1067 lines
30 KiB
C
Executable File
1067 lines
30 KiB
C
Executable File
/*
|
|
** 2004 May 26
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code use to implement APIs that are part of the
|
|
** VDBE.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "vdbeInt.h"
|
|
|
|
/*
|
|
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
|
** to be recompiled. A statement needs to be recompiled whenever the
|
|
** execution environment changes in a way that would alter the program
|
|
** that sqlite3_prepare() generates. For example, if new functions or
|
|
** collating sequences are registered or if an authorizer function is
|
|
** added or changed.
|
|
*/
|
|
int sqlite3_expired(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
return p==0 || p->expired;
|
|
}
|
|
|
|
/*
|
|
** The following routine destroys a virtual machine that is created by
|
|
** the sqlite3_compile() routine. The integer returned is an SQLITE_
|
|
** success/failure code that describes the result of executing the virtual
|
|
** machine.
|
|
**
|
|
** This routine sets the error code and string returned by
|
|
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
*/
|
|
int sqlite3_finalize(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
if( pStmt==0 ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3_mutex *mutex = v->db->mutex;
|
|
sqlite3_mutex_enter(mutex);
|
|
rc = sqlite3VdbeFinalize(v);
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Terminate the current execution of an SQL statement and reset it
|
|
** back to its starting state so that it can be reused. A success code from
|
|
** the prior execution is returned.
|
|
**
|
|
** This routine sets the error code and string returned by
|
|
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
*/
|
|
int sqlite3_reset(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
if( pStmt==0 ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(v->db->mutex);
|
|
rc = sqlite3VdbeReset(v);
|
|
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
|
|
assert( (rc & (v->db->errMask))==rc );
|
|
sqlite3_mutex_leave(v->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set all the parameters in the compiled SQL statement to NULL.
|
|
*/
|
|
int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(v->db->mutex);
|
|
for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
|
|
rc = sqlite3_bind_null(pStmt, i);
|
|
}
|
|
sqlite3_mutex_leave(v->db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/**************************** sqlite3_value_ *******************************
|
|
** The following routines extract information from a Mem or sqlite3_value
|
|
** structure.
|
|
*/
|
|
const void *sqlite3_value_blob(sqlite3_value *pVal){
|
|
Mem *p = (Mem*)pVal;
|
|
if( p->flags & (MEM_Blob|MEM_Str) ){
|
|
sqlite3VdbeMemExpandBlob(p);
|
|
p->flags &= ~MEM_Str;
|
|
p->flags |= MEM_Blob;
|
|
return p->z;
|
|
}else{
|
|
return sqlite3_value_text(pVal);
|
|
}
|
|
}
|
|
int sqlite3_value_bytes(sqlite3_value *pVal){
|
|
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
|
|
}
|
|
int sqlite3_value_bytes16(sqlite3_value *pVal){
|
|
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
|
|
}
|
|
double sqlite3_value_double(sqlite3_value *pVal){
|
|
return sqlite3VdbeRealValue((Mem*)pVal);
|
|
}
|
|
int sqlite3_value_int(sqlite3_value *pVal){
|
|
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
}
|
|
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
|
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
}
|
|
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
|
|
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_value_text16(sqlite3_value* pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
|
|
}
|
|
const void *sqlite3_value_text16be(sqlite3_value *pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
|
|
}
|
|
const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
int sqlite3_value_type(sqlite3_value* pVal){
|
|
return pVal->type;
