211 lines
6.9 KiB
C
Executable File
211 lines
6.9 KiB
C
Executable File
/*
|
|
** 2007 August 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement mutexes for win32
|
|
**
|
|
** $Id: mutex_w32.c,v 1.4 2007/09/05 14:30:42 drh Exp $
|
|
*/
|
|
#define _WIN32_WINNT 0x0400
|
|
#include <Windows.h>
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** The code in this file is only used if we are compiling multithreaded
|
|
** on a win32 system.
|
|
*/
|
|
#ifdef SQLITE_MUTEX_W32
|
|
|
|
/*
|
|
** Each recursive mutex is an instance of the following structure.
|
|
*/
|
|
struct sqlite3_mutex {
|
|
CRITICAL_SECTION mutex; /* Mutex controlling the lock */
|
|
int id; /* Mutex type */
|
|
int nRef; /* Number of enterances */
|
|
DWORD owner; /* Thread holding this mutex */
|
|
};
|
|
|
|
/*
|
|
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
|
|
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
|
|
**
|
|
** Here is an interesting observation: Win95, Win98, and WinME lack
|
|
** the LockFileEx() API. But we can still statically link against that
|
|
** API as long as we don't call it win running Win95/98/ME. A call to
|
|
** this routine is used to determine if the host is Win95/98/ME or
|
|
** WinNT/2K/XP so that we will know whether or not we can safely call
|
|
** the LockFileEx() API.
|
|
*/
|
|
#if OS_WINCE
|
|
# define mutexIsNT() (1)
|
|
#else
|
|
static int mutexIsNT(void){
|
|
static int osType = 0;
|
|
if( osType==0 ){
|
|
OSVERSIONINFO sInfo;
|
|
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
|
GetVersionEx(&sInfo);
|
|
osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
|
}
|
|
return osType==2;
|
|
}
|
|
#endif /* OS_WINCE */
|
|
|
|
|
|
/*
|
|
** The sqlite3_mutex_alloc() routine allocates a new
|
|
** mutex and returns a pointer to it. If it returns NULL
|
|
** that means that a mutex could not be allocated. SQLite
|
|
** will unwind its stack and return an error. The argument
|
|
** to sqlite3_mutex_alloc() is one of these integer constants:
|
|
**
|
|
** <ul>
|
|
** <li> SQLITE_MUTEX_FAST 0
|
|
** <li> SQLITE_MUTEX_RECURSIVE 1
|
|
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
|
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
|
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
|
** </ul>
|
|
**
|
|
** The first two constants cause sqlite3_mutex_alloc() to create
|
|
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
|
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
|
** The mutex implementation does not need to make a distinction
|
|
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
|
** not want to. But SQLite will only request a recursive mutex in
|
|
** cases where it really needs one. If a faster non-recursive mutex
|
|
** implementation is available on the host platform, the mutex subsystem
|
|
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
|
**
|
|
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
|
** a pointer to a static preexisting mutex. Three static mutexes are
|
|
** used by the current version of SQLite. Future versions of SQLite
|
|
** may add additional static mutexes. Static mutexes are for internal
|
|
** use by SQLite only. Applications that use SQLite mutexes should
|
|
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
|
** SQLITE_MUTEX_RECURSIVE.
|
|
**
|
|
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
|
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
|
** returns a different mutex on every call. But for the static
|
|
** mutex types, the same mutex is returned on every call that has
|
|
** the same type number.
|
|
*/
|
|
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
|
|
sqlite3_mutex *p;
|
|
|
|
switch( iType ){
|
|
case SQLITE_MUTEX_FAST:
|
|
case SQLITE_MUTEX_RECURSIVE: {
|
|
p = sqlite3MallocZero( sizeof(*p) );
|
|
if( p ){
|
|
p->id = iType;
|
|
InitializeCriticalSection(&p->mutex);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
static sqlite3_mutex staticMutexes[5];
|
|
static int isInit = 0;
|
|
while( !isInit ){
|
|
static long lock = 0;
|
|
if( InterlockedIncrement(&lock)==1 ){
|
|
int i;
|
|
for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
|
|
InitializeCriticalSection(&staticMutexes[i].mutex);
|
|
}
|
|
isInit = 1;
|
|
}else{
|
|
Sleep(1);
|
|
}
|
|
}
|
|
assert( iType-2 >= 0 );
|
|
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
|
p = &staticMutexes[iType-2];
|
|
p->id = iType;
|
|
break;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine deallocates a previously
|
|
** allocated mutex. SQLite is careful to deallocate every
|
|
** mutex that it allocates.
|
|
*/
|
|
void sqlite3_mutex_free(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->nRef==0 );
|
|
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
DeleteCriticalSection(&p->mutex);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
|
** to enter a mutex. If another thread is already within the mutex,
|
|
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
|
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
|
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
|
** be entered multiple times by the same thread. In such cases the,
|
|
** mutex must be exited an equal number of times before another thread
|
|
** can enter. If the same thread tries to enter any other kind of mutex
|
|
** more than once, the behavior is undefined.
|
|
*/
|
|
void sqlite3_mutex_enter(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
EnterCriticalSection(&p->mutex);
|
|
p->owner = GetCurrentThreadId();
|
|
p->nRef++;
|
|
}
|
|
int sqlite3_mutex_try(sqlite3_mutex *p){
|
|
int rc;
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
|
|
p->owner = GetCurrentThreadId();
|
|
p->nRef++;
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_leave() routine exits a mutex that was
|
|
** previously entered by the same thread. The behavior
|
|
** is undefined if the mutex is not currently entered or
|
|
** is not currently allocated. SQLite will never do either.
|
|
*/
|
|
void sqlite3_mutex_leave(sqlite3_mutex *p){
|
|
assert( p->nRef>0 );
|
|
assert( p->owner==GetCurrentThreadId() );
|
|
p->nRef--;
|
|
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
LeaveCriticalSection(&p->mutex);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
|
** intended for use only inside assert() statements.
|
|
*/
|
|
int sqlite3_mutex_held(sqlite3_mutex *p){
|
|
return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
|
|
}
|
|
int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
|
return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
|
|
}
|
|
#endif /* SQLITE_MUTEX_W32 */
|