1606 lines
56 KiB
C
Executable File
1606 lines
56 KiB
C
Executable File
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle INSERT statements in SQLite.
|
|
**
|
|
** $Id: insert.c,v 1.192 2007/09/03 17:30:07 danielk1977 Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Set P3 of the most recently inserted opcode to a column affinity
|
|
** string for index pIdx. A column affinity string has one character
|
|
** for each column in the table, according to the affinity of the column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
*/
|
|
void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
|
|
if( !pIdx->zColAff ){
|
|
/* The first time a column affinity string for a particular index is
|
|
** required, it is allocated and populated here. It is then stored as
|
|
** a member of the Index structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqliteDeleteIndex() when the Index structure itself is cleaned
|
|
** up.
|
|
*/
|
|
int n;
|
|
Table *pTab = pIdx->pTable;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
|
|
if( !pIdx->zColAff ){
|
|
return;
|
|
}
|
|
for(n=0; n<pIdx->nColumn; n++){
|
|
pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
|
|
}
|
|
pIdx->zColAff[pIdx->nColumn] = '\0';
|
|
}
|
|
|
|
sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
|
|
}
|
|
|
|
/*
|
|
** Set P3 of the most recently inserted opcode to a column affinity
|
|
** string for table pTab. A column affinity string has one character
|
|
** for each column indexed by the index, according to the affinity of the
|
|
** column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
*/
|
|
void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
|
|
/* The first time a column affinity string for a particular table
|
|
** is required, it is allocated and populated here. It is then
|
|
** stored as a member of the Table structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
|
|
*/
|
|
if( !pTab->zColAff ){
|
|
char *zColAff;
|
|
int i;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
|
|
zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
|
|
if( !zColAff ){
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
|
zColAff[i] = pTab->aCol[i].affinity;
|
|
}
|
|
zColAff[pTab->nCol] = '\0';
|
|
|
|
pTab->zColAff = zColAff;
|
|
}
|
|
|
|
sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if SELECT statement p opens the table with rootpage
|
|
** iTab in database iDb. This is used to see if a statement of the form
|
|
** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary
|
|
** table for the results of the SELECT.
|
|
**
|
|
** No checking is done for sub-selects that are part of expressions.
|
|
*/
|
|
static int selectReadsTable(Select *p, Schema *pSchema, int iTab){
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
if( p->pSrc==0 ) return 0;
|
|
for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){
|
|
if( pItem->pSelect ){
|
|
if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1;
|
|
}else{
|
|
if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/*
|
|
** Write out code to initialize the autoincrement logic. This code
|
|
** looks up the current autoincrement value in the sqlite_sequence
|
|
** table and stores that value in a memory cell. Code generated by
|
|
** autoIncStep() will keep that memory cell holding the largest
|
|
** rowid value. Code generated by autoIncEnd() will write the new
|
|
** largest value of the counter back into the sqlite_sequence table.
|
|
**
|
|
** This routine returns the index of the mem[] cell that contains
|
|
** the maximum rowid counter.
|
|
**
|
|
** Two memory cells are allocated. The next memory cell after the
|
|
** one returned holds the rowid in sqlite_sequence where we will
|
|
** write back the revised maximum rowid.
|
|
*/
|
|
static int autoIncBegin(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab /* The table we are writing to */
|
|
){
|
|
int memId = 0;
|
|
if( pTab->autoInc ){
|
|
Vdbe *v = pParse->pVdbe;
|
|
Db *pDb = &pParse->db->aDb[iDb];
|
|
int iCur = pParse->nTab;
|
|
int addr;
|
|
assert( v );
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
memId = pParse->nMem+1;
|
|
pParse->nMem += 2;
|
|
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
|
|
sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
|
|
sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
|
|
sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
|
|
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
|
sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
|
|
sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
|
|
sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
|
|
sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
|
|
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
|
}
|
|
return memId;
|
|
}
|
|
|
|
/*
|
|
** Update the maximum rowid for an autoincrement calculation.
|
|
**
|
|
** This routine should be called when the top of the stack holds a
|
|
** new rowid that is about to be inserted. If that new rowid is
|
|
** larger than the maximum rowid in the memId memory cell, then the
|
|
** memory cell is updated. The stack is unchanged.
|
|
*/
|
|
static void autoIncStep(Parse *pParse, int memId){
|
|
if( memId>0 ){
|
|
sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** After doing one or more inserts, the maximum rowid is stored
|
|
** in mem[memId]. Generate code to write this value back into the
|
|
** the sqlite_sequence table.
|
|
*/
|
|
static void autoIncEnd(
|
|
Parse *pParse, /* The parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab, /* Table we are inserting into */
|
|
int memId /* Memory cell holding the maximum rowid */
|
|
){
|
|
if( pTab->autoInc ){
|
|
int iCur = pParse->nTab;
|
|
Vdbe *v = pParse->pVdbe;
|
|
Db *pDb = &pParse->db->aDb[iDb];
|
|
int addr;
|
|
assert( v );
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
|
|
sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
|
|
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
|
|
sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
|
|
sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
|
|
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
|
|
** above are all no-ops
|
|
*/
|
|
# define autoIncBegin(A,B,C) (0)
|
|
# define autoIncStep(A,B)
|
|
# define autoIncEnd(A,B,C,D)
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
|
|
/* Forward declaration */
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
);
