OpenSimMirror/OpenSim/Region/Physics/BulletSPlugin/BSScene.cs

1341 lines
61 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading;
using OpenSim.Framework;
using OpenSim.Region.Framework;
using OpenSim.Region.CoreModules;
using Logging = OpenSim.Region.CoreModules.Framework.Statistics.Logging;
using OpenSim.Region.Physics.Manager;
using Nini.Config;
using log4net;
using OpenMetaverse;
// TODOs for BulletSim (for BSScene, BSPrim, BSCharacter and BulletSim)
// Test sculpties (verified that they don't work)
// Compute physics FPS reasonably
// Based on material, set density and friction
// Don't use constraints in linksets of non-physical objects. Means having to move children manually.
// Four states of prim: Physical, regular, phantom and selected. Are we modeling these correctly?
// In SL one can set both physical and phantom (gravity, does not effect others, makes collisions with ground)
// At the moment, physical and phantom causes object to drop through the terrain
// Physical phantom objects and related typing (collision options )
// Check out llVolumeDetect. Must do something for that.
// Use collision masks for collision with terrain and phantom objects
// More efficient memory usage when passing hull information from BSPrim to BulletSim
// Should prim.link() and prim.delink() membership checking happen at taint time?
// Mesh sharing. Use meshHash to tell if we already have a hull of that shape and only create once.
// Do attachments need to be handled separately? Need collision events. Do not collide with VolumeDetect
// Implement LockAngularMotion
// Decide if clearing forces is the right thing to do when setting position (BulletSim::SetObjectTranslation)
// Remove mesh and Hull stuff. Use mesh passed to bullet and use convexdecom from bullet.
// Add PID movement operations. What does ScenePresence.MoveToTarget do?
// Check terrain size. 128 or 127?
// Raycast
//
namespace OpenSim.Region.Physics.BulletSPlugin
{
public sealed class BSScene : PhysicsScene, IPhysicsParameters
{
private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
private static readonly string LogHeader = "[BULLETS SCENE]";
// The name of the region we're working for.
public string RegionName { get; private set; }
public string BulletSimVersion = "?";
public Dictionary<uint, BSPhysObject> PhysObjects;
public BSShapeCollection Shapes;
// Keeping track of the objects with collisions so we can report begin and end of a collision
public HashSet<BSPhysObject> ObjectsWithCollisions = new HashSet<BSPhysObject>();
public HashSet<BSPhysObject> ObjectsWithNoMoreCollisions = new HashSet<BSPhysObject>();
// Keep track of all the avatars so we can send them a collision event
// every tick so OpenSim will update its animation.
private HashSet<BSPhysObject> m_avatars = new HashSet<BSPhysObject>();
// List of all the objects that have vehicle properties and should be called
// to update each physics step.
private List<BSPhysObject> m_vehicles = new List<BSPhysObject>();
// let my minuions use my logger
public ILog Logger { get { return m_log; } }
public IMesher mesher;
// Level of Detail values kept as float because that's what the Meshmerizer wants
public float MeshLOD { get; private set; }
public float MeshMegaPrimLOD { get; private set; }
public float MeshMegaPrimThreshold { get; private set; }
public float SculptLOD { get; private set; }
public uint WorldID { get; private set; }
public BulletSim World { get; private set; }
// All the constraints that have been allocated in this instance.
public BSConstraintCollection Constraints { get; private set; }
// Simulation parameters
private int m_maxSubSteps;
private float m_fixedTimeStep;
private long m_simulationStep = 0;
public long SimulationStep { get { return m_simulationStep; } }
private int m_taintsToProcessPerStep;
// A value of the time now so all the collision and update routines do not have to get their own
// Set to 'now' just before all the prims and actors are called for collisions and updates
public int SimulationNowTime { get; private set; }
// True if initialized and ready to do simulation steps
private bool m_initialized = false;
// Pinned memory used to pass step information between managed and unmanaged
private int m_maxCollisionsPerFrame;
private CollisionDesc[] m_collisionArray;
private GCHandle m_collisionArrayPinnedHandle;
private int m_maxUpdatesPerFrame;
private EntityProperties[] m_updateArray;
private GCHandle m_updateArrayPinnedHandle;
public bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed
public bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes
public bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects
public float PID_D { get; private set; } // derivative
public float PID_P { get; private set; } // proportional
public const uint TERRAIN_ID = 0; // OpenSim senses terrain with a localID of zero
public const uint GROUNDPLANE_ID = 1;
public const uint CHILDTERRAIN_ID = 2; // Terrain allocated based on our mega-prim childre start here
private float m_waterLevel;
public BSTerrainManager TerrainManager { get; private set; }
public ConfigurationParameters Params
{
get { return m_params[0]; }
}
public Vector3 DefaultGravity
{
get { return new Vector3(0f, 0f, Params.gravity); }
}
// Just the Z value of the gravity
public float DefaultGravityZ
{
get { return Params.gravity; }
}
public float MaximumObjectMass { get; private set; }
// When functions in the unmanaged code must be called, it is only
// done at a known time just before the simulation step. The taint
// system saves all these function calls and executes them in
// order before the simulation.
public delegate void TaintCallback();
private struct TaintCallbackEntry
{
public String ident;
public TaintCallback callback;
public TaintCallbackEntry(string i, TaintCallback c)
{
ident = i;
callback = c;
}
}
private Object _taintLock = new Object(); // lock for using the next object
private List<TaintCallbackEntry> _taintedObjects;
// A pointer to an instance if this structure is passed to the C++ code
// Used to pass basic configuration values to the unmanaged code.
ConfigurationParameters[] m_params;
GCHandle m_paramsHandle;
// Handle to the callback used by the unmanaged code to call into the managed code.
// Used for debug logging.
