OpenSimMirror/libraries/sqlite/win32/os.c

283 lines
8.0 KiB
C
Executable File

/*
** 2005 November 29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains OS interface code that is common to all
** architectures.
*/
#define _SQLITE_OS_C_ 1
#include "sqliteInt.h"
#undef _SQLITE_OS_C_
/*
** The default SQLite sqlite3_vfs implementations do not allocate
** memory (actually, os_unix.c allocates a small amount of memory
** from within OsOpen()), but some third-party implementations may.
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
**
** The following functions are instrumented for malloc() failure
** testing:
**
** sqlite3OsOpen()
** sqlite3OsRead()
** sqlite3OsWrite()
** sqlite3OsSync()
** sqlite3OsLock()
**
*/
#ifdef SQLITE_TEST
#define DO_OS_MALLOC_TEST if (1) { \
void *pTstAlloc = sqlite3_malloc(10); \
if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
sqlite3_free(pTstAlloc); \
}
#else
#define DO_OS_MALLOC_TEST
#endif
/*
** The following routines are convenience wrappers around methods
** of the sqlite3_file object. This is mostly just syntactic sugar. All
** of this would be completely automatic if SQLite were coded using
** C++ instead of plain old C.
*/
int sqlite3OsClose(sqlite3_file *pId){
int rc = SQLITE_OK;
if( pId->pMethods ){
rc = pId->pMethods->xClose(pId);
pId->pMethods = 0;
}
return rc;
}
int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
DO_OS_MALLOC_TEST;
return id->pMethods->xRead(id, pBuf, amt, offset);
}
int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
DO_OS_MALLOC_TEST;
return id->pMethods->xWrite(id, pBuf, amt, offset);
}
int sqlite3OsTruncate(sqlite3_file *id, i64 size){
return id->pMethods->xTruncate(id, size);
}
int sqlite3OsSync(sqlite3_file *id, int flags){
DO_OS_MALLOC_TEST;
return id->pMethods->xSync(id, flags);
}
int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
return id->pMethods->xFileSize(id, pSize);
}
int sqlite3OsLock(sqlite3_file *id, int lockType){
DO_OS_MALLOC_TEST;
return id->pMethods->xLock(id, lockType);
}
int sqlite3OsUnlock(sqlite3_file *id, int lockType){
return id->pMethods->xUnlock(id, lockType);
}
int sqlite3OsCheckReservedLock(sqlite3_file *id){
return id->pMethods->xCheckReservedLock(id);
}
int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
return id->pMethods->xFileControl(id,op,pArg);
}
#ifdef SQLITE_TEST
/* The following two variables are used to override the values returned
** by the xSectorSize() and xDeviceCharacteristics() vfs methods for
** testing purposes. They are usually set by a test command implemented
** in test6.c.
*/
int sqlite3_test_sector_size = 0;
int sqlite3_test_device_characteristics = 0;
int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
int dc = id->pMethods->xDeviceCharacteristics(id);
return dc | sqlite3_test_device_characteristics;
}
int sqlite3OsSectorSize(sqlite3_file *id){
if( sqlite3_test_sector_size==0 ){
int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
}
return sqlite3_test_sector_size;
}
#else
int sqlite3OsSectorSize(sqlite3_file *id){
int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
}
int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
return id->pMethods->xDeviceCharacteristics(id);
}
#endif
/*
** The next group of routines are convenience wrappers around the
** VFS methods.
*/
int sqlite3OsOpen(
sqlite3_vfs *pVfs,
const char *zPath,
sqlite3_file *pFile,
int flags,
int *pFlagsOut
){
DO_OS_MALLOC_TEST;
return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
}
int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
return pVfs->xDelete(pVfs, zPath, dirSync);
}
int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
return pVfs->xAccess(pVfs, zPath, flags);
}
int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){
return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
}
int sqlite3OsFullPathname(
sqlite3_vfs *pVfs,
const char *zPath,
int nPathOut,
char *zPathOut
){
return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
return pVfs->xDlOpen(pVfs, zPath);
}
void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
pVfs->xDlError(pVfs, nByte, zBufOut);
}
void *sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
return pVfs->xDlSym(pVfs, pHandle, zSymbol);
}
void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
pVfs->xDlClose(pVfs, pHandle);
}
int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
return pVfs->xRandomness(pVfs, nByte, zBufOut);
}
int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
return pVfs->xSleep(pVfs, nMicro);
}
int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
return pVfs->xCurrentTime(pVfs, pTimeOut);
}
int sqlite3OsOpenMalloc(
sqlite3_vfs *pVfs,
const char *zFile,
sqlite3_file **ppFile,
int flags,
int *pOutFlags
){
int rc = SQLITE_NOMEM;
sqlite3_file *pFile;
pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile);
if( pFile ){
rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
if( rc!=SQLITE_OK ){
sqlite3_free(pFile);
}else{
*ppFile = pFile;
}
}
return rc;
}
int sqlite3OsCloseFree(sqlite3_file *pFile){
int rc = SQLITE_OK;
if( pFile ){
rc = sqlite3OsClose(pFile);
sqlite3_free(pFile);
}
return rc;
}
/*
** The list of all registered VFS implementations. This list is
** initialized to the single VFS returned by sqlite3OsDefaultVfs()
** upon the first call to sqlite3_vfs_find().
*/
static sqlite3_vfs *vfsList = 0;
/*
** Locate a VFS by name. If no name is given, simply return the
** first VFS on the list.
*/
sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_vfs *pVfs;
static int isInit = 0;
sqlite3_mutex_enter(mutex);
if( !isInit ){
vfsList = sqlite3OsDefaultVfs();
isInit = 1;
}
for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
if( zVfs==0 ) break;
if( strcmp(zVfs, pVfs->zName)==0 ) break;
}
sqlite3_mutex_leave(mutex);
return pVfs;
}
/*
** Unlink a VFS from the linked list
*/
static void vfsUnlink(sqlite3_vfs *pVfs){
assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) );
if( vfsList==pVfs ){
vfsList = pVfs->pNext;
}else{
sqlite3_vfs *p = vfsList;
while( p->pNext && p->pNext!=pVfs ){
p = p->pNext;
}
if( p->pNext==pVfs ){
p->pNext = pVfs->pNext;
}
}
}
/*
** Register a VFS with the system. It is harmless to register the same
** VFS multiple times. The new VFS becomes the default if makeDflt is
** true.
*/
int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_vfs_find(0); /* Make sure we are initialized */
sqlite3_mutex_enter(mutex);
vfsUnlink(pVfs);
if( makeDflt || vfsList==0 ){
pVfs->pNext = vfsList;
vfsList = pVfs;
}else{
pVfs->pNext = vfsList->pNext;
vfsList->pNext = pVfs;
}
assert(vfsList);
sqlite3_mutex_leave(mutex);
return SQLITE_OK;
}
/*
** Unregister a VFS so that it is no longer accessible.
*/
int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_mutex_enter(mutex);
vfsUnlink(pVfs);
assert(vfsList);
sqlite3_mutex_leave(mutex);
return SQLITE_OK;
}