|
|
|
|
/*
|
|
** This routine is call to handle SQL of the following forms:
|
|
**
|
|
** insert into TABLE (IDLIST) values(EXPRLIST)
|
|
** insert into TABLE (IDLIST) select
|
|
**
|
|
** The IDLIST following the table name is always optional. If omitted,
|
|
** then a list of all columns for the table is substituted. The IDLIST
|
|
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
|
**
|
|
** The pList parameter holds EXPRLIST in the first form of the INSERT
|
|
** statement above, and pSelect is NULL. For the second form, pList is
|
|
** NULL and pSelect is a pointer to the select statement used to generate
|
|
** data for the insert.
|
|
**
|
|
** The code generated follows one of four templates. For a simple
|
|
** select with data coming from a VALUES clause, the code executes
|
|
** once straight down through. The template looks like this:
|
|
**
|
|
** open write cursor to <table> and its indices
|
|
** puts VALUES clause expressions onto the stack
|
|
** write the resulting record into <table>
|
|
** cleanup
|
|
**
|
|
** The three remaining templates assume the statement is of the form
|
|
**
|
|
** INSERT INTO <table> SELECT ...
|
|
**
|
|
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
|
|
** in other words if the SELECT pulls all columns from a single table
|
|
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
|
|
** if <table2> and <table1> are distinct tables but have identical
|
|
** schemas, including all the same indices, then a special optimization
|
|
** is invoked that copies raw records from <table2> over to <table1>.
|
|
** See the xferOptimization() function for the implementation of this
|
|
** template. This is the second template.
|
|
**
|
|
** open a write cursor to <table>
|
|
** open read cursor on <table2>
|
|
** transfer all records in <table2> over to <table>
|
|
** close cursors
|
|
** foreach index on <table>
|
|
** open a write cursor on the <table> index
|
|
** open a read cursor on the corresponding <table2> index
|
|
** transfer all records from the read to the write cursors
|
|
** close cursors
|
|
** end foreach
|
|
**
|
|
** The third template is for when the second template does not apply
|
|
** and the SELECT clause does not read from <table> at any time.
|
|
** The generated code follows this template:
|
|
**
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the rows in the SELECT
|
|
** gosub C
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** goto D
|
|
** B: open write cursor to <table> and its indices
|
|
** goto A
|
|
** C: insert the select result into <table>
|
|
** return
|
|
** D: cleanup
|
|
**
|
|
** The fourth template is used if the insert statement takes its
|
|
** values from a SELECT but the data is being inserted into a table
|
|
** that is also read as part of the SELECT. In the third form,
|
|
** we have to use a intermediate table to store the results of
|
|
** the select. The template is like this:
|
|
**
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the tables in the SELECT
|
|
** gosub C
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** goto D
|
|
** C: insert the select result into the intermediate table
|
|
** return
|
|
** B: open a cursor to an intermediate table
|
|
** goto A
|
|
** D: open write cursor to <table> and its indices
|
|
** loop over the intermediate table
|
|
** transfer values form intermediate table into <table>
|
|
** end the loop
|
|
** cleanup
|
|
*/
|
|
void sqlite3Insert(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* Name of table into which we are inserting */
|
|
ExprList *pList, /* List of values to be inserted */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
IdList *pColumn, /* Column names corresponding to IDLIST. */
|
|
int onError /* How to handle constraint errors */
|
|
){
|
|
Table *pTab; /* The table to insert into */
|
|
char *zTab; /* Name of the table into which we are inserting */
|
|
const char *zDb; /* Name of the database holding this table */
|
|
int i, j, idx; /* Loop counters */
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
Index *pIdx; /* For looping over indices of the table */
|
|
int nColumn; /* Number of columns in the data */
|
|
int base = 0; /* VDBE Cursor number for pTab */
|
|
int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
|
|
sqlite3 *db; /* The main database structure */
|
|
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
|
int endOfLoop; /* Label for the end of the insertion loop */
|
|
int useTempTable = 0; /* Store SELECT results in intermediate table */
|
|
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
|
|
int iSelectLoop = 0; /* Address of code that implements the SELECT */
|
|
int iCleanup = 0; /* Address of the cleanup code */
|
|
int iInsertBlock = 0; /* Address of the subroutine used to insert data */
|
|
int iCntMem = 0; /* Memory cell used for the row counter */
|
|
int newIdx = -1; /* Cursor for the NEW table */
|
|
Db *pDb; /* The database containing table being inserted into */
|
|
int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */
|
|
int appendFlag = 0; /* True if the insert is likely to be an append */
|
|
int iDb;
|
|
|
|
int nHidden = 0;
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
int isView; /* True if attempting to insert into a view */
|
|
int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
|
|
#endif
|
|
|
|
db = pParse->db;
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Locate the table into which we will be inserting new information.
|
|
*/
|
|
assert( pTabList->nSrc==1 );
|
|
zTab = pTabList->a[0].zName;
|
|
if( zTab==0 ) goto insert_cleanup;
|
|
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
|
if( pTab==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb<db->nDb );
|
|
pDb = &db->aDb[iDb];
|
|
zDb = pDb->zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Figure out if we have any triggers and if the table being
|
|
** inserted into is a view
|
|
*/
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
|
|
isView = pTab->pSelect!=0;
|
|
#else
|
|
# define triggers_exist 0
|
|
# define isView 0
|
|
#endif
|
|
#ifdef SQLITE_OMIT_VIEW
|
|
# undef isView
|
|
# define isView 0
|
|
#endif
|
|
|
|
/* Ensure that:
|
|
* (a) the table is not read-only,
|
|
* (b) that if it is a view then ON INSERT triggers exist
|
|
*/
|
|
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
|
goto insert_cleanup;
|
|
}
|
|
assert( pTab!=0 );
|
|
|
|
/* If pTab is really a view, make sure it has been initialized.