// Need to store the handle in a persistant variable so it won't be freed.
private BulletSimAPI.DebugLogCallback m_DebugLogCallbackHandle;
// Sometimes you just have to log everything.
public Logging.LogWriter PhysicsLogging;
private bool m_physicsLoggingEnabled;
private string m_physicsLoggingDir;
private string m_physicsLoggingPrefix;
private int m_physicsLoggingFileMinutes;
// 'true' of the vehicle code is to log lots of details
public bool VehicleLoggingEnabled { get; private set; }
#region Construction and Initialization
public BSScene(string identifier)
{
m_initialized = false;
// we are passed the name of the region we're working for.
RegionName = identifier;
}
public override void Initialise(IMesher meshmerizer, IConfigSource config)
{
mesher = meshmerizer;
_taintedObjects = new List<TaintCallbackEntry>();
PhysObjects = new Dictionary<uint, BSPhysObject>();
Shapes = new BSShapeCollection(this);
// Allocate pinned memory to pass parameters.
m_params = new ConfigurationParameters[1];
m_paramsHandle = GCHandle.Alloc(m_params, GCHandleType.Pinned);
// Set default values for physics parameters plus any overrides from the ini file
GetInitialParameterValues(config);
// allocate more pinned memory close to the above in an attempt to get the memory all together
m_collisionArray = new CollisionDesc[m_maxCollisionsPerFrame];
m_collisionArrayPinnedHandle = GCHandle.Alloc(m_collisionArray, GCHandleType.Pinned);
m_updateArray = new EntityProperties[m_maxUpdatesPerFrame];
m_updateArrayPinnedHandle = GCHandle.Alloc(m_updateArray, GCHandleType.Pinned);
// Enable very detailed logging.
// By creating an empty logger when not logging, the log message invocation code
// can be left in and every call doesn't have to check for null.
if (m_physicsLoggingEnabled)
{
PhysicsLogging = new Logging.LogWriter(m_physicsLoggingDir, m_physicsLoggingPrefix, m_physicsLoggingFileMinutes);
}
else
{
PhysicsLogging = new Logging.LogWriter();
}
// If Debug logging level, enable logging from the unmanaged code
m_DebugLogCallbackHandle = null;
if (m_log.IsDebugEnabled || PhysicsLogging.Enabled)
{
m_log.DebugFormat("{0}: Initialize: Setting debug callback for unmanaged code", LogHeader);
if (PhysicsLogging.Enabled)
// The handle is saved in a variable to make sure it doesn't get freed after this call
m_DebugLogCallbackHandle = new BulletSimAPI.DebugLogCallback(BulletLoggerPhysLog);
else
m_DebugLogCallbackHandle = new BulletSimAPI.DebugLogCallback(BulletLogger);
}
// Get the version of the DLL
// TODO: this doesn't work yet. Something wrong with marshaling the returned string.
// BulletSimVersion = BulletSimAPI.GetVersion();
// m_log.WarnFormat("{0}: BulletSim.dll version='{1}'", LogHeader, BulletSimVersion);
// The bounding box for the simulated world. The origin is 0,0,0 unless we're
// a child in a mega-region.
// Bullet actually doesn't care about the extents of the simulated
// area. It tracks active objects no matter where they are.
Vector3 worldExtent = new Vector3(Constants.RegionSize, Constants.RegionSize, Constants.RegionHeight);
// m_log.DebugFormat("{0}: Initialize: Calling BulletSimAPI.Initialize.", LogHeader);
World = new BulletSim(0, this, BulletSimAPI.Initialize2(worldExtent, m_paramsHandle.AddrOfPinnedObject(),
m_maxCollisionsPerFrame, m_collisionArrayPinnedHandle.AddrOfPinnedObject(),
m_maxUpdatesPerFrame, m_updateArrayPinnedHandle.AddrOfPinnedObject(),
m_DebugLogCallbackHandle));
Constraints = new BSConstraintCollection(World);
TerrainManager = new BSTerrainManager(this);
TerrainManager.CreateInitialGroundPlaneAndTerrain();
m_initialized = true;
}
// All default parameter values are set here. There should be no values set in the
// variable definitions.
private void GetInitialParameterValues(IConfigSource config)
{
ConfigurationParameters parms = new ConfigurationParameters();
m_params[0] = parms;
SetParameterDefaultValues();
if (config != null)
{
// If there are specifications in the ini file, use those values
IConfig pConfig = config.Configs["BulletSim"];
if (pConfig != null)
{
SetParameterConfigurationValues(pConfig);
// Very detailed logging for physics debugging
m_physicsLoggingEnabled = pConfig.GetBoolean("PhysicsLoggingEnabled", false);
m_physicsLoggingDir = pConfig.GetString("PhysicsLoggingDir", ".");
m_physicsLoggingPrefix = pConfig.GetString("PhysicsLoggingPrefix", "physics-%REGIONNAME%-");
m_physicsLoggingFileMinutes = pConfig.GetInt("PhysicsLoggingFileMinutes", 5);
// Very detailed logging for vehicle debugging
VehicleLoggingEnabled = pConfig.GetBoolean("VehicleLoggingEnabled", false);
// Do any replacements in the parameters
m_physicsLoggingPrefix = m_physicsLoggingPrefix.Replace("%REGIONNAME%", RegionName);
}
}
}
// A helper function that handles a true/false parameter and returns the proper float number encoding
float ParamBoolean(IConfig config, string parmName, float deflt)
{
float ret = deflt;
if (config.Contains(parmName))
{
ret = ConfigurationParameters.numericFalse;
if (config.GetBoolean(parmName, false))
{
ret = ConfigurationParameters.numericTrue;
}
}
return ret;
}
// Called directly from unmanaged code so don't do much
private void BulletLogger(string msg)
{
m_log.Debug("[BULLETS UNMANAGED]:" + msg);
}
// Called directly from unmanaged code so don't do much
private void BulletLoggerPhysLog(string msg)
{
DetailLog("[BULLETS UNMANAGED]:" + msg);
}
public override void Dispose()
{
// m_log.DebugFormat("{0}: Dispose()", LogHeader);
// make sure no stepping happens while we're deleting stuff
m_initialized = false;
TerrainManager.ReleaseGroundPlaneAndTerrain();
foreach (KeyValuePair<uint, BSPhysObject> kvp in PhysObjects)
{
kvp.Value.Destroy();
}
PhysObjects.Clear();
// Now that the prims are all cleaned up, there should be no constraints left
if (Constraints != null)
{
Constraints.Dispose();
Constraints = null;
}
if (Shapes != null)
{
Shapes.Dispose();
Shapes = null;
}
// Anything left in the unmanaged code should be cleaned out
BulletSimAPI.Shutdown2(World.ptr);
// Not logging any more
PhysicsLogging.Close();
}
#endregion // Construction and Initialization
#region Prim and Avatar addition and removal
public override PhysicsActor AddAvatar(string avName, Vector3 position, Vector3 size, bool isFlying)
{
m_log.ErrorFormat("{0}: CALL TO AddAvatar in BSScene. NOT IMPLEMENTED", LogHeader);
return null;
}
public override PhysicsActor AddAvatar(uint localID, string avName, Vector3 position, Vector3 size, bool isFlying)
{
// m_log.DebugFormat("{0}: AddAvatar: {1}", LogHeader, avName);
if (!m_initialized) return null;
BSCharacter actor = new BSCharacter(localID, avName, this, position, size, isFlying);
lock (PhysObjects) PhysObjects.Add(localID, actor);
// TODO: Remove kludge someday.
