. Apply bounding rectangle
/// 3. Apply displacement
/// rotationCenter is no longer needed and has been discarded.
/// </summary>
/// <param name="newTerrain"></param>
/// <param name="displacement">&lt;x, y, z&gt;</param>
/// <param name="rotationDegrees"></param>
/// <param name="boundingOrigin">&lt;x, y&gt;</param>
/// <param name="boundingSize">&lt;x, y&gt;</param>
public void MergeWithBounding(ITerrainChannel newTerrain, Vector3 displacement, float rotationDegrees, Vector2 boundingOrigin, Vector2 boundingSize)
{
m_log.DebugFormat("{0} MergeWithBounding: inSize=<{1},{2}>, rot={3}, boundingOrigin={4}, boundingSize={5}, disp={6}, outSize=<{7},{8}>",
LogHeader, newTerrain.Width, newTerrain.Height, rotationDegrees, boundingOrigin.ToString(),
boundingSize.ToString(), displacement, m_terrainData.SizeX, m_terrainData.SizeY);
// get the size of the incoming terrain
int baseX = newTerrain.Width;
int baseY = newTerrain.Height;
// create an intermediate terrain map that is 25% bigger on each side that we can work with to handle rotation
int offsetX = baseX / 4; // the original origin will now be at these coordinates so now we can have imaginary negative coordinates ;)
int offsetY = baseY / 4;
int tmpX = baseX + baseX / 2;
int tmpY = baseY + baseY / 2;
int centreX = tmpX / 2;
int centreY = tmpY / 2;
TerrainData terrain_tmp = new HeightmapTerrainData(tmpX, tmpY, (int)Constants.RegionHeight);
for (int xx = 0; xx < tmpX; xx++)
for (int yy = 0; yy < tmpY; yy++)
terrain_tmp[xx, yy] = -65535f; //use this height like an 'alpha' mask channel
double radianRotation = Math.PI * rotationDegrees / 180f;
double cosR = Math.Cos(radianRotation);
double sinR = Math.Sin(radianRotation);
if (rotationDegrees < 0f) rotationDegrees += 360f; //-90=270 -180=180 -270=90
// So first we apply the rotation to the incoming terrain, storing the result in terrain_tmp
// We special case orthogonal rotations for accuracy because even using double precision math, Math.Cos(90 degrees) is never fully 0
// and we can never rotate around a centre 'pixel' because the 'bitmap' size is always even
int x, y, sx, sy;
for (y = 0; y <= tmpY; y++)
{
for (x = 0; x <= tmpX; x++)
{
if (rotationDegrees == 0f)
{
sx = x - offsetX;
sy = y - offsetY;
}
else if (rotationDegrees == 90f)
{
sx = y - offsetX;
sy = tmpY - 1 - x - offsetY;
}
else if (rotationDegrees == 180f)
{
sx = tmpX - 1 - x - offsetX;
sy = tmpY - 1 - y - offsetY;
}
else if (rotationDegrees == 270f)
{
sx = tmpX - 1 - y - offsetX;
sy = x - offsetY;
}
else
{
// arbitary rotation: hmmm should I be using (centreX - 0.5) and (centreY - 0.5) and round cosR and sinR to say only 5 decimal places?
sx = centreX + (int)Math.Round((((double)x - centreX) * cosR) + (((double)y - centreY) * sinR)) - offsetX;
sy = centreY + (int)Math.Round((((double)y - centreY) * cosR) - (((double)x - centreX) * sinR)) - offsetY;
}
if (sx >= 0 && sx < baseX && sy >= 0 && sy < baseY)
{
try
{
terrain_tmp[x, y] = (float)newTerrain[sx, sy];
}
catch (Exception) //just in case we've still not taken care of every way the arrays might go out of bounds! ;)
{
m_log.DebugFormat("{0} MergeWithBounding - Rotate: Out of Bounds sx={1} sy={2} dx={3} dy={4}", sx, sy, x, y);
}
}
}
}
// We could also incorporate the next steps, bounding-rectangle and displacement in the loop above, but it's simpler to visualise if done separately
// and will also make it much easier when later I want the option for maybe a circular or oval bounding shape too ;).
int newX = m_terrainData.SizeX;
int newY = m_terrainData.SizeY;
// displacement is relative to <0,0> in the destination region and defines where the origin of the data selected by the bounding-rectangle is placed
int dispX = (int)Math.Floor(displacement.X);
int dispY = (int)Math.Floor(displacement.Y);
// startX/Y and endX/Y are coordinates in bitmap_tmp
int startX = (int)Math.Floor(boundingOrigin.X) + offsetX;
if (startX > tmpX) startX = tmpX;
if (startX < 0) startX = 0;
int startY = (int)Math.Floor(boundingOrigin.Y) + offsetY;
if (startY > tmpY) startY = tmpY;
if (startY < 0) startY = 0;
int endX = (int)Math.Floor(boundingOrigin.X + boundingSize.X) + offsetX;
if (endX > tmpX) endX = tmpX;
if (endX < 0) endX = 0;
int endY = (int)Math.Floor(boundingOrigin.Y + boundingSize.Y) + offsetY;
if (endY > tmpY) endY = tmpY;
if (endY < 0) endY = 0;
//m_log.DebugFormat("{0} MergeWithBounding: inSize=<{1},{2}>, disp=<{3},{4}> rot={5}, offset=<{6},{7}>, boundingStart=<{8},{9}>, boundingEnd=<{10},{11}>, cosR={12}, sinR={13}, outSize=<{14},{15}>", LogHeader,
// baseX, baseY, dispX, dispY, radianRotation, offsetX, offsetY, startX, startY, endX, endY, cosR, sinR, newX, newY);
int dx, dy;
for (y = startY; y < endY; y++)
{
for (x = startX; x < endX; x++)
{
dx = x - startX + dispX;
dy = y - startY + dispY;
if (dx >= 0 && dx < newX && dy >= 0 && dy < newY)
{
try
{
float newHeight = (float)terrain_tmp[x, y]; //use 'alpha' mask
if (newHeight != -65535f) m_terrainData[dx, dy] = newHeight + displacement.Z;
}
catch (Exception) //just in case we've still not taken care of every way the arrays might go out of bounds! ;)
{
m_log.DebugFormat("{0} MergeWithBounding - Bound & Displace: Out of Bounds sx={1} sy={2} dx={3} dy={4}", x, y, dx, dy);
}
}
}
}
}
#endregion
public TerrainChannel Copy()
{
TerrainChannel copy = new TerrainChannel();
copy.m_terrainData = m_terrainData.Clone();
return copy;
}
private void WriteXml(XmlWriter writer)
{
if (Width == Constants.RegionSize && Height == Constants.RegionSize)
{
// Downward compatibility for legacy region terrain maps.