|
|
** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
|
|
** module table).
|
|
*/
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Allocate a VDBE
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto insert_cleanup;
|
|
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
|
sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
|
|
|
|
/* if there are row triggers, allocate a temp table for new.* references. */
|
|
if( triggers_exist ){
|
|
newIdx = pParse->nTab++;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/* If the statement is of the form
|
|
**
|
|
** INSERT INTO <table1> SELECT * FROM <table2>;
|
|
**
|
|
** Then special optimizations can be applied that make the transfer
|
|
** very fast and which reduce fragmentation of indices.
|
|
*/
|
|
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
|
|
assert( !triggers_exist );
|
|
assert( pList==0 );
|
|
goto insert_cleanup;
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|
|
/* If this is an AUTOINCREMENT table, look up the sequence number in the
|
|
** sqlite_sequence table and store it in memory cell counterMem. Also
|
|
** remember the rowid of the sqlite_sequence table entry in memory cell
|
|
** counterRowid.
|
|
*/
|
|
counterMem = autoIncBegin(pParse, iDb, pTab);
|
|
|
|
/* Figure out how many columns of data are supplied. If the data
|
|
** is coming from a SELECT statement, then this step also generates
|
|
** all the code to implement the SELECT statement and invoke a subroutine
|
|
** to process each row of the result. (Template 2.) If the SELECT
|
|
** statement uses the the table that is being inserted into, then the
|
|
** subroutine is also coded here. That subroutine stores the SELECT
|
|
** results in a temporary table. (Template 3.)
|
|
*/
|
|
if( pSelect ){
|
|
/* Data is coming from a SELECT. Generate code to implement that SELECT
|
|
*/
|
|
int rc, iInitCode;
|
|
iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
|
|
iSelectLoop = sqlite3VdbeCurrentAddr(v);
|
|
iInsertBlock = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Resolve the expressions in the SELECT statement and execute it. */
|
|
rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
|
|
if( rc || pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
iCleanup = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
|
|
assert( pSelect->pEList );
|
|
nColumn = pSelect->pEList->nExpr;
|
|
|
|
/* Set useTempTable to TRUE if the result of the SELECT statement
|
|
** should be written into a temporary table. Set to FALSE if each
|
|
** row of the SELECT can be written directly into the result table.
|
|
**
|
|
** A temp table must be used if the table being updated is also one
|
|
** of the tables being read by the SELECT statement. Also use a
|
|
** temp table in the case of row triggers.
|
|
*/
|
|
if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){
|
|
useTempTable = 1;
|
|
}
|
|
|
|
if( useTempTable ){
|
|
/* Generate the subroutine that SELECT calls to process each row of
|
|
** the result. Store the result in a temporary table
|
|
*/
|
|
srcTab = pParse->nTab++;
|
|
sqlite3VdbeResolveLabel(v, iInsertBlock);
|
|
sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
|
|
sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
|
|
sqlite3VdbeAddOp(v, OP_Return, 0, 0);
|
|
|
|
/* The following code runs first because the GOTO at the very top
|
|
** of the program jumps to it. Create the temporary table, then jump
|
|
** back up and execute the SELECT code above.
|
|
*/
|
|
sqlite3VdbeJumpHere(v, iInitCode);
|
|
sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
|
sqlite3VdbeResolveLabel(v, iCleanup);
|
|
}else{
|
|
sqlite3VdbeJumpHere(v, iInitCode);
|
|
}
|
|
}else{
|
|
/* This is the case if the data for the INSERT is coming from a VALUES
|
|
** clause
|
|
*/
|
|
NameContext sNC;
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
srcTab = -1;
|
|
useTempTable = 0;
|
|
nColumn = pList ? pList->nExpr : 0;
|
|
for(i=0; i<nColumn; i++){
|
|
if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure the number of columns in the source data matches the number
|
|
** of columns to be inserted into the table.
|
|
*/
|
|
if( IsVirtual(pTab) ){
|
|
for(i=0; i<pTab->nCol; i++){
|
|
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
|
|
}
|
|
}
|
|
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table %S has %d columns but %d values were supplied",
|
|
pTabList, 0, pTab->nCol, nColumn);
|
|
goto insert_cleanup;
|
|
}
|
|
if( pColumn!=0 && nColumn!=pColumn->nId ){
|
|
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* If the INSERT statement included an IDLIST term, then make sure
|
|
** all elements of the IDLIST really are columns of the table and
|
|
** remember the column indices.
|
|
**
|
|
** If the table has an INTEGER PRIMARY KEY column and that column
|
|
** is named in the IDLIST, then record in the keyColumn variable
|
|
** the index into IDLIST of the primary key column. keyColumn is
|
|
** the index of the primary key as it appears in IDLIST, not as
|
|
** is appears in the original table. (The index of the primary
|
|
** key in the original table is pTab->iPKey.)
|
|
*/
|
|
if( pColumn ){
|
|
for(i=0; i<pColumn->nId; i++){
|
|
pColumn->a[i].idx = -1;
|
|
}
|
|
for(i=0; i<pColumn->nId; i++){
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
|
pColumn->a[i].idx = j;
|
|
if( j==pTab->iPKey ){
|
|
keyColumn = i;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
if( sqlite3IsRowid(pColumn->a[i].zName) ){
|
|
keyColumn = i;
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
|
|
pTabList, 0, pColumn->a[i].zName);
|
|
pParse->nErr++;
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there is no IDLIST term but the table has an integer primary