|
|
}
|
|
|
|
/**************************** sqlite3_result_ *******************************
|
|
** The following routines are used by user-defined functions to specify
|
|
** the function result.
|
|
*/
|
|
void sqlite3_result_blob(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( n>=0 );
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
|
|
}
|
|
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
|
|
}
|
|
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pCtx->isError = 1;
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pCtx->isError = 1;
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
|
}
|
|
#endif
|
|
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
|
|
}
|
|
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
|
|
}
|
|
void sqlite3_result_null(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetNull(&pCtx->s);
|
|
}
|
|
void sqlite3_result_text(
|
|
sqlite3_context *pCtx,
|
|
const char *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
void sqlite3_result_text16(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
|
|
}
|
|
void sqlite3_result_text16be(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
|
|
}
|
|
void sqlite3_result_text16le(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemCopy(&pCtx->s, pValue);
|
|
}
|
|
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
|
|
}
|
|
|
|
/* Force an SQLITE_TOOBIG error. */
|
|
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
|
|
}
|
|
|
|
/* An SQLITE_NOMEM error. */
|
|
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetNull(&pCtx->s);
|
|
pCtx->isError = 1;
|
|
pCtx->s.db->mallocFailed = 1;
|
|
}
|
|
|
|
/*
|
|
** Execute the statement pStmt, either until a row of data is ready, the
|
|
** statement is completely executed or an error occurs.
|
|
**
|
|
** This routine implements the bulk of the logic behind the sqlite_step()
|
|
** API. The only thing omitted is the automatic recompile if a
|
|
** schema change has occurred. That detail is handled by the
|
|
** outer sqlite3_step() wrapper procedure.
|
|
*/
|
|
static int sqlite3Step(Vdbe *p){
|
|
sqlite3 *db;
|
|
int rc;
|
|
|
|
/* Assert that malloc() has not failed */
|
|
db = p->db;
|
|
assert( !db->mallocFailed );
|
|
|
|
if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( p->aborted ){
|
|
return SQLITE_ABORT;
|
|
}
|
|
if( p->pc<=0 && p->expired ){
|
|
if( p->rc==SQLITE_OK ){
|
|
p->rc = SQLITE_SCHEMA;
|
|
}
|
|
rc = SQLITE_ERROR;
|
|
goto end_of_step;
|
|
}
|
|
if( sqlite3SafetyOn(db) ){
|
|
p->rc = SQLITE_MISUSE;
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( p->pc<0 ){
|
|
/* If there are no other statements currently running, then
|
|
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
|
|
** from interrupting a statement that has not yet started.
|
|
*/
|
|
if( db->activeVdbeCnt==0 ){
|
|
db->u1.isInterrupted = 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Invoke the trace callback if there is one
|
|
*/
|
|
if( db->xTrace && !db->init.busy ){
|
|
assert( p->nOp>0 );
|
|
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
|
assert( p->aOp[p->nOp-1].p3!=0 );
|
|
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
|
sqlite3SafetyOff(db);
|
|
db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
|
|
if( sqlite3SafetyOn(db) ){
|
|
p->rc = SQLITE_MISUSE;
|
|
return SQLITE_MISUSE;
|
|
}
|
|
}
|
|
if( db->xProfile && !db->init.busy ){
|
|
double rNow;
|
|
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
|
p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
|
|
}
|
|
#endif
|
|
|
|
/* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
|
|
** on in debugging mode.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
if( (db->flags & SQLITE_SqlTrace)!=0 ){
|
|
sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
db->activeVdbeCnt++;
|
|
p->pc = 0;
|
|
}
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( p->explain ){
|
|
rc = sqlite3VdbeList(p);
|
|
}else
|
|
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
{
|
|
rc = sqlite3VdbeExec(p);
|
|
}
|
|
|
|
if( sqlite3SafetyOff(db) ){
|
|
rc = SQLITE_MISUSE;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Invoke the profile callback if there is one
|
|
*/
|
|
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
|
|
double rNow;
|
|
u64 elapseTime;
|
|
|
|
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
|
elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
|
|
assert( p->nOp>0 );
|
|
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
|
assert( p->aOp[p->nOp-1].p3!=0 );
|
|
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
|
db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
|
|
}
|
|
#endif
|
|
|
|
sqlite3Error(p->db, rc, 0);
|
|
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
end_of_step:
|
|
assert( (rc&0xff)==rc );
|
|
if( p->zSql && (rc&0xff)<SQLITE_ROW ){
|
|
/* This behavior occurs if sqlite3_prepare_v2() was used to build
|
|
** the prepared statement. Return error codes directly */
|
|
sqlite3Error(p->db, p->rc, 0);
|
|
return p->rc;
|
|
}else{
|
|
/* This is for legacy sqlite3_prepare() builds and when the code
|
|
** is SQLITE_ROW or SQLITE_DONE */
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is the top-level implementation of sqlite3_step(). Call