// We must generate a collision for avatars whether they collide or not.
// This is required by OpenSim to update avatar animations, etc.
lock (m_avatars) m_avatars.Add(actor);
return actor;
}
public override void RemoveAvatar(PhysicsActor actor)
{
// m_log.DebugFormat("{0}: RemoveAvatar", LogHeader);
if (!m_initialized) return;
BSCharacter bsactor = actor as BSCharacter;
if (bsactor != null)
{
try
{
lock (PhysObjects) PhysObjects.Remove(actor.LocalID);
// Remove kludge someday
lock (m_avatars) m_avatars.Remove(bsactor);
}
catch (Exception e)
{
m_log.WarnFormat("{0}: Attempt to remove avatar that is not in physics scene: {1}", LogHeader, e);
}
bsactor.Destroy();
// bsactor.dispose();
}
}
public override void RemovePrim(PhysicsActor prim)
{
if (!m_initialized) return;
BSPrim bsprim = prim as BSPrim;
if (bsprim != null)
{
DetailLog("{0},RemovePrim,call", bsprim.LocalID);
// m_log.DebugFormat("{0}: RemovePrim. id={1}/{2}", LogHeader, bsprim.Name, bsprim.LocalID);
try
{
lock (PhysObjects) PhysObjects.Remove(bsprim.LocalID);
}
catch (Exception e)
{
m_log.ErrorFormat("{0}: Attempt to remove prim that is not in physics scene: {1}", LogHeader, e);
}
bsprim.Destroy();
// bsprim.dispose();
}
else
{
m_log.ErrorFormat("{0}: Attempt to remove prim that is not a BSPrim type.", LogHeader);
}
}
public override PhysicsActor AddPrimShape(string primName, PrimitiveBaseShape pbs, Vector3 position,
Vector3 size, Quaternion rotation, bool isPhysical, uint localID)
{
// m_log.DebugFormat("{0}: AddPrimShape2: {1}", LogHeader, primName);
if (!m_initialized) return null;
DetailLog("{0},AddPrimShape,call", localID);
BSPrim prim = new BSPrim(localID, primName, this, position, size, rotation, pbs, isPhysical);
lock (PhysObjects) PhysObjects.Add(localID, prim);
return prim;
}
// This is a call from the simulator saying that some physical property has been updated.
// The BulletSim driver senses the changing of relevant properties so this taint
// information call is not needed.
public override void AddPhysicsActorTaint(PhysicsActor prim) { }
#endregion // Prim and Avatar addition and removal
#region Simulation
// Simulate one timestep
public override float Simulate(float timeStep)
{
int updatedEntityCount = 0;
IntPtr updatedEntitiesPtr;
int collidersCount = 0;
IntPtr collidersPtr;
int beforeTime = 0;
int simTime = 0;
// prevent simulation until we've been initialized
if (!m_initialized) return 5.0f;
// update the prim states while we know the physics engine is not busy
int numTaints = _taintedObjects.Count;
ProcessTaints();
// Some of the prims operate with special vehicle properties
ProcessVehicles(timeStep);
numTaints += _taintedObjects.Count;
ProcessTaints(); // the vehicles might have added taints
// step the physical world one interval
m_simulationStep++;
int numSubSteps = 0;
// DEBUG
// DetailLog("{0},BSScene.Simulate,beforeStep,ntaimts={1},step={2}", DetailLogZero, numTaints, m_simulationStep);
try
{
if (PhysicsLogging.Enabled) beforeTime = Util.EnvironmentTickCount();
numSubSteps = BulletSimAPI.PhysicsStep2(World.ptr, timeStep, m_maxSubSteps, m_fixedTimeStep,
out updatedEntityCount, out updatedEntitiesPtr, out collidersCount, out collidersPtr);
if (PhysicsLogging.Enabled) simTime = Util.EnvironmentTickCountSubtract(beforeTime);
DetailLog("{0},Simulate,call, frame={1}, nTaints={2}, simTime={3}, substeps={4}, updates={5}, colliders={6}",
DetailLogZero, m_simulationStep, numTaints, simTime, numSubSteps, updatedEntityCount, collidersCount);
}
catch (Exception e)
{
m_log.WarnFormat("{0},PhysicsStep Exception: nTaints={1}, substeps={2}, updates={3}, colliders={4}, e={5}",
LogHeader, numTaints, numSubSteps, updatedEntityCount, collidersCount, e);
DetailLog("{0},PhysicsStepException,call, nTaints={1}, substeps={2}, updates={3}, colliders={4}",
DetailLogZero, numTaints, numSubSteps, updatedEntityCount, collidersCount);
updatedEntityCount = 0;
collidersCount = 0;
}
// Don't have to use the pointers passed back since we know it is the same pinned memory we passed in
// Get a value for 'now' so all the collision and update routines don't have to get their own
SimulationNowTime = Util.EnvironmentTickCount();
// If there were collisions, process them by sending the event to the prim.