|
|
** key, the set the keyColumn variable to the primary key column index
|
|
** in the original table definition.
|
|
*/
|
|
if( pColumn==0 && nColumn>0 ){
|
|
keyColumn = pTab->iPKey;
|
|
}
|
|
|
|
/* Open the temp table for FOR EACH ROW triggers
|
|
*/
|
|
if( triggers_exist ){
|
|
sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
|
|
}
|
|
|
|
/* Initialize the count of rows to be inserted
|
|
*/
|
|
if( db->flags & SQLITE_CountRows ){
|
|
iCntMem = pParse->nMem++;
|
|
sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
|
|
}
|
|
|
|
/* Open tables and indices if there are no row triggers */
|
|
if( !triggers_exist ){
|
|
base = pParse->nTab;
|
|
sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
|
|
}
|
|
|
|
/* If the data source is a temporary table, then we have to create
|
|
** a loop because there might be multiple rows of data. If the data
|
|
** source is a subroutine call from the SELECT statement, then we need
|
|
** to launch the SELECT statement processing.
|
|
*/
|
|
if( useTempTable ){
|
|
iBreak = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
|
|
iCont = sqlite3VdbeCurrentAddr(v);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
|
sqlite3VdbeResolveLabel(v, iInsertBlock);
|
|
}
|
|
|
|
/* Run the BEFORE and INSTEAD OF triggers, if there are any
|
|
*/
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
if( triggers_exist & TRIGGER_BEFORE ){
|
|
|
|
/* build the NEW.* reference row. Note that if there is an INTEGER
|
|
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
|
** translated into a unique ID for the row. But on a BEFORE trigger,
|
|
** we do not know what the unique ID will be (because the insert has
|
|
** not happened yet) so we substitute a rowid of -1
|
|
*/
|
|
if( keyColumn<0 ){
|
|
sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
|
}else{
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
|
|
sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
|
|
sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
|
|
}
|
|
|
|
/* Cannot have triggers on a virtual table. If it were possible,
|
|
** this block would have to account for hidden column.
|
|
*/
|
|
assert(!IsVirtual(pTab));
|
|
|
|
/* Create the new column data
|
|
*/
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( pColumn==0 ){
|
|
j = i;
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( pColumn && j>=pColumn->nId ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
|
|
}else{
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
|
|
|
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
|
|
** do not attempt any conversions before assembling the record.
|
|
** If this is a real table, attempt conversions as required by the
|
|
** table column affinities.
|
|
*/
|
|
if( !isView ){
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
|
|
|
|
/* Fire BEFORE or INSTEAD OF triggers */
|
|
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
|
|
newIdx, -1, onError, endOfLoop) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
|
|
/* If any triggers exists, the opening of tables and indices is deferred
|
|
** until now.
|
|
*/
|
|
if( triggers_exist && !isView ){
|
|
base = pParse->nTab;
|
|
sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
|
|
}
|
|
|
|
/* Push the record number for the new entry onto the stack. The
|
|
** record number is a randomly generate integer created by NewRowid
|
|
** except when the table has an INTEGER PRIMARY KEY column, in which
|
|
** case the record number is the same as that column.
|
|
*/
|
|
if( !isView ){
|
|
if( IsVirtual(pTab) ){
|
|
/* The row that the VUpdate opcode will delete: none */
|
|
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
}
|
|
if( keyColumn>=0 ){
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
|
|
}else{
|
|
VdbeOp *pOp;
|
|
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
|
|
pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
|
|
if( pOp && pOp->opcode==OP_Null ){
|
|
appendFlag = 1;
|
|
pOp->opcode = OP_NewRowid;
|
|
pOp->p1 = base;
|
|
pOp->p2 = counterMem;
|
|
}
|
|
}
|
|
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
|
|
** to generate a unique primary key value.
|
|
*/
|
|
if( !appendFlag ){
|
|
sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
|
|
sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
|
|
}
|
|
}else if( IsVirtual(pTab) ){
|
|
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
}else{
|
|
sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
|
|
appendFlag = 1;
|
|
}
|
|
autoIncStep(pParse, counterMem);
|
|
|
|
/* Push onto the stack, data for all columns of the new entry, beginning
|
|
** with the first column.
|
|
*/
|
|
nHidden = 0;
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
|
** Whenever this column is read, the record number will be substituted
|
|
** in its place. So will fill this column with a NULL to avoid
|
|
** taking up data space with information that will never be used. */
|
|
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
continue;
|
|
}
|
|
if( pColumn==0 ){
|
|
if( IsHiddenColumn(&pTab->aCol[i]) ){
|
|
assert( IsVirtual(pTab) );
|
|
j = -1;
|
|
nHidden++;
|
|
}else{
|
|
j = i - nHidden;
|
|
}
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
|
|
}else{
|
|
sqlite3ExprCode(pParse, pList->a[j].pExpr);
|
|
}
|
|
}
|
|
|
|
/* Generate code to check constraints and generate index keys and
|
|
** do the insertion.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
pParse->pVirtualLock = pTab;
|
|
sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
|
|
(const char*)pTab->pVtab, P3_VTAB);
|
|
}else
|
|
#endif
|
|
{
|
|
sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
|
|
0, onError, endOfLoop);
|
|
sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
|
|
(triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
|
|
appendFlag);
|
|
}
|
|
}
|
|
|
|
/* Update the count of rows that are inserted
|
|
*/
|
|
if( (db->flags & SQLITE_CountRows)!=0 ){
|
|
sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
|
|
}
|
|
|
|
if( triggers_exist ){
|
|
/* Close all tables opened */
|
|
if( !isView ){
|
|
sqlite3VdbeAddOp(v, OP_Close, base, 0);
|
|
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
|
|
}
|
|
}
|
|
|
|
/* Code AFTER triggers */
|
|
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
|
|
newIdx, -1, onError, endOfLoop) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
|
|
/* The bottom of the loop, if the data source is a SELECT statement
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
|
|
sqlite3VdbeAddOp(v, OP_Return, 0, 0);
|
|
sqlite3VdbeResolveLabel(v, iCleanup);
|
|
}
|
|
|
|
if( !triggers_exist && !IsVirtual(pTab) ){
|
|
/* Close all tables opened */
|
|
sqlite3VdbeAddOp(v, OP_Close, base, 0);