|
|
** sqlite3Step() to do most of the work. If a schema error occurs,
|
|
** call sqlite3Reprepare() and try again.
|
|
*/
|
|
#ifdef SQLITE_OMIT_PARSER
|
|
int sqlite3_step(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
Vdbe *v;
|
|
v = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(v->db->mutex);
|
|
rc = sqlite3Step(v);
|
|
sqlite3_mutex_leave(v->db->mutex);
|
|
return rc;
|
|
}
|
|
#else
|
|
int sqlite3_step(sqlite3_stmt *pStmt){
|
|
int cnt = 0;
|
|
int rc;
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(v->db->mutex);
|
|
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
|
|
&& cnt++ < 5
|
|
&& sqlite3Reprepare(v) ){
|
|
sqlite3_reset(pStmt);
|
|
v->expired = 0;
|
|
}
|
|
sqlite3_mutex_leave(v->db->mutex);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Extract the user data from a sqlite3_context structure and return a
|
|
** pointer to it.
|
|
*/
|
|
void *sqlite3_user_data(sqlite3_context *p){
|
|
assert( p && p->pFunc );
|
|
return p->pFunc->pUserData;
|
|
}
|
|
|
|
/*
|
|
** The following is the implementation of an SQL function that always
|
|
** fails with an error message stating that the function is used in the
|
|
** wrong context. The sqlite3_overload_function() API might construct
|
|
** SQL function that use this routine so that the functions will exist
|
|
** for name resolution but are actually overloaded by the xFindFunction
|
|
** method of virtual tables.
|
|
*/
|
|
void sqlite3InvalidFunction(
|
|
sqlite3_context *context, /* The function calling context */
|
|
int argc, /* Number of arguments to the function */
|
|
sqlite3_value **argv /* Value of each argument */
|
|
){
|
|
const char *zName = context->pFunc->zName;
|
|
char *zErr;
|
|
zErr = sqlite3MPrintf(0,
|
|
"unable to use function %s in the requested context", zName);
|
|
sqlite3_result_error(context, zErr, -1);
|
|
sqlite3_free(zErr);
|
|
}
|
|
|
|
/*
|
|
** Allocate or return the aggregate context for a user function. A new
|
|
** context is allocated on the first call. Subsequent calls return the
|
|
** same context that was returned on prior calls.
|
|
*/
|
|
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
|
Mem *pMem;
|
|
assert( p && p->pFunc && p->pFunc->xStep );
|
|
assert( sqlite3_mutex_held(p->s.db->mutex) );
|
|
pMem = p->pMem;
|
|
if( (pMem->flags & MEM_Agg)==0 ){
|
|
if( nByte==0 ){
|
|
assert( pMem->flags==MEM_Null );
|
|
pMem->z = 0;
|
|
}else{
|
|
pMem->flags = MEM_Agg;
|
|
pMem->xDel = sqlite3_free;
|
|
pMem->u.pDef = p->pFunc;
|
|
if( nByte<=NBFS ){
|
|
pMem->z = pMem->zShort;
|
|
memset(pMem->z, 0, nByte);
|
|
}else{
|
|
pMem->z = sqlite3DbMallocZero(p->s.db, nByte);
|
|
}
|
|
}
|
|
}
|
|
return (void*)pMem->z;
|
|
}
|
|
|
|
/*
|
|
** Return the auxilary data pointer, if any, for the iArg'th argument to
|
|
** the user-function defined by pCtx.
|
|
*/
|
|
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
|
VdbeFunc *pVdbeFunc;
|
|
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pVdbeFunc = pCtx->pVdbeFunc;
|
|
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
|
|
return 0;
|
|
}
|
|
return pVdbeFunc->apAux[iArg].pAux;