// Collisions must be processed before updates.
if (collidersCount > 0)
{
for (int ii = 0; ii < collidersCount; ii++)
{
uint cA = m_collisionArray[ii].aID;
uint cB = m_collisionArray[ii].bID;
Vector3 point = m_collisionArray[ii].point;
Vector3 normal = m_collisionArray[ii].normal;
SendCollision(cA, cB, point, normal, 0.01f);
SendCollision(cB, cA, point, -normal, 0.01f);
}
}
// The above SendCollision's batch up the collisions on the objects.
// Now push the collisions into the simulator.
if (ObjectsWithCollisions.Count > 0)
{
foreach (BSPhysObject bsp in ObjectsWithCollisions)
if (!bsp.SendCollisions())
{
// If the object is done colliding, see that it's removed from the colliding list
ObjectsWithNoMoreCollisions.Add(bsp);
}
}
// This is a kludge to get avatar movement updates.
// The simulator expects collisions for avatars even if there are have been no collisions.
// The event updates avatar animations and stuff.
// If you fix avatar animation updates, remove this overhead and let normal collision processing happen.
foreach (BSPhysObject bsp in m_avatars)
if (!ObjectsWithCollisions.Contains(bsp)) // don't call avatars twice
bsp.SendCollisions();
// Objects that are done colliding are removed from the ObjectsWithCollisions list.
// Not done above because it is inside an iteration of ObjectWithCollisions.
if (ObjectsWithNoMoreCollisions.Count > 0)
{
foreach (BSPhysObject po in ObjectsWithNoMoreCollisions)
ObjectsWithCollisions.Remove(po);
ObjectsWithNoMoreCollisions.Clear();
}
// If any of the objects had updated properties, tell the object it has been changed by the physics engine
if (updatedEntityCount > 0)
{
for (int ii = 0; ii < updatedEntityCount; ii++)
{
EntityProperties entprop = m_updateArray[ii];
BSPhysObject pobj;
if (PhysObjects.TryGetValue(entprop.ID, out pobj))
{
pobj.UpdateProperties(entprop);
}
}
}
// This causes the unmanaged code to output ALL the values found in ALL the objects in the world.
// Only enable this in a limited test world with few objects.
// BulletSimAPI.DumpAllInfo2(World.ptr); // DEBUG DEBUG DEBUG
// The physics engine returns the number of milliseconds it simulated this call.
// These are summed and normalized to one second and divided by 1000 to give the reported physics FPS.
// We multiply by 55 to give a recognizable running rate (55 or less).
return numSubSteps * m_fixedTimeStep * 1000 * 55;
// return timeStep * 1000 * 55;
}
// Something has collided
private void SendCollision(uint localID, uint collidingWith, Vector3 collidePoint, Vector3 collideNormal, float penetration)
{
if (localID <= TerrainManager.HighestTerrainID)
{
return; // don't send collisions to the terrain
}
BSPhysObject collider;
if (!PhysObjects.TryGetValue(localID, out collider))
{
// If the object that is colliding cannot be found, just ignore the collision.
DetailLog("{0},BSScene.SendCollision,colliderNotInObjectList,id={1},with={2}", DetailLogZero, localID, collidingWith);
return;
}
// The terrain is not in the physical object list so 'collidee' can be null when Collide() is called.
BSPhysObject collidee = null;
PhysObjects.TryGetValue(collidingWith, out collidee);
// DetailLog("{0},BSScene.SendCollision,collide,id={1},with={2}", DetailLogZero, localID, collidingWith);
if (collider.Collide(collidingWith, collidee, collidePoint, collideNormal, penetration))
{
// If a collision was posted, remember to send it to the simulator
ObjectsWithCollisions.Add(collider);
}
return;
}
#endregion // Simulation
public override void GetResults() { }
#region Terrain
public override void SetTerrain(float[] heightMap) {
TerrainManager.SetTerrain(heightMap);
}
public override void SetWaterLevel(float baseheight)
{
m_waterLevel = baseheight;
}
// Someday....
public float GetWaterLevelAtXYZ(Vector3 loc)
{
return m_waterLevel;
}
public override void DeleteTerrain()
{
// m_log.DebugFormat("{0}: DeleteTerrain()", LogHeader);
}
// Although no one seems to check this, I do support combining.
public override bool SupportsCombining()
{
return TerrainManager.SupportsCombining();
}
// This call says I am a child to region zero in a mega-region. 'pScene' is that
// of region zero, 'offset' is my offset from regions zero's origin, and
// 'extents' is the largest XY that is handled in my region.
public override void Combine(PhysicsScene pScene, Vector3 offset, Vector3 extents)
{
TerrainManager.Combine(pScene, offset, extents);
}
// Unhook all the combining that I know about.
public override void UnCombine(PhysicsScene pScene)
{
TerrainManager.UnCombine(pScene);
}
#endregion // Terrain
public override Dictionary<uint, float> GetTopColliders()
{
return new Dictionary<uint, float>();
}
public override bool IsThreaded { get { return false; } }
// Calls to the PhysicsActors can't directly call into the physics engine
// because it might be busy. We delay changes to a known time.