|
|
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
|
|
}
|
|
}
|
|
|
|
/* Update the sqlite_sequence table by storing the content of the
|
|
** counter value in memory counterMem back into the sqlite_sequence
|
|
** table.
|
|
*/
|
|
autoIncEnd(pParse, iDb, pTab, counterMem);
|
|
|
|
/*
|
|
** Return the number of rows inserted. If this routine is
|
|
** generating code because of a call to sqlite3NestedParse(), do not
|
|
** invoke the callback function.
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
|
|
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
|
|
}
|
|
|
|
insert_cleanup:
|
|
sqlite3SrcListDelete(pTabList);
|
|
sqlite3ExprListDelete(pList);
|
|
sqlite3SelectDelete(pSelect);
|
|
sqlite3IdListDelete(pColumn);
|
|
}
|
|
|
|
/*
|
|
** Generate code to do a constraint check prior to an INSERT or an UPDATE.
|
|
**
|
|
** When this routine is called, the stack contains (from bottom to top)
|
|
** the following values:
|
|
**
|
|
** 1. The rowid of the row to be updated before the update. This
|
|
** value is omitted unless we are doing an UPDATE that involves a
|
|
** change to the record number.
|
|
**
|
|
** 2. The rowid of the row after the update.
|
|
**
|
|
** 3. The data in the first column of the entry after the update.
|
|
**
|
|
** i. Data from middle columns...
|
|
**
|
|
** N. The data in the last column of the entry after the update.
|
|
**
|
|
** The old rowid shown as entry (1) above is omitted unless both isUpdate
|
|
** and rowidChng are 1. isUpdate is true for UPDATEs and false for
|
|
** INSERTs and rowidChng is true if the record number is being changed.
|
|
**
|
|
** The code generated by this routine pushes additional entries onto
|
|
** the stack which are the keys for new index entries for the new record.
|
|
** The order of index keys is the same as the order of the indices on
|
|
** the pTable->pIndex list. A key is only created for index i if
|
|
** aIdxUsed!=0 and aIdxUsed[i]!=0.
|
|
**
|
|
** This routine also generates code to check constraints. NOT NULL,
|
|
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
|
** then the appropriate action is performed. There are five possible
|
|
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
|
**
|
|
** Constraint type Action What Happens
|
|
** --------------- ---------- ----------------------------------------
|
|
** any ROLLBACK The current transaction is rolled back and
|
|
** sqlite3_exec() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT.
|
|
**
|
|
** any ABORT Back out changes from the current command
|
|
** only (do not do a complete rollback) then
|
|
** cause sqlite3_exec() to return immediately
|
|
** with SQLITE_CONSTRAINT.
|
|
**
|
|
** any FAIL Sqlite_exec() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT. The
|
|
** transaction is not rolled back and any
|
|
** prior changes are retained.
|
|
**
|
|
** any IGNORE The record number and data is popped from
|
|
** the stack and there is an immediate jump
|
|
** to label ignoreDest.
|
|
**
|
|
** NOT NULL REPLACE The NULL value is replace by the default
|
|
** value for that column. If the default value
|
|
** is NULL, the action is the same as ABORT.
|
|
**
|
|
** UNIQUE REPLACE The other row that conflicts with the row
|
|
** being inserted is removed.
|
|
**
|
|
** CHECK REPLACE Illegal. The results in an exception.
|
|
**
|
|
** Which action to take is determined by the overrideError parameter.
|
|
** Or if overrideError==OE_Default, then the pParse->onError parameter
|
|
** is used. Or if pParse->onError==OE_Default then the onError value
|
|
** for the constraint is used.
|
|
**
|
|
** The calling routine must open a read/write cursor for pTab with
|
|
** cursor number "base". All indices of pTab must also have open
|
|
** read/write cursors with cursor number base+i for the i-th cursor.
|
|
** Except, if there is no possibility of a REPLACE action then
|
|
** cursors do not need to be open for indices where aIdxUsed[i]==0.
|
|
**
|
|
** If the isUpdate flag is true, it means that the "base" cursor is
|
|
** initially pointing to an entry that is being updated. The isUpdate
|
|
** flag causes extra code to be generated so that the "base" cursor
|
|
** is still pointing at the same entry after the routine returns.
|
|
** Without the isUpdate flag, the "base" cursor might be moved.
|
|
*/
|
|
void sqlite3GenerateConstraintChecks(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int base, /* Index of a read/write cursor pointing at pTab */
|
|
char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
|
int rowidChng, /* True if the record number will change */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int overrideError, /* Override onError to this if not OE_Default */
|
|
int ignoreDest /* Jump to this label on an OE_Ignore resolution */
|
|
){
|
|
int i;
|
|
Vdbe *v;
|
|
int nCol;
|
|
int onError;
|
|
int addr;
|
|
int extra;
|
|
int iCur;
|
|
Index *pIdx;
|
|
int seenReplace = 0;
|
|
int jumpInst1=0, jumpInst2;
|
|
int hasTwoRowids = (isUpdate && rowidChng);
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
nCol = pTab->nCol;
|
|
|
|
/* Test all NOT NULL constraints.