|
|
}
|
|
|
|
/*
|
|
** Set the auxilary data pointer and delete function, for the iArg'th
|
|
** argument to the user-function defined by pCtx. Any previous value is
|
|
** deleted by calling the delete function specified when it was set.
|
|
*/
|
|
void sqlite3_set_auxdata(
|
|
sqlite3_context *pCtx,
|
|
int iArg,
|
|
void *pAux,
|
|
void (*xDelete)(void*)
|
|
){
|
|
struct AuxData *pAuxData;
|
|
VdbeFunc *pVdbeFunc;
|
|
if( iArg<0 ) goto failed;
|
|
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pVdbeFunc = pCtx->pVdbeFunc;
|
|
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
|
|
int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
|
|
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
|
|
pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
|
|
if( !pVdbeFunc ){
|
|
goto failed;
|
|
}
|
|
pCtx->pVdbeFunc = pVdbeFunc;
|
|
memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
|
|
pVdbeFunc->nAux = iArg+1;
|
|
pVdbeFunc->pFunc = pCtx->pFunc;
|
|
}
|
|
|
|
pAuxData = &pVdbeFunc->apAux[iArg];
|
|
if( pAuxData->pAux && pAuxData->xDelete ){
|
|
pAuxData->xDelete(pAuxData->pAux);
|
|
}
|
|
pAuxData->pAux = pAux;
|
|
pAuxData->xDelete = xDelete;
|
|
return;
|
|
|
|
failed:
|
|
if( xDelete ){
|
|
xDelete(pAux);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the number of times the Step function of a aggregate has been
|
|
** called.
|
|
**
|
|
** This function is deprecated. Do not use it for new code. It is
|
|
** provide only to avoid breaking legacy code. New aggregate function
|
|
** implementations should keep their own counts within their aggregate
|
|
** context.
|
|
*/
|
|
int sqlite3_aggregate_count(sqlite3_context *p){
|
|
assert( p && p->pFunc && p->pFunc->xStep );
|
|
return p->pMem->n;
|
|
}
|
|
|
|
/*
|
|
** Return the number of columns in the result set for the statement pStmt.
|
|
*/
|
|
int sqlite3_column_count(sqlite3_stmt *pStmt){
|
|
Vdbe *pVm = (Vdbe *)pStmt;
|
|
return pVm ? pVm->nResColumn : 0;
|
|
}
|
|
|
|
/*
|
|
** Return the number of values available from the current row of the
|
|
** currently executing statement pStmt.
|
|
*/
|
|
int sqlite3_data_count(sqlite3_stmt *pStmt){
|
|
Vdbe *pVm = (Vdbe *)pStmt;
|
|
if( pVm==0 || !pVm->resOnStack ) return 0;
|
|
return pVm->nResColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if column iCol of the given statement is valid. If
|
|
** it is, return a pointer to the Mem for the value of that column.
|
|
** If iCol is not valid, return a pointer to a Mem which has a value
|
|
** of NULL.
|
|
*/
|
|
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
|
Vdbe *pVm;
|
|
int vals;
|
|
Mem *pOut;
|
|
|
|
pVm = (Vdbe *)pStmt;
|
|
if( pVm && pVm->resOnStack && i<pVm->nResColumn && i>=0 ){
|
|
sqlite3_mutex_enter(pVm->db->mutex);
|
|
vals = sqlite3_data_count(pStmt);
|
|
pOut = &pVm->pTos[(1-vals)+i];
|
|
}else{
|
|
static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
|
|
if( pVm->db ){
|
|
sqlite3_mutex_enter(pVm->db->mutex);
|
|
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
|
|
}
|
|
pOut = (Mem*)&nullMem;
|
|
}
|
|
return pOut;