// We rely on C#'s closure to save and restore the context for the delegate.
public void TaintedObject(String ident, TaintCallback callback)
{
if (!m_initialized) return;
lock (_taintLock)
{
_taintedObjects.Add(new TaintCallbackEntry(ident, callback));
}
return;
}
// When someone tries to change a property on a BSPrim or BSCharacter, the object queues
// a callback into itself to do the actual property change. That callback is called
// here just before the physics engine is called to step the simulation.
public void ProcessTaints()
{
if (_taintedObjects.Count > 0) // save allocating new list if there is nothing to process
{
int taintCount = m_taintsToProcessPerStep;
TaintCallbackEntry oneCallback = new TaintCallbackEntry();
while (_taintedObjects.Count > 0 && taintCount-- > 0)
{
bool gotOne = false;
lock (_taintLock)
{
if (_taintedObjects.Count > 0)
{
oneCallback = _taintedObjects[0];
_taintedObjects.RemoveAt(0);
gotOne = true;
}
}
if (gotOne)
{
try
{
DetailLog("{0},BSScene.ProcessTaints,doTaint,id={1}", DetailLogZero, oneCallback.ident);
oneCallback.callback();
}
catch (Exception e)
{
DetailLog("{0},BSScene.ProcessTaints,doTaintException,id={1}", DetailLogZero, oneCallback.ident); // DEBUG DEBUG DEBUG
m_log.ErrorFormat("{0}: ProcessTaints: {1}: Exception: {2}", LogHeader, oneCallback.ident, e);
}
}
}
/*
// swizzle a new list into the list location so we can process what's there
List<TaintCallbackEntry> oldList;
lock (_taintLock)
{
oldList = _taintedObjects;
_taintedObjects = new List<TaintCallbackEntry>();
}
foreach (TaintCallbackEntry tcbe in oldList)
{
try
{
DetailLog("{0},BSScene.ProcessTaints,doTaint,id={1}", DetailLogZero, tcbe.ident); // DEBUG DEBUG DEBUG
tcbe.callback();
}
catch (Exception e)
{
m_log.ErrorFormat("{0}: ProcessTaints: {1}: Exception: {2}", LogHeader, tcbe.ident, e);
}
}
oldList.Clear();
*/
}
}
#region Vehicles
public void VehicleInSceneTypeChanged(BSPrim vehic, Vehicle newType)
{
RemoveVehiclePrim(vehic);
if (newType != Vehicle.TYPE_NONE)
{
// make it so the scene will call us each tick to do vehicle things
AddVehiclePrim(vehic);
}
}
// Make so the scene will call this prim for vehicle actions each tick.
// Safe to call if prim is already in the vehicle list.
public void AddVehiclePrim(BSPrim vehicle)
{
lock (m_vehicles)
{
if (!m_vehicles.Contains(vehicle))
{
m_vehicles.Add(vehicle);
}
}
}
// Remove a prim from our list of vehicles.
// Safe to call if the prim is not in the vehicle list.
public void RemoveVehiclePrim(BSPrim vehicle)
{
lock (m_vehicles)
{
if (m_vehicles.Contains(vehicle))
{
m_vehicles.Remove(vehicle);
}
}
}
// Some prims have extra vehicle actions
// Called at taint time!
private void ProcessVehicles(float timeStep)
{
foreach (BSPhysObject pobj in m_vehicles)
{
pobj.StepVehicle(timeStep);
}
}
#endregion Vehicles
#region INI and command line parameter processing
delegate void ParamUser(BSScene scene, IConfig conf, string paramName, float val);
delegate float ParamGet(BSScene scene);
delegate void ParamSet(BSScene scene, string paramName, uint localID, float val);
delegate void SetOnObject(BSScene scene, BSPhysObject obj, float val);
private struct ParameterDefn
{
public string name; // string name of the parameter
public string desc; // a short description of what the parameter means
public float defaultValue; // default value if not specified anywhere else
public ParamUser userParam; // get the value from the configuration file
public ParamGet getter; // return the current value stored for this parameter
public ParamSet setter; // set the current value for this parameter
public SetOnObject onObject; // set the value on an object in the physical domain
public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s)
{
name = n;
desc = d;
defaultValue = v;
userParam = u;
getter = g;
setter = s;
onObject = null;
}
public ParameterDefn(string n, string d, float v, ParamUser u, ParamGet g, ParamSet s, SetOnObject o)
{
name = n;
desc = d;
defaultValue = v;
userParam = u;
getter = g;
setter = s;
onObject = o;
}
}
// List of all of the externally visible parameters.
// For each parameter, this table maps a text name to getter and setters.
// To add a new externally referencable/settable parameter, add the paramter storage
// location somewhere in the program and make an entry in this table with the
// getters and setters.
// It is easiest to find an existing definition and copy it.
// Parameter values are floats. Booleans are converted to a floating value.
//
// A ParameterDefn() takes the following parameters:
// -- the text name of the parameter. This is used for console input and ini file.
// -- a short text description of the parameter. This shows up in the console listing.
// -- a delegate for fetching the parameter from the ini file.
// Should handle fetching the right type from the ini file and converting it.