|
|
*/
|
|
for(i=0; i<nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
continue;
|
|
}
|
|
onError = pTab->aCol[i].notNull;
|
|
if( onError==OE_None ) continue;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
|
|
onError = OE_Abort;
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
|
|
addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
char *zMsg = 0;
|
|
sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
|
|
" may not be NULL", (char*)0);
|
|
sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
|
|
sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
|
|
/* Test all CHECK constraints
|
|
*/
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
|
|
int allOk = sqlite3VdbeMakeLabel(v);
|
|
assert( pParse->ckOffset==0 );
|
|
pParse->ckOffset = nCol;
|
|
sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
|
|
assert( pParse->ckOffset==nCol );
|
|
pParse->ckOffset = 0;
|
|
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
|
|
if( onError==OE_Ignore ){
|
|
sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
}else{
|
|
sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, allOk);
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
/* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
|
** of the new record does not previously exist. Except, if this
|
|
** is an UPDATE and the primary key is not changing, that is OK.
|
|
*/
|
|
if( rowidChng ){
|
|
onError = pTab->keyConf;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
|
|
if( isUpdate ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
|
|
jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
|
|
jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
|
|
switch( onError ){
|
|
default: {
|
|
onError = OE_Abort;
|
|
/* Fall thru into the next case */
|
|
}
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
|
|
"PRIMARY KEY must be unique", P3_STATIC);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
|
|
if( isUpdate ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
|
|
}
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
assert( seenReplace==0 );
|
|
sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, jumpInst2);
|
|
if( isUpdate ){
|
|
sqlite3VdbeJumpHere(v, jumpInst1);
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
|
|
}
|
|
}
|
|
|
|
/* Test all UNIQUE constraints by creating entries for each UNIQUE
|
|
** index and making sure that duplicate entries do not already exist.
|
|
** Add the new records to the indices as we go.
|
|
*/
|
|
extra = -1;
|
|
for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
|
if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
|
|
extra++;
|
|
|
|
/* Create a key for accessing the index entry */
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
int idx = pIdx->aiColumn[i];
|
|
if( idx==pTab->iPKey ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
|
|
}else{
|
|
sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
|
|
}
|
|
}
|
|
jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
|
|
/* Find out what action to take in case there is an indexing conflict */
|
|
onError = pIdx->onError;
|
|
if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( seenReplace ){
|
|
if( onError==OE_Ignore ) onError = OE_Replace;
|
|
else if( onError==OE_Fail ) onError = OE_Abort;
|
|
}
|
|
|
|
|
|
/* Check to see if the new index entry will be unique */
|
|
sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
|
|
jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
|
|
|
|
/* Generate code that executes if the new index entry is not unique */
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
int j, n1, n2;
|
|
char zErrMsg[200];
|
|
sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
|
|
pIdx->nColumn>1 ? "columns " : "column ");
|
|
n1 = strlen(zErrMsg);
|
|
for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
|
|
char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
|
n2 = strlen(zCol);
|
|
if( j>0 ){
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
|
|
n1 += 2;
|
|
}
|
|
if( n1+n2>sizeof(zErrMsg)-30 ){
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
|
|
n1 += 3;
|
|
break;
|
|
}else{
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
|
|
n1 += n2;
|
|
}
|
|
}
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
|
|
pIdx->nColumn>1 ? " are not unique" : " is not unique");
|
|
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
assert( seenReplace==0 );
|
|
sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
|
|
if( isUpdate ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
|
|
}
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
}
|
|
#if NULL_DISTINCT_FOR_UNIQUE
|
|
sqlite3VdbeJumpHere(v, jumpInst1);
|
|
#endif
|
|
sqlite3VdbeJumpHere(v, jumpInst2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine generates code to finish the INSERT or UPDATE operation
|
|
** that was started by a prior call to sqlite3GenerateConstraintChecks.
|
|
** The stack must contain keys for all active indices followed by data
|
|
** and the rowid for the new entry. This routine creates the new
|
|
** entries in all indices and in the main table.
|
|
**
|
|
** The arguments to this routine should be the same as the first six
|
|
** arguments to sqlite3GenerateConstraintChecks.
|
|
*/
|
|
void sqlite3CompleteInsertion(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int base, /* Index of a read/write cursor pointing at pTab */
|
|
char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
|
int rowidChng, /* True if the record number will change */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int newIdx, /* Index of NEW table for triggers. -1 if none */
|
|
int appendBias /* True if this is likely to be an append */
|
|
){
|
|
int i;
|
|
Vdbe *v;
|
|
int nIdx;
|
|
Index *pIdx;
|
|
int pik_flags;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
|
for(i=nIdx-1; i>=0; i--){
|
|
if( aIdxUsed && aIdxUsed[i]==0 ) continue;
|
|
sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
if( newIdx>=0 ){
|
|
sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
|
|
}
|
|
#endif
|
|
if( pParse->nested ){
|
|
pik_flags = 0;
|
|
}else{
|
|
pik_flags = OPFLAG_NCHANGE;
|
|
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
|
|
}
|
|
if( appendBias ){
|
|
pik_flags |= OPFLAG_APPEND;
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
|
|
if( !pParse->nested ){
|
|
sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
|
}
|
|
|
|
if( isUpdate && rowidChng ){
|
|
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will open cursors for a table and for all