// If region is exactly legacy size, return the old format XML.
writer.WriteStartElement(String.Empty, "TerrainMap", String.Empty);
ToXml(writer);
writer.WriteEndElement();
}
else
{
// New format XML that includes width and length.
writer.WriteStartElement(String.Empty, "TerrainMap2", String.Empty);
ToXml2(writer);
writer.WriteEndElement();
}
}
private void ReadXml(XmlReader reader)
{
// Check the first element. If legacy element, use the legacy reader.
if (reader.IsStartElement("TerrainMap"))
{
reader.ReadStartElement("TerrainMap");
FromXml(reader);
}
else
{
reader.ReadStartElement("TerrainMap2");
FromXml2(reader);
}
}
// Write legacy terrain map. Presumed to be 256x256 of data encoded as floats in a byte array.
private void ToXml(XmlWriter xmlWriter)
{
float[] mapData = GetFloatsSerialised();
byte[] buffer = new byte[mapData.Length * 4];
for (int i = 0; i < mapData.Length; i++)
{
byte[] value = BitConverter.GetBytes(mapData[i]);
Array.Copy(value, 0, buffer, (i * 4), 4);
}
XmlSerializer serializer = new XmlSerializer(typeof(byte[]));
serializer.Serialize(xmlWriter, buffer);
}
// Read legacy terrain map. Presumed to be 256x256 of data encoded as floats in a byte array.
private void FromXml(XmlReader xmlReader)
{
XmlSerializer serializer = new XmlSerializer(typeof(byte[]));
byte[] dataArray = (byte[])serializer.Deserialize(xmlReader);
int index = 0;
m_terrainData = new HeightmapTerrainData(Height, Width, (int)Constants.RegionHeight);
for (int y = 0; y < Height; y++)
{
for (int x = 0; x < Width; x++)
{
float value;
value = BitConverter.ToSingle(dataArray, index);
index += 4;
this[x, y] = (double)value;
}
}
}
private class TerrainChannelXMLPackage
{
public int Version;
public int SizeX;
public int SizeY;
public int SizeZ;
public float CompressionFactor;
public float[] Map;
public TerrainChannelXMLPackage(int pX, int pY, int pZ, float pCompressionFactor, float[] pMap)
{
Version = 1;
SizeX = pX;
SizeY = pY;
SizeZ = pZ;
CompressionFactor = pCompressionFactor;
Map = pMap;
}
}
// New terrain serialization format that includes the width and length.
private void ToXml2(XmlWriter xmlWriter)
{
TerrainChannelXMLPackage package = new TerrainChannelXMLPackage(Width, Height, Altitude, m_terrainData.CompressionFactor,
m_terrainData.GetCompressedMap());
XmlSerializer serializer = new XmlSerializer(typeof(TerrainChannelXMLPackage));
serializer.Serialize(xmlWriter, package);
}
// New terrain serialization format that includes the width and length.
private void FromXml2(XmlReader xmlReader)
{
XmlSerializer serializer = new XmlSerializer(typeof(TerrainChannelXMLPackage));
TerrainChannelXMLPackage package = (TerrainChannelXMLPackage)serializer.Deserialize(xmlReader);
m_terrainData = new HeightmapTerrainData(package.Map, package.CompressionFactor, package.SizeX, package.SizeY, package.SizeZ);
}
// Fill the heightmap with the center bump terrain
private void PinHeadIsland()
{
float cx = m_terrainData.SizeX * 0.5f;
float cy = m_terrainData.SizeY * 0.5f;
float h;
for (int x = 0; x < Width; x++)
{
for (int y = 0; y < Height; y++)
{
// h = (float)TerrainUtil.PerlinNoise2D(x, y, 2, 0.125) * 10;
h = 1.0f;
float spherFacA = (float)(TerrainUtil.SphericalFactor(x, y, cx, cy, 50) * 0.01d);
float spherFacB = (float)(TerrainUtil.SphericalFactor(x, y, cx, cy, 100) * 0.001d);
if (h < spherFacA)
h = spherFacA;
if (h < spherFacB)
h = spherFacB;
m_terrainData[x, y] = h;
}
}
}
private void FlatLand()
{
m_terrainData.ClearLand();
}
}
}