// -- a delegate for getting the value as a float
// -- a delegate for setting the value from a float
//
// The single letter parameters for the delegates are:
// s = BSScene
// o = BSPhysObject
// p = string parameter name
// l = localID of referenced object
// v = float value
// cf = parameter configuration class (for fetching values from ini file)
private ParameterDefn[] ParameterDefinitions =
{
new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.ShouldMeshSculptedPrim = cf.GetBoolean(p, s.BoolNumeric(v)); },
(s) => { return s.NumericBool(s.ShouldMeshSculptedPrim); },
(s,p,l,v) => { s.ShouldMeshSculptedPrim = s.BoolNumeric(v); } ),
new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.ShouldForceSimplePrimMeshing = cf.GetBoolean(p, s.BoolNumeric(v)); },
(s) => { return s.NumericBool(s.ShouldForceSimplePrimMeshing); },
(s,p,l,v) => { s.ShouldForceSimplePrimMeshing = s.BoolNumeric(v); } ),
new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.ShouldUseHullsForPhysicalObjects = cf.GetBoolean(p, s.BoolNumeric(v)); },
(s) => { return s.NumericBool(s.ShouldUseHullsForPhysicalObjects); },
(s,p,l,v) => { s.ShouldUseHullsForPhysicalObjects = s.BoolNumeric(v); } ),
new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)",
8f,
(s,cf,p,v) => { s.MeshLOD = (float)cf.GetInt(p, (int)v); },
(s) => { return s.MeshLOD; },
(s,p,l,v) => { s.MeshLOD = v; } ),
new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters",
16f,
(s,cf,p,v) => { s.MeshMegaPrimLOD = (float)cf.GetInt(p, (int)v); },
(s) => { return s.MeshMegaPrimLOD; },
(s,p,l,v) => { s.MeshMegaPrimLOD = v; } ),
new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD",
10f,
(s,cf,p,v) => { s.MeshMegaPrimThreshold = (float)cf.GetInt(p, (int)v); },
(s) => { return s.MeshMegaPrimThreshold; },
(s,p,l,v) => { s.MeshMegaPrimThreshold = v; } ),
new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)",
32f,
(s,cf,p,v) => { s.SculptLOD = (float)cf.GetInt(p, (int)v); },
(s) => { return s.SculptLOD; },
(s,p,l,v) => { s.SculptLOD = v; } ),
new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps",
10f,
(s,cf,p,v) => { s.m_maxSubSteps = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_maxSubSteps; },
(s,p,l,v) => { s.m_maxSubSteps = (int)v; } ),
new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)",
1f / 60f,
(s,cf,p,v) => { s.m_fixedTimeStep = cf.GetFloat(p, v); },
(s) => { return (float)s.m_fixedTimeStep; },
(s,p,l,v) => { s.m_fixedTimeStep = v; } ),
new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame",
2048f,
(s,cf,p,v) => { s.m_maxCollisionsPerFrame = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_maxCollisionsPerFrame; },
(s,p,l,v) => { s.m_maxCollisionsPerFrame = (int)v; } ),
new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame",
8000f,
(s,cf,p,v) => { s.m_maxUpdatesPerFrame = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_maxUpdatesPerFrame; },
(s,p,l,v) => { s.m_maxUpdatesPerFrame = (int)v; } ),
new ParameterDefn("MaxTaintsToProcessPerStep", "Number of update taints to process before each simulation step",
100f,
(s,cf,p,v) => { s.m_taintsToProcessPerStep = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_taintsToProcessPerStep; },
(s,p,l,v) => { s.m_taintsToProcessPerStep = (int)v; } ),
new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)",
10000.01f,
(s,cf,p,v) => { s.MaximumObjectMass = cf.GetFloat(p, v); },
(s) => { return (float)s.MaximumObjectMass; },
(s,p,l,v) => { s.MaximumObjectMass = v; } ),
new ParameterDefn("PID_D", "Derivitive factor for motion smoothing",
2200f,
(s,cf,p,v) => { s.PID_D = cf.GetFloat(p, v); },
(s) => { return (float)s.PID_D; },
(s,p,l,v) => { s.PID_D = v; } ),
new ParameterDefn("PID_P", "Parameteric factor for motion smoothing",
900f,
(s,cf,p,v) => { s.PID_P = cf.GetFloat(p, v); },
(s) => { return (float)s.PID_P; },
(s,p,l,v) => { s.PID_P = v; } ),
new ParameterDefn("DefaultFriction", "Friction factor used on new objects",
0.5f,
(s,cf,p,v) => { s.m_params[0].defaultFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].defaultFriction; },
(s,p,l,v) => { s.m_params[0].defaultFriction = v; } ),
new ParameterDefn("DefaultDensity", "Density for new objects" ,
10.000006836f, // Aluminum g/cm3
(s,cf,p,v) => { s.m_params[0].defaultDensity = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].defaultDensity; },
(s,p,l,v) => { s.m_params[0].defaultDensity = v; } ),
new ParameterDefn("DefaultRestitution", "Bouncyness of an object" ,
0f,
(s,cf,p,v) => { s.m_params[0].defaultRestitution = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].defaultRestitution; },
(s,p,l,v) => { s.m_params[0].defaultRestitution = v; } ),
new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)",
0f,
(s,cf,p,v) => { s.m_params[0].collisionMargin = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].collisionMargin; },
(s,p,l,v) => { s.m_params[0].collisionMargin = v; } ),
new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)",
-9.80665f,
(s,cf,p,v) => { s.m_params[0].gravity = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].gravity; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].gravity, p, PhysParameterEntry.APPLY_TO_NONE, v); },
(s,o,v) => { BulletSimAPI.SetGravity2(s.World.ptr, new Vector3(0f,0f,v)); } ),
new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)",
0f,
(s,cf,p,v) => { s.m_params[0].linearDamping = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linearDamping; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].linearDamping, p, l, v); },
(s,o,v) => { BulletSimAPI.SetDamping2(o.BSBody.ptr, v, v); } ),
new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)",
0f,
(s,cf,p,v) => { s.m_params[0].angularDamping = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].angularDamping; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].angularDamping, p, l, v); },
(s,o,v) => { BulletSimAPI.SetDamping2(o.BSBody.ptr, v, v); } ),
new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static",
0.2f,
(s,cf,p,v) => { s.m_params[0].deactivationTime = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].deactivationTime; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].deactivationTime, p, l, v); },
(s,o,v) => { BulletSimAPI.SetDeactivationTime2(o.BSBody.ptr, v); } ),
new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static",
0.8f,
(s,cf,p,v) => { s.m_params[0].linearSleepingThreshold = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linearSleepingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].linearSleepingThreshold, p, l, v); },
(s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.BSBody.ptr, v, v); } ),
new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static",
1.0f,
(s,cf,p,v) => { s.m_params[0].angularSleepingThreshold = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].angularSleepingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].angularSleepingThreshold, p, l, v); },
(s,o,v) => { BulletSimAPI.SetSleepingThresholds2(o.BSBody.ptr, v, v); } ),
new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" ,
0f, // set to zero to disable
(s,cf,p,v) => { s.m_params[0].ccdMotionThreshold = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].ccdMotionThreshold; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].ccdMotionThreshold, p, l, v); },
(s,o,v) => { BulletSimAPI.SetCcdMotionThreshold2(o.BSBody.ptr, v); } ),
new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" ,
0f,
(s,cf,p,v) => { s.m_params[0].ccdSweptSphereRadius = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].ccdSweptSphereRadius; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].ccdSweptSphereRadius, p, l, v); },
(s,o,v) => { BulletSimAPI.SetCcdSweepSphereRadius2(o.BSBody.ptr, v); } ),
new ParameterDefn("ContactProcessingThreshold", "Distance between contacts before doing collision check" ,
0.1f,