|
|
** indices of that table. The "base" parameter is the cursor number used
|
|
** for the table. Indices are opened on subsequent cursors.
|
|
*/
|
|
void sqlite3OpenTableAndIndices(
|
|
Parse *pParse, /* Parsing context */
|
|
Table *pTab, /* Table to be opened */
|
|
int base, /* Cursor number assigned to the table */
|
|
int op /* OP_OpenRead or OP_OpenWrite */
|
|
){
|
|
int i;
|
|
int iDb;
|
|
Index *pIdx;
|
|
Vdbe *v;
|
|
|
|
if( IsVirtual(pTab) ) return;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
sqlite3OpenTable(pParse, base, iDb, pTab, op);
|
|
for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
VdbeComment((v, "# %s", pIdx->zName));
|
|
sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
|
|
}
|
|
if( pParse->nTab<=base+i ){
|
|
pParse->nTab = base+i;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** The following global variable is incremented whenever the
|
|
** transfer optimization is used. This is used for testing
|
|
** purposes only - to make sure the transfer optimization really
|
|
** is happening when it is suppose to.
|
|
*/
|
|
int sqlite3_xferopt_count;
|
|
#endif /* SQLITE_TEST */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/*
|
|
** Check to collation names to see if they are compatible.
|
|
*/
|
|
static int xferCompatibleCollation(const char *z1, const char *z2){
|
|
if( z1==0 ){
|
|
return z2==0;
|
|
}
|
|
if( z2==0 ){
|
|
return 0;
|
|
}
|
|
return sqlite3StrICmp(z1, z2)==0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if index pSrc is compatible as a source of data
|
|
** for index pDest in an insert transfer optimization. The rules
|
|
** for a compatible index:
|
|
**
|
|
** * The index is over the same set of columns
|
|
** * The same DESC and ASC markings occurs on all columns
|
|
** * The same onError processing (OE_Abort, OE_Ignore, etc)
|
|
** * The same collating sequence on each column
|
|
*/
|
|
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
|
|
int i;
|
|
assert( pDest && pSrc );
|
|
assert( pDest->pTable!=pSrc->pTable );
|
|
if( pDest->nColumn!=pSrc->nColumn ){
|
|
return 0; /* Different number of columns */
|
|
}
|
|
if( pDest->onError!=pSrc->onError ){
|
|
return 0; /* Different conflict resolution strategies */
|
|
}
|
|
for(i=0; i<pSrc->nColumn; i++){
|
|
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
|
|
return 0; /* Different columns indexed */
|
|
}
|
|
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
|
|
return 0; /* Different sort orders */
|
|
}
|
|
if( pSrc->azColl[i]!=pDest->azColl[i] ){
|
|
return 0; /* Different sort orders */
|
|
}
|
|
}
|
|
|
|
/* If no test above fails then the indices must be compatible */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Attempt the transfer optimization on INSERTs of the form
