OpenSimMirror/OpenSim/Region/Physics/UbitOdePlugin/ODEPrim.cs

4069 lines
141 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Revision 2011/12 by Ubit Umarov
*
*
*/
/*
* Revised August 26 2009 by Kitto Flora. ODEDynamics.cs replaces
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
* ODEPrim.cs contains methods dealing with Prim editing, Prim
* characteristics and Kinetic motion.
* ODEDynamics.cs contains methods dealing with Prim Physical motion
* (dynamics) and the associated settings. Old Linear and angular
* motors for dynamic motion have been replace with MoveLinear()
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
* switch between 'VEHICLE' parameter use and general dynamics
* settings use.
*/
//#define SPAM
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Threading;
using log4net;
using OpenMetaverse;
using OdeAPI;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class OdePrim : PhysicsActor
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private bool m_isphysical;
private bool m_fakeisphysical;
private bool m_isphantom;
private bool m_fakeisphantom;
internal bool m_isVolumeDetect; // If true, this prim only detects collisions but doesn't collide actively
private bool m_fakeisVolumeDetect; // If true, this prim only detects collisions but doesn't collide actively
protected bool m_building;
protected bool m_forcePosOrRotation;
private bool m_iscolliding;
internal bool m_isSelected;
private bool m_delaySelect;
private bool m_lastdoneSelected;
internal bool m_outbounds;
private Quaternion m_lastorientation = new Quaternion();
private Quaternion _orientation;
private Vector3 _position;
private Vector3 _velocity;
private Vector3 _torque;
private Vector3 m_lastVelocity;
private Vector3 m_lastposition;
private Vector3 m_rotationalVelocity;
private Vector3 _size;
private Vector3 _acceleration;
private Vector3 m_angularlock = Vector3.One;
private IntPtr Amotor = IntPtr.Zero;
private Vector3 m_force;
private Vector3 m_forceacc;
private Vector3 m_angularForceacc;
private float m_invTimeStep = 50.0f;
private float m_timeStep = .02f;
private Vector3 m_PIDTarget;
private float m_PIDTau;
private bool m_usePID;
// KF: These next 7 params apply to llSetHoverHeight(float height, integer water, float tau),
// and are for non-VEHICLES only.
private float m_PIDHoverHeight;
private float m_PIDHoverTau;
private bool m_useHoverPID;
private PIDHoverType m_PIDHoverType = PIDHoverType.Ground;
private float m_targetHoverHeight;
private float m_groundHeight;
private float m_waterHeight;
private float m_buoyancy; //KF: m_buoyancy should be set by llSetBuoyancy() for non-vehicle.
private int body_autodisable_frames = 5;
private int bodydisablecontrol = 0;
// Default we're a Geometry
private CollisionCategories m_collisionCategories = (CollisionCategories.Geom);
// Default colide nonphysical don't try to colide with anything
private const CollisionCategories m_default_collisionFlagsNotPhysical = 0;
private const CollisionCategories m_default_collisionFlagsPhysical = (CollisionCategories.Geom |
CollisionCategories.Character |
CollisionCategories.Land |
CollisionCategories.VolumeDtc);
// private bool m_collidesLand = true;
private bool m_collidesWater;
public bool m_returnCollisions;
private bool m_NoColide; // for now only for internal use for bad meshs
// Default, Collide with Other Geometries, spaces and Bodies
private CollisionCategories m_collisionFlags = m_default_collisionFlagsNotPhysical;
public bool m_disabled;
public uint m_localID;
private IMesh m_mesh;
private object m_meshlock = new object();
private PrimitiveBaseShape _pbs;
public OdeScene _parent_scene;
/// <summary>
/// The physics space which contains prim geometry
/// </summary>
public IntPtr m_targetSpace = IntPtr.Zero;
public IntPtr prim_geom;
public IntPtr _triMeshData;
private PhysicsActor _parent;
private List<OdePrim> childrenPrim = new List<OdePrim>();
private bool m_throttleUpdates;
private int throttleCounter;
public float m_collisionscore;
int m_colliderfilter = 0;
public IntPtr collide_geom; // for objects: geom if single prim space it linkset
private float m_density = 10.000006836f; // Aluminum g/cm3;
private byte m_shapetype;
public bool _zeroFlag;
private bool m_lastUpdateSent;
public IntPtr Body = IntPtr.Zero;
public String Name { get; private set; }
private Vector3 _target_velocity;
public Vector3 primOOBsize; // prim real dimensions from mesh
public Vector3 primOOBoffset; // its centroid out of mesh or rest aabb
public float primOOBradiusSQ;
public d.Mass primdMass; // prim inertia information on it's own referencial
float primMass; // prim own mass
float primVolume; // prim own volume;
float _mass; // object mass acording to case
private bool hasOOBoffsetFromMesh = false; // if true we did compute it form mesh centroid, else from aabb
public int givefakepos = 0;
private Vector3 fakepos;
public int givefakeori = 0;
private Quaternion fakeori;
private int m_eventsubscription;
private int m_cureventsubscription;
private CollisionEventUpdate CollisionEventsThisFrame = null;
private bool SentEmptyCollisionsEvent;
public volatile bool childPrim;
public ODEDynamics m_vehicle;
internal int m_material = (int)Material.Wood;
private float mu;
private float bounce;
/// <summary>
/// Is this prim subject to physics? Even if not, it's still solid for collision purposes.