|
|
}
|
|
|
|
/*
|
|
** This function is called after invoking an sqlite3_value_XXX function on a
|
|
** column value (i.e. a value returned by evaluating an SQL expression in the
|
|
** select list of a SELECT statement) that may cause a malloc() failure. If
|
|
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
|
** code of statement pStmt set to SQLITE_NOMEM.
|
|
**
|
|
** Specifically, this is called from within:
|
|
**
|
|
** sqlite3_column_int()
|
|
** sqlite3_column_int64()
|
|
** sqlite3_column_text()
|
|
** sqlite3_column_text16()
|
|
** sqlite3_column_real()
|
|
** sqlite3_column_bytes()
|
|
** sqlite3_column_bytes16()
|
|
**
|
|
** But not for sqlite3_column_blob(), which never calls malloc().
|
|
*/
|
|
static void columnMallocFailure(sqlite3_stmt *pStmt)
|
|
{
|
|
/* If malloc() failed during an encoding conversion within an
|
|
** sqlite3_column_XXX API, then set the return code of the statement to
|
|
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
|
|
** and _finalize() will return NOMEM.
|
|
*/
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
if( p ){
|
|
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
|
|
/**************************** sqlite3_column_ *******************************
|
|
** The following routines are used to access elements of the current row
|
|
** in the result set.
|
|
*/
|
|
const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
|
|
const void *val;
|
|
val = sqlite3_value_blob( columnMem(pStmt,i) );
|
|
/* Even though there is no encoding conversion, value_blob() might
|
|
** need to call malloc() to expand the result of a zeroblob()
|
|
** expression.
|
|
*/
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
|
|
double val = sqlite3_value_double( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_int( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
|
|
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
|
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
|
sqlite3_value *pOut = columnMem(pStmt, i);
|
|
columnMallocFailure(pStmt);
|
|
return pOut;
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
|
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
|
int iType = sqlite3_value_type( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return iType;
|
|
}
|
|
|
|
/* The following function is experimental and subject to change or
|
|
** removal */
|
|
/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
|
|
** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
|
|
**}
|
|
*/
|
|
|
|
/*
|
|
** Convert the N-th element of pStmt->pColName[] into a string using
|
|
** xFunc() then return that string. If N is out of range, return 0.
|
|
**
|
|
** There are up to 5 names for each column. useType determines which
|
|
** name is returned. Here are the names:
|
|
**
|
|
** 0 The column name as it should be displayed for output
|
|
** 1 The datatype name for the column
|
|
** 2 The name of the database that the column derives from
|
|
** 3 The name of the table that the column derives from
|
|
** 4 The name of the table column that the result column derives from
|
|
**
|
|
** If the result is not a simple column reference (if it is an expression
|
|
** or a constant) then useTypes 2, 3, and 4 return NULL.
|
|
*/
|
|
static const void *columnName(
|
|
sqlite3_stmt *pStmt,
|
|
int N,
|
|
const void *(*xFunc)(Mem*),
|
|
int useType
|
|
){
|
|
const void *ret = 0;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
int n;
|
|
|
|
|
|
if( p!=0 ){
|
|
n = sqlite3_column_count(pStmt);
|
|
if( N<n && N>=0 ){
|
|
N += useType*n;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
ret = xFunc(&p->aColName[N]);
|
|
|
|
/* A malloc may have failed inside of the xFunc() call. If this
|
|
** is the case, clear the mallocFailed flag and return NULL.
|
|
*/
|
|
if( p->db && p->db->mallocFailed ){
|
|
p->db->mallocFailed = 0;
|
|
ret = 0;
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Return the name of the Nth column of the result set returned by SQL
|
|
** statement pStmt.
|
|
*/
|
|
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return the column declaration type (if applicable) of the 'i'th column
|
|
** of the result set of SQL statement pStmt.
|
|
*/
|
|
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
/*
|
|
** Return the name of the database from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unabiguous reference to a database column.
|
|
*/
|
|
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the name of the table from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unabiguous reference to a database column.
|
|
*/
|
|
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the name of the table column from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unabiguous reference to a database column.
|
|
*/
|
|
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
|
|
|
|
|
|
/******************************* sqlite3_bind_ ***************************
|
|
**
|
|
** Routines used to attach values to wildcards in a compiled SQL statement.
|
|
*/
|
|
/*
|
|
** Unbind the value bound to variable i in virtual machine p. This is the
|
|
** the same as binding a NULL value to the column. If the "i" parameter is
|
|
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
|
**
|
|
** The error code stored in database p->db is overwritten with the return
|
|
** value in any case.
|
|
*/
|
|
static int vdbeUnbind(Vdbe *p, int i){
|
|
Mem *pVar;
|
|
if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
|
if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( i<1 || i>p->nVar ){
|
|
sqlite3Error(p->db, SQLITE_RANGE, 0);
|
|
return SQLITE_RANGE;
|
|
}
|
|
i--;
|
|
pVar = &p->aVar[i];
|
|
sqlite3VdbeMemRelease(pVar);
|
|
pVar->flags = MEM_Null;
|
|
sqlite3Error(p->db, SQLITE_OK, 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Bind a text or BLOB value.