(s,cf,p,v) => { s.m_params[0].contactProcessingThreshold = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].contactProcessingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].contactProcessingThreshold, p, l, v); },
(s,o,v) => { BulletSimAPI.SetContactProcessingThreshold2(o.BSBody.ptr, v); } ),
new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" ,
0.5f,
(s,cf,p,v) => { s.m_params[0].terrainFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].terrainFriction; },
(s,p,l,v) => { s.m_params[0].terrainFriction = v; /* TODO: set on real terrain */} ),
new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" ,
0.8f,
(s,cf,p,v) => { s.m_params[0].terrainHitFraction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].terrainHitFraction; },
(s,p,l,v) => { s.m_params[0].terrainHitFraction = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("TerrainRestitution", "Bouncyness" ,
0f,
(s,cf,p,v) => { s.m_params[0].terrainRestitution = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].terrainRestitution; },
(s,p,l,v) => { s.m_params[0].terrainRestitution = v; /* TODO: set on real terrain */ } ),
new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.",
0.2f,
(s,cf,p,v) => { s.m_params[0].avatarFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarFriction; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarFriction, p, l, v); } ),
new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.",
10f,
(s,cf,p,v) => { s.m_params[0].avatarStandingFriction = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarStandingFriction; },
(s,p,l,v) => { s.m_params[0].avatarStandingFriction = v; } ),
new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.",
60f,
(s,cf,p,v) => { s.m_params[0].avatarDensity = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarDensity; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarDensity, p, l, v); } ),
new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.",
0f,
(s,cf,p,v) => { s.m_params[0].avatarRestitution = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarRestitution; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarRestitution, p, l, v); } ),
new ParameterDefn("AvatarCapsuleRadius", "Radius of space around an avatar",
0.37f,
(s,cf,p,v) => { s.m_params[0].avatarCapsuleRadius = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarCapsuleRadius; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarCapsuleRadius, p, l, v); } ),
new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar",
1.5f,
(s,cf,p,v) => { s.m_params[0].avatarCapsuleHeight = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarCapsuleHeight; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarCapsuleHeight, p, l, v); } ),
new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions",
0.1f,
(s,cf,p,v) => { s.m_params[0].avatarContactProcessingThreshold = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].avatarContactProcessingThreshold; },
(s,p,l,v) => { s.UpdateParameterObject(ref s.m_params[0].avatarContactProcessingThreshold, p, l, v); } ),
new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)",
0f,
(s,cf,p,v) => { s.m_params[0].maxPersistantManifoldPoolSize = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].maxPersistantManifoldPoolSize; },
(s,p,l,v) => { s.m_params[0].maxPersistantManifoldPoolSize = v; } ),
new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)",
0f,
(s,cf,p,v) => { s.m_params[0].maxCollisionAlgorithmPoolSize = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].maxCollisionAlgorithmPoolSize; },
(s,p,l,v) => { s.m_params[0].maxCollisionAlgorithmPoolSize = v; } ),
new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.m_params[0].shouldDisableContactPoolDynamicAllocation = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].shouldDisableContactPoolDynamicAllocation; },
(s,p,l,v) => { s.m_params[0].shouldDisableContactPoolDynamicAllocation = v; } ),
new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.m_params[0].shouldForceUpdateAllAabbs = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].shouldForceUpdateAllAabbs; },
(s,p,l,v) => { s.m_params[0].shouldForceUpdateAllAabbs = v; } ),
new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.m_params[0].shouldRandomizeSolverOrder = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].shouldRandomizeSolverOrder; },
(s,p,l,v) => { s.m_params[0].shouldRandomizeSolverOrder = v; } ),
new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.m_params[0].shouldSplitSimulationIslands = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].shouldSplitSimulationIslands; },
(s,p,l,v) => { s.m_params[0].shouldSplitSimulationIslands = v; } ),
new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.m_params[0].shouldEnableFrictionCaching = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].shouldEnableFrictionCaching; },
(s,p,l,v) => { s.m_params[0].shouldEnableFrictionCaching = v; } ),
new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)",
0f, // zero says use Bullet default
(s,cf,p,v) => { s.m_params[0].numberOfSolverIterations = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].numberOfSolverIterations; },
(s,p,l,v) => { s.m_params[0].numberOfSolverIterations = v; } ),
new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.",
ConfigurationParameters.numericFalse,
(s,cf,p,v) => { s.m_params[0].linkConstraintUseFrameOffset = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].linkConstraintUseFrameOffset; },
(s,p,l,v) => { s.m_params[0].linkConstraintUseFrameOffset = v; } ),
new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints",
ConfigurationParameters.numericTrue,
(s,cf,p,v) => { s.m_params[0].linkConstraintEnableTransMotor = s.NumericBool(cf.GetBoolean(p, s.BoolNumeric(v))); },
(s) => { return s.m_params[0].linkConstraintEnableTransMotor; },
(s,p,l,v) => { s.m_params[0].linkConstraintEnableTransMotor = v; } ),
new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints",
5.0f,
(s,cf,p,v) => { s.m_params[0].linkConstraintTransMotorMaxVel = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linkConstraintTransMotorMaxVel; },
(s,p,l,v) => { s.m_params[0].linkConstraintTransMotorMaxVel = v; } ),
new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints",
0.1f,
(s,cf,p,v) => { s.m_params[0].linkConstraintTransMotorMaxForce = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linkConstraintTransMotorMaxForce; },
(s,p,l,v) => { s.m_params[0].linkConstraintTransMotorMaxForce = v; } ),
new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1",
0.001f,
(s,cf,p,v) => { s.m_params[0].linkConstraintCFM = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linkConstraintCFM; },
(s,p,l,v) => { s.m_params[0].linkConstraintCFM = v; } ),
new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2",
0.8f,
(s,cf,p,v) => { s.m_params[0].linkConstraintERP = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linkConstraintERP; },
(s,p,l,v) => { s.m_params[0].linkConstraintERP = v; } ),
new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)",
40,
(s,cf,p,v) => { s.m_params[0].linkConstraintSolverIterations = cf.GetFloat(p, v); },
(s) => { return s.m_params[0].linkConstraintSolverIterations; },
(s,p,l,v) => { s.m_params[0].linkConstraintSolverIterations = v; } ),
new ParameterDefn("LogPhysicsStatisticsFrames", "Frames between outputting detailed phys stats. (0 is off)",
0f,
(s,cf,p,v) => { s.m_params[0].physicsLoggingFrames = cf.GetInt(p, (int)v); },
(s) => { return (float)s.m_params[0].physicsLoggingFrames; },
(s,p,l,v) => { s.m_params[0].physicsLoggingFrames = (int)v; } ),
};
// Convert a boolean to our numeric true and false values
public float NumericBool(bool b)
{
return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse);
}
// Convert numeric true and false values to a boolean
public bool BoolNumeric(float b)
{
return (b == ConfigurationParameters.numericTrue ? true : false);
}
// Search through the parameter definitions and return the matching
// ParameterDefn structure.