/// </summary>
public override bool IsPhysical // this is not reliable for internal use
{
get { return m_fakeisphysical; }
set
{
m_fakeisphysical = value; // we show imediatly to outside that we changed physical
// and also to stop imediatly some updates
// but real change will only happen in taintprocessing
if (!value) // Zero the remembered last velocity
m_lastVelocity = Vector3.Zero;
AddChange(changes.Physical, value);
}
}
public override bool IsVolumeDtc
{
get { return m_fakeisVolumeDetect; }
set
{
m_fakeisVolumeDetect = value;
AddChange(changes.VolumeDtc, value);
}
}
public override bool Phantom // this is not reliable for internal use
{
get { return m_fakeisphantom; }
set
{
m_fakeisphantom = value;
AddChange(changes.Phantom, value);
}
}
public override bool Building // this is not reliable for internal use
{
get { return m_building; }
set
{
if (value)
m_building = true;
AddChange(changes.building, value);
}
}
public override void getContactData(ref ContactData cdata)
{
cdata.mu = mu;
cdata.bounce = bounce;
// cdata.softcolide = m_softcolide;
cdata.softcolide = false;
if (m_isphysical)
{
ODEDynamics veh;
if (_parent != null)
veh = ((OdePrim)_parent).m_vehicle;
else
veh = m_vehicle;
if (veh != null && veh.Type != Vehicle.TYPE_NONE)
cdata.mu *= veh.FrictionFactor;
}
}
public override int PhysicsActorType
{
get { return (int)ActorTypes.Prim; }
set { return; }
}
public override bool SetAlwaysRun
{
get { return false; }
set { return; }
}
public override uint LocalID
{
get
{
return m_localID;
}
set
{
//m_log.Info("[PHYSICS]: Setting TrackerID: " + value);
m_localID = value;
}
}
public override bool Grabbed
{
set { return; }
}
public override bool Selected
{
set
{
if (value)
m_isSelected = value; // if true set imediatly to stop moves etc
AddChange(changes.Selected, value);
}
}
public override bool Flying
{
// no flying prims for you
get { return false; }
set { }
}
public override bool IsColliding
{
get { return m_iscolliding; }
set
{
if (value)
{
m_colliderfilter += 2;
if (m_colliderfilter > 2)
m_colliderfilter = 2;
}
else
{
m_colliderfilter--;
if (m_colliderfilter < 0)
m_colliderfilter = 0;
}
if (m_colliderfilter == 0)
m_iscolliding = false;
else
m_iscolliding = true;
}
}
public override bool CollidingGround
{
get { return false; }
set { return; }
}
public override bool CollidingObj
{
get { return false; }
set { return; }
}
public override bool ThrottleUpdates
{
get { return m_throttleUpdates; }
set { m_throttleUpdates = value; }
}
public override bool Stopped
{
get { return _zeroFlag; }
}
public override Vector3 Position
{
get
{
if (givefakepos > 0)
return fakepos;
else
return _position;
}
set
{
fakepos = value;
givefakepos++;
AddChange(changes.Position, value);
}
}
public override Vector3 Size
{
get { return _size; }
set
{
if (value.IsFinite())
{
AddChange(changes.Size, value);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN Size on object {0}", Name);
}
}
}
public override float Mass
{
get { return primMass; }
}
public override Vector3 Force
{
//get { return Vector3.Zero; }
get { return m_force; }
set
{
if (value.IsFinite())
{
AddChange(changes.Force, value);
}
else
{
m_log.WarnFormat("[PHYSICS]: NaN in Force Applied to an Object {0}", Name);
}
}
}
public override void SetVolumeDetect(int param)
{
m_fakeisVolumeDetect = (param != 0);
AddChange(changes.VolumeDtc, m_fakeisVolumeDetect);
}
public override Vector3 GeometricCenter
{
// this is not real geometric center but a average of positions relative to root prim acording to
// http://wiki.secondlife.com/wiki/llGetGeometricCenter
// ignoring tortured prims details since sl also seems to ignore
// so no real use in doing it on physics
get
{
return Vector3.Zero;
}
}
public override Vector3 CenterOfMass
{
get
{
lock (_parent_scene.OdeLock)
{