|
|
*/
|
|
static int bindText(
|
|
sqlite3_stmt *pStmt, /* The statement to bind against */
|
|
int i, /* Index of the parameter to bind */
|
|
const void *zData, /* Pointer to the data to be bound */
|
|
int nData, /* Number of bytes of data to be bound */
|
|
void (*xDel)(void*), /* Destructor for the data */
|
|
int encoding /* Encoding for the data */
|
|
){
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
Mem *pVar;
|
|
int rc;
|
|
|
|
if( p==0 ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK && zData!=0 ){
|
|
pVar = &p->aVar[i-1];
|
|
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
|
|
if( rc==SQLITE_OK && encoding!=0 ){
|
|
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
|
}
|
|
sqlite3Error(p->db, rc, 0);
|
|
rc = sqlite3ApiExit(p->db, rc);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Bind a blob value to an SQL statement variable.
|
|
*/
|
|
int sqlite3_bind_blob(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, 0);
|
|
}
|
|
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
|
|
return sqlite3_bind_int64(p, i, (i64)iValue);
|
|
}
|
|
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
|
|
int rc;
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_text(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const char *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
int sqlite3_bind_text16(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the number of wildcards that can be potentially bound to.
|
|
** This routine is added to support DBD::SQLite.
|
|
*/
|
|
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
return p ? p->nVar : 0;
|
|
}
|
|
|
|
/*
|
|
** Create a mapping from variable numbers to variable names
|
|
** in the Vdbe.azVar[] array, if such a mapping does not already
|
|
** exist.
|
|
*/
|
|
static void createVarMap(Vdbe *p){
|
|
if( !p->okVar ){
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
if( !p->okVar ){
|
|
int j;
|
|
Op *pOp;
|
|
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
|
|
if( pOp->opcode==OP_Variable ){
|
|
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
|
p->azVar[pOp->p1-1] = pOp->p3;
|
|
}
|
|
}
|
|
p->okVar = 1;
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the name of a wildcard parameter. Return NULL if the index
|
|
** is out of range or if the wildcard is unnamed.
|
|
**
|
|
** The result is always UTF-8.
|
|
*/
|
|
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
if( p==0 || i<1 || i>p->nVar ){
|
|
return 0;
|
|
}
|
|
createVarMap(p);
|
|
return p->azVar[i-1];
|
|
}
|
|
|
|
/*
|
|
** Given a wildcard parameter name, return the index of the variable
|
|
** with that name. If there is no variable with the given name,
|
|
** return 0.
|
|
*/
|
|
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
int i;
|
|
if( p==0 ){
|
|
return 0;
|
|
}
|
|
createVarMap(p);
|
|
if( zName ){
|
|
for(i=0; i<p->nVar; i++){
|
|
const char *z = p->azVar[i];
|
|
if( z && strcmp(z,zName)==0 ){
|
|
return i+1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Transfer all bindings from the first statement over to the second.
|
|
** If the two statements contain a different number of bindings, then
|
|
** an SQLITE_ERROR is returned.
|
|
*/
|
|
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
|
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
|
Vdbe *pTo = (Vdbe*)pToStmt;
|
|
int i, rc = SQLITE_OK;
|
|
if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
|
|
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
|
|
|| pTo->db!=pFrom->db ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( pFrom->nVar!=pTo->nVar ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
sqlite3_mutex_enter(pTo->db->mutex);
|
|
for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
|
|
sqlite3MallocDisallow();
|
|
rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
|
sqlite3MallocAllow();
|
|
}
|
|
sqlite3_mutex_leave(pTo->db->mutex);
|
|
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the sqlite3* database handle to which the prepared statement given
|
|
** in the argument belongs. This is the same database handle that was
|
|
** the first argument to the sqlite3_prepare() that was used to create
|
|
** the statement in the first place.
|
|
*/
|
|
sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
|
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
|
}
|