// Case does not matter as names are compared after converting to lower case.
// Returns 'false' if the parameter is not found.
private bool TryGetParameter(string paramName, out ParameterDefn defn)
{
bool ret = false;
ParameterDefn foundDefn = new ParameterDefn();
string pName = paramName.ToLower();
foreach (ParameterDefn parm in ParameterDefinitions)
{
if (pName == parm.name.ToLower())
{
foundDefn = parm;
ret = true;
break;
}
}
defn = foundDefn;
return ret;
}
// Pass through the settable parameters and set the default values
private void SetParameterDefaultValues()
{
foreach (ParameterDefn parm in ParameterDefinitions)
{
parm.setter(this, parm.name, PhysParameterEntry.APPLY_TO_NONE, parm.defaultValue);
}
}
// Get user set values out of the ini file.
private void SetParameterConfigurationValues(IConfig cfg)
{
foreach (ParameterDefn parm in ParameterDefinitions)
{
parm.userParam(this, cfg, parm.name, parm.defaultValue);
}
}
private PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1];
// This creates an array in the correct format for returning the list of
// parameters. This is used by the 'list' option of the 'physics' command.
private void BuildParameterTable()
{
if (SettableParameters.Length < ParameterDefinitions.Length)
{
List<PhysParameterEntry> entries = new List<PhysParameterEntry>();
for (int ii = 0; ii < ParameterDefinitions.Length; ii++)
{
ParameterDefn pd = ParameterDefinitions[ii];
entries.Add(new PhysParameterEntry(pd.name, pd.desc));
}
// make the list in alphabetical order for estetic reasons
entries.Sort(delegate(PhysParameterEntry ppe1, PhysParameterEntry ppe2)
{
return ppe1.name.CompareTo(ppe2.name);
});
SettableParameters = entries.ToArray();
}
}
#region IPhysicsParameters
// Get the list of parameters this physics engine supports
public PhysParameterEntry[] GetParameterList()
{
BuildParameterTable();
return SettableParameters;
}
// Set parameter on a specific or all instances.
// Return 'false' if not able to set the parameter.
// Setting the value in the m_params block will change the value the physics engine
// will use the next time since it's pinned and shared memory.
// Some of the values require calling into the physics engine to get the new
// value activated ('terrainFriction' for instance).
public bool SetPhysicsParameter(string parm, float val, uint localID)
{
bool ret = false;
ParameterDefn theParam;
if (TryGetParameter(parm, out theParam))
{
theParam.setter(this, parm, localID, val);
ret = true;
}
return ret;
}
// update all the localIDs specified
// If the local ID is APPLY_TO_NONE, just change the default value
// If the localID is APPLY_TO_ALL change the default value and apply the new value to all the lIDs
// If the localID is a specific object, apply the parameter change to only that object
protected void UpdateParameterObject(ref float defaultLoc, string parm, uint localID, float val)
{
List<uint> objectIDs = new List<uint>();
switch (localID)
{
case PhysParameterEntry.APPLY_TO_NONE:
defaultLoc = val; // setting only the default value
// This will cause a call into the physical world if some operation is specified (SetOnObject).
objectIDs.Add(TERRAIN_ID);
TaintedUpdateParameter(parm, objectIDs, val);
break;
case PhysParameterEntry.APPLY_TO_ALL:
defaultLoc = val; // setting ALL also sets the default value
lock (PhysObjects) objectIDs = new List<uint>(PhysObjects.Keys);
TaintedUpdateParameter(parm, objectIDs, val);
break;
default:
// setting only one localID
objectIDs.Add(localID);
TaintedUpdateParameter(parm, objectIDs, val);
break;
}
}
// schedule the actual updating of the paramter to when the phys engine is not busy
protected void TaintedUpdateParameter(string parm, List<uint> lIDs, float val)
{
float xval = val;
List<uint> xlIDs = lIDs;
string xparm = parm;
TaintedObject("BSScene.UpdateParameterSet", delegate() {
ParameterDefn thisParam;
if (TryGetParameter(xparm, out thisParam))
{
if (thisParam.onObject != null)
{
foreach (uint lID in xlIDs)
{
BSPhysObject theObject = null;
PhysObjects.TryGetValue(lID, out theObject);
thisParam.onObject(this, theObject, xval);
}
}
}
});
}
// Get parameter.
// Return 'false' if not able to get the parameter.
public bool GetPhysicsParameter(string parm, out float value)
{
float val = 0f;
bool ret = false;
ParameterDefn theParam;
if (TryGetParameter(parm, out theParam))
{
val = theParam.getter(this);
ret = true;
}
value = val;
return ret;
}
#endregion IPhysicsParameters
#endregion Runtime settable parameters
// Invoke the detailed logger and output something if it's enabled.
public void DetailLog(string msg, params Object[] args)
{
PhysicsLogging.Write(msg, args);
// Add the Flush() if debugging crashes to get all the messages written out.
// PhysicsLogging.Flush();
}
// Used to fill in the LocalID when there isn't one. It's the correct number of characters.
public const string DetailLogZero = "0000000000";
}
}