d.Vector3 dtmp;
if (!childPrim && Body != IntPtr.Zero)
{
dtmp = d.BodyGetPosition(Body);
return new Vector3(dtmp.X, dtmp.Y, dtmp.Z);
}
else if (prim_geom != IntPtr.Zero)
{
d.Quaternion dq;
d.GeomCopyQuaternion(prim_geom, out dq);
Quaternion q;
q.X = dq.X;
q.Y = dq.Y;
q.Z = dq.Z;
q.W = dq.W;
Vector3 Ptot = primOOBoffset * q;
dtmp = d.GeomGetPosition(prim_geom);
Ptot.X += dtmp.X;
Ptot.Y += dtmp.Y;
Ptot.Z += dtmp.Z;
// if(childPrim) we only know about physical linksets
return Ptot;
/*
float tmass = _mass;
Ptot *= tmass;
float m;
foreach (OdePrim prm in childrenPrim)
{
m = prm._mass;
Ptot += prm.CenterOfMass * m;
tmass += m;
}
if (tmass == 0)
tmass = 0;
else
tmass = 1.0f / tmass;
Ptot *= tmass;
return Ptot;
*/
}
else
return _position;
}
}
}
/*
public override Vector3 PrimOOBsize
{
get
{
return primOOBsize;
}
}
public override Vector3 PrimOOBoffset
{
get
{
return primOOBoffset;
}
}
public override float PrimOOBRadiusSQ
{
get
{
return primOOBradiusSQ;
}
}
*/
public override PrimitiveBaseShape Shape
{
set
{
/*
IMesh mesh = null;
if (_parent_scene.needsMeshing(value))
{
bool convex;
if (m_shapetype == 0)
convex = false;
else
convex = true;
mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true, convex);
}
if (mesh != null)
{
lock (m_meshlock)
m_mesh = mesh;
}
*/
AddChange(changes.Shape, value);
}
}
public override byte PhysicsShapeType
{
get
{
return m_shapetype;
}
set
{
m_shapetype = value;
AddChange(changes.Shape, null);
}
}
public override Vector3 Velocity
{
get
{
if (_zeroFlag)
return Vector3.Zero;
return _velocity;
}
set
{
if (value.IsFinite())
{
AddChange(changes.Velocity, value);
// _velocity = value;
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN Velocity in Object {0}", Name);
}
}
}
public override Vector3 Torque
{
get
{
if (!IsPhysical || Body == IntPtr.Zero)
return Vector3.Zero;
return _torque;
}
set
{
if (value.IsFinite())
{
AddChange(changes.Torque, value);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN Torque in Object {0}", Name);
}
}
}
public override float CollisionScore
{
get { return m_collisionscore; }
set { m_collisionscore = value; }
}
public override bool Kinematic
{
get { return false; }
set { }
}
public override Quaternion Orientation
{
get
{
if (givefakeori > 0)
return fakeori;
else
return _orientation;
}
set
{
if (QuaternionIsFinite(value))
{
fakeori = value;
givefakeori++;
AddChange(changes.Orientation, value);
}
else
m_log.WarnFormat("[PHYSICS]: Got NaN quaternion Orientation from Scene in Object {0}", Name);
}
}
public override Vector3 Acceleration
{
get { return _acceleration; }
set { }
}
public override Vector3 RotationalVelocity
{
get
{
Vector3 pv = Vector3.Zero;
if (_zeroFlag)
return pv;
if (m_rotationalVelocity.ApproxEquals(pv, 0.0001f))
return pv;
return m_rotationalVelocity;
}
set
{
if (value.IsFinite())
{
m_rotationalVelocity = value;
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN RotationalVelocity in Object {0}", Name);
}
}
}
public override float Buoyancy
{
get { return m_buoyancy; }
set
{
m_buoyancy = value;
}
}
public override bool FloatOnWater
{
set
{
AddChange(changes.CollidesWater, value);
}
}
public override Vector3 PIDTarget
{
set
{
if (value.IsFinite())
{
m_PIDTarget = value;
}
else
m_log.WarnFormat("[PHYSICS]: Got NaN PIDTarget from Scene on Object {0}", Name);
}
}
public override bool PIDActive { set { m_usePID = value; } }
public override float PIDTau
{
set
{
if (value <= 0)
m_PIDTau = 0;
else
{
float mint = (0.05f > m_timeStep ? 0.05f : m_timeStep);
if (value < mint)
m_PIDTau = mint;
else
m_PIDTau = value;
}
}
}
public override float PIDHoverHeight
{
set
{
m_PIDHoverHeight = value;
if (value == 0)
m_useHoverPID = false;
}
}
public override bool PIDHoverActive { set { m_useHoverPID = value; } }