|
|
**
|
|
** INSERT INTO tab1 SELECT * FROM tab2;
|
|
**
|
|
** This optimization is only attempted if
|
|
**
|
|
** (1) tab1 and tab2 have identical schemas including all the
|
|
** same indices and constraints
|
|
**
|
|
** (2) tab1 and tab2 are different tables
|
|
**
|
|
** (3) There must be no triggers on tab1
|
|
**
|
|
** (4) The result set of the SELECT statement is "*"
|
|
**
|
|
** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
|
|
** or LIMIT clause.
|
|
**
|
|
** (6) The SELECT statement is a simple (not a compound) select that
|
|
** contains only tab2 in its FROM clause
|
|
**
|
|
** This method for implementing the INSERT transfers raw records from
|
|
** tab2 over to tab1. The columns are not decoded. Raw records from
|
|
** the indices of tab2 are transfered to tab1 as well. In so doing,
|
|
** the resulting tab1 has much less fragmentation.
|
|
**
|
|
** This routine returns TRUE if the optimization is attempted. If any
|
|
** of the conditions above fail so that the optimization should not
|
|
** be attempted, then this routine returns FALSE.
|
|
*/
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
){
|
|
ExprList *pEList; /* The result set of the SELECT */
|
|
Table *pSrc; /* The table in the FROM clause of SELECT */
|
|
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
|
|
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
|
|
int i; /* Loop counter */
|
|
int iDbSrc; /* The database of pSrc */
|
|
int iSrc, iDest; /* Cursors from source and destination */
|
|
int addr1, addr2; /* Loop addresses */
|
|
int emptyDestTest; /* Address of test for empty pDest */
|
|
int emptySrcTest; /* Address of test for empty pSrc */
|
|
Vdbe *v; /* The VDBE we are building */
|
|
KeyInfo *pKey; /* Key information for an index */
|
|
int counterMem; /* Memory register used by AUTOINC */
|
|
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
|
|
|
|
if( pSelect==0 ){
|
|
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
|
|
}
|
|
if( pDest->pTrigger ){
|
|
return 0; /* tab1 must not have triggers */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pDest->isVirtual ){
|
|
return 0; /* tab1 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError!=OE_Abort && onError!=OE_Rollback ){
|
|
return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
|
|
}
|
|
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
|
|
if( pSelect->pSrc->nSrc!=1 ){
|
|
return 0; /* FROM clause must have exactly one term */
|
|
}
|
|
if( pSelect->pSrc->a[0].pSelect ){
|
|
return 0; /* FROM clause cannot contain a subquery */
|
|
}
|
|
if( pSelect->pWhere ){
|
|
return 0; /* SELECT may not have a WHERE clause */
|
|
}
|
|
if( pSelect->pOrderBy ){
|
|
return 0; /* SELECT may not have an ORDER BY clause */
|
|
}
|
|
/* Do not need to test for a HAVING clause. If HAVING is present but
|
|
** there is no ORDER BY, we will get an error. */
|
|
if( pSelect->pGroupBy ){
|
|
return 0; /* SELECT may not have a GROUP BY clause */
|
|
}
|
|
if( pSelect->pLimit ){
|
|
return 0; /* SELECT may not have a LIMIT clause */
|
|
}
|
|
assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
|
|
if( pSelect->pPrior ){
|
|
return 0; /* SELECT may not be a compound query */
|
|
}
|
|
if( pSelect->isDistinct ){
|
|
return 0; /* SELECT may not be DISTINCT */
|
|
}
|
|
pEList = pSelect->pEList;
|
|
assert( pEList!=0 );
|
|
if( pEList->nExpr!=1 ){
|
|
return 0; /* The result set must have exactly one column */
|
|
}
|
|
assert( pEList->a[0].pExpr );
|
|
if( pEList->a[0].pExpr->op!=TK_ALL ){
|
|
return 0; /* The result set must be the special operator "*" */
|
|
}
|
|
|
|
/* At this point we have established that the statement is of the
|
|
** correct syntactic form to participate in this optimization. Now
|
|
** we have to check the semantics.
|
|
*/
|
|
pItem = pSelect->pSrc->a;
|
|
pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
|
|
if( pSrc==0 ){
|
|
return 0; /* FROM clause does not contain a real table */
|
|
}
|
|
if( pSrc==pDest ){
|
|
return 0; /* tab1 and tab2 may not be the same table */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pSrc->isVirtual ){
|
|
return 0; /* tab2 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( pSrc->pSelect ){
|
|
return 0; /* tab2 may not be a view */
|
|
}
|
|
if( pDest->nCol!=pSrc->nCol ){
|
|
return 0; /* Number of columns must be the same in tab1 and tab2 */
|
|
}
|
|
if( pDest->iPKey!=pSrc->iPKey ){
|
|
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
|
|
}
|
|
for(i=0; i<pDest->nCol; i++){
|
|
if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
|
|
return 0; /* Affinity must be the same on all columns */
|
|
}
|
|
if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
|
|
return 0; /* Collating sequence must be the same on all columns */
|
|
}
|
|
if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
|
|
return 0; /* tab2 must be NOT NULL if tab1 is */
|
|
}
|
|
}
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
if( pDestIdx->onError!=OE_None ){
|
|
destHasUniqueIdx = 1;
|
|
}
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
if( pSrcIdx==0 ){
|
|
return 0; /* pDestIdx has no corresponding index in pSrc */
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
|
|
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
|
|
}
|
|
#endif
|
|
|
|
/* If we get this far, it means either:
|
|
**
|
|
** * We can always do the transfer if the table contains an
|
|
** an integer primary key
|
|
**
|
|
** * We can conditionally do the transfer if the destination
|
|
** table is empty.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_xferopt_count++;
|
|
#endif
|
|
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
sqlite3CodeVerifySchema(pParse, iDbSrc);
|
|
iSrc = pParse->nTab++;
|
|
iDest = pParse->nTab++;
|
|
counterMem = autoIncBegin(pParse, iDbDest, pDest);
|
|
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
|
|
if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
|
|
/* If tables do not have an INTEGER PRIMARY KEY and there
|
|
** are indices to be copied and the destination is not empty,
|
|
** we have to disallow the transfer optimization because the
|
|
** the rowids might change which will mess up indexing.
|
|
**
|
|
** Or if the destination has a UNIQUE index and is not empty,
|
|
** we also disallow the transfer optimization because we cannot
|
|
** insure that all entries in the union of DEST and SRC will be
|
|
** unique.
|
|
*/
|
|
addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
|
|
emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}else{
|
|
emptyDestTest = 0;
|
|
}
|
|
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
|
|
emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
|
|
if( pDest->iPKey>=0 ){
|
|
addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
|
|
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
|
|
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
|
|
"PRIMARY KEY must be unique", P3_STATIC);
|
|
sqlite3VdbeJumpHere(v, addr2);
|
|
autoIncStep(pParse, counterMem);
|
|
}else if( pDest->pIndex==0 ){
|
|
addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
|
|
}else{
|
|
addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
|
|
assert( pDest->autoInc==0 );
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
|
|
sqlite3VdbeOp3(v, OP_Insert, iDest,
|
|
OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
|
|
pDest->zName, 0);
|
|
sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
|
|
autoIncEnd(pParse, iDbDest, pDest, counterMem);
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
assert( pSrcIdx );
|
|
sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
|
|
pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
|
|
VdbeComment((v, "# %s", pSrcIdx->zName));
|
|
sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum,
|
|
(char*)pKey, P3_KEYINFO_HANDOFF);
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
|
|
pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
|
|
VdbeComment((v, "# %s", pDestIdx->zName));
|
|
sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum,
|
|
(char*)pKey, P3_KEYINFO_HANDOFF);
|
|
addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
|
|
sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
|
|
sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
|
|
sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
sqlite3VdbeJumpHere(v, emptySrcTest);
|
|
sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
|
|
if( emptyDestTest ){
|
|
sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
|
|
sqlite3VdbeJumpHere(v, emptyDestTest);
|
|
sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|