public override PIDHoverType PIDHoverType { set { m_PIDHoverType = value; } }
public override float PIDHoverTau
{
set
{
if (value <= 0)
m_PIDHoverTau = 0;
else
{
float mint = (0.05f > m_timeStep ? 0.05f : m_timeStep);
if (value < mint)
m_PIDHoverTau = mint;
else
m_PIDHoverTau = value;
}
}
}
public override Quaternion APIDTarget { set { return; } }
public override bool APIDActive { set { return; } }
public override float APIDStrength { set { return; } }
public override float APIDDamping { set { return; } }
public override int VehicleType
{
// we may need to put a fake on this
get
{
if (m_vehicle == null)
return (int)Vehicle.TYPE_NONE;
else
return (int)m_vehicle.Type;
}
set
{
AddChange(changes.VehicleType, value);
}
}
public override void VehicleFloatParam(int param, float value)
{
strVehicleFloatParam fp = new strVehicleFloatParam();
fp.param = param;
fp.value = value;
AddChange(changes.VehicleFloatParam, fp);
}
public override void VehicleVectorParam(int param, Vector3 value)
{
strVehicleVectorParam fp = new strVehicleVectorParam();
fp.param = param;
fp.value = value;
AddChange(changes.VehicleVectorParam, fp);
}
public override void VehicleRotationParam(int param, Quaternion value)
{
strVehicleQuatParam fp = new strVehicleQuatParam();
fp.param = param;
fp.value = value;
AddChange(changes.VehicleRotationParam, fp);
}
public override void VehicleFlags(int param, bool value)
{
strVehicleBoolParam bp = new strVehicleBoolParam();
bp.param = param;
bp.value = value;
AddChange(changes.VehicleFlags, bp);
}
public override void SetVehicle(object vdata)
{
AddChange(changes.SetVehicle, vdata);
}
public void SetAcceleration(Vector3 accel)
{
_acceleration = accel;
}
public override void AddForce(Vector3 force, bool pushforce)
{
if (force.IsFinite())
{
if(pushforce)
AddChange(changes.AddForce, force);
else // a impulse
AddChange(changes.AddForce, force * m_invTimeStep);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got Invalid linear force vector from Scene in Object {0}", Name);
}
//m_log.Info("[PHYSICS]: Added Force:" + force.ToString() + " to prim at " + Position.ToString());
}
public override void AddAngularForce(Vector3 force, bool pushforce)
{
if (force.IsFinite())
{
// if(pushforce) for now applyrotationimpulse seems more happy applied as a force
AddChange(changes.AddAngForce, force);
// else // a impulse
// AddChange(changes.AddAngForce, force * m_invTimeStep);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got Invalid Angular force vector from Scene in Object {0}", Name);
}
}
public override void CrossingFailure()
{
if (m_outbounds)
{
_position.X = Util.Clip(_position.X, 0.5f, _parent_scene.WorldExtents.X - 0.5f);
_position.Y = Util.Clip(_position.Y, 0.5f, _parent_scene.WorldExtents.Y - 0.5f);
_position.Z = Util.Clip(_position.Z + 0.2f, -100f, 50000f);
m_lastposition = _position;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_lastVelocity = _velocity;
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
m_vehicle.Stop();
if(Body != IntPtr.Zero)
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
if (prim_geom != IntPtr.Zero)
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
m_outbounds = false;
changeDisable(false);
base.RequestPhysicsterseUpdate();
}
}
public override void SetMomentum(Vector3 momentum)
{
}
public override void SetMaterial(int pMaterial)
{
m_material = pMaterial;
mu = _parent_scene.m_materialContactsData[pMaterial].mu;
bounce = _parent_scene.m_materialContactsData[pMaterial].bounce;
}
public void setPrimForRemoval()
{
AddChange(changes.Remove, null);
}
public override void link(PhysicsActor obj)
{
AddChange(changes.Link, obj);
}
public override void delink()
{
AddChange(changes.DeLink, null);
}
public override void LockAngularMotion(Vector3 axis)
{
// reverse the zero/non zero values for ODE.
if (axis.IsFinite())
{
axis.X = (axis.X > 0) ? 1f : 0f;
axis.Y = (axis.Y > 0) ? 1f : 0f;
axis.Z = (axis.Z > 0) ? 1f : 0f;
m_log.DebugFormat("[axislock]: <{0},{1},{2}>", axis.X, axis.Y, axis.Z);
AddChange(changes.AngLock, axis);
}
else
{
m_log.WarnFormat("[PHYSICS]: Got NaN locking axis from Scene on Object {0}", Name);
}
}
public override void SubscribeEvents(int ms)
{
m_eventsubscription = ms;
m_cureventsubscription = 0;
if (CollisionEventsThisFrame == null)
CollisionEventsThisFrame = new CollisionEventUpdate();
SentEmptyCollisionsEvent = false;
_parent_scene.AddCollisionEventReporting(this);
}
public override void UnSubscribeEvents()
{
_parent_scene.RemoveCollisionEventReporting(this);
if (CollisionEventsThisFrame != null)
{
CollisionEventsThisFrame.Clear();
CollisionEventsThisFrame = null;
}
m_eventsubscription = 0;
}
public void AddCollisionEvent(uint CollidedWith, ContactPoint contact)
{
if (CollisionEventsThisFrame == null)
CollisionEventsThisFrame = new CollisionEventUpdate();
CollisionEventsThisFrame.AddCollider(CollidedWith, contact);
}
public void SendCollisions()
{
if (CollisionEventsThisFrame == null)
return;
if (m_cureventsubscription < m_eventsubscription)
return;
m_cureventsubscription = 0;
int ncolisions = CollisionEventsThisFrame.m_objCollisionList.Count;
if (!SentEmptyCollisionsEvent || ncolisions > 0)
{
base.SendCollisionUpdate(CollisionEventsThisFrame);
if (ncolisions == 0)
SentEmptyCollisionsEvent = true;
else
{
SentEmptyCollisionsEvent = false;
CollisionEventsThisFrame.Clear();
}
}
}
internal void AddCollisionFrameTime(int t)
{
// protect it from overflow crashing
if (m_cureventsubscription + t >= int.MaxValue)
m_cureventsubscription = 0;
m_cureventsubscription += t;
}
public override bool SubscribedEvents()
{
if (m_eventsubscription > 0)
return true;
return false;
}
public OdePrim(String primName, OdeScene parent_scene, Vector3 pos, Vector3 size,
Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical,bool pisPhantom,byte _shapeType,uint plocalID)
{
Name = primName;
LocalID = plocalID;
m_vehicle = null;
if (!pos.IsFinite())
{
pos = new Vector3(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f),
parent_scene.GetTerrainHeightAtXY(((float)Constants.RegionSize * 0.5f), ((float)Constants.RegionSize * 0.5f)) + 0.5f);
m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Position for {0}", Name);
}
_position = pos;
givefakepos = 0;
m_timeStep = parent_scene.ODE_STEPSIZE;
m_invTimeStep = 1f / m_timeStep;
m_density = parent_scene.geomDefaultDensity;
// m_tensor = parent_scene.bodyMotorJointMaxforceTensor;
body_autodisable_frames = parent_scene.bodyFramesAutoDisable;
prim_geom = IntPtr.Zero;
collide_geom = IntPtr.Zero;
Body = IntPtr.Zero;
if (!size.IsFinite())
{
size = new Vector3(0.5f, 0.5f, 0.5f);
m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Size for {0}", Name);
}
if (size.X <= 0) size.X = 0.01f;
if (size.Y <= 0) size.Y = 0.01f;
if (size.Z <= 0) size.Z = 0.01f;
_size = size;
if (!QuaternionIsFinite(rotation))
{
rotation = Quaternion.Identity;
m_log.WarnFormat("[PHYSICS]: Got nonFinite Object create Rotation for {0}", Name);
}
_orientation = rotation;
givefakeori = 0;
_pbs = pbs;
_parent_scene = parent_scene;
m_targetSpace = IntPtr.Zero;
if (pos.Z < 0)
{
m_isphysical = false;
}
else
{
m_isphysical = pisPhysical;
}
m_fakeisphysical = m_isphysical;
m_isVolumeDetect = false;
m_fakeisVolumeDetect = false;
m_force = Vector3.Zero;
m_iscolliding = false;
m_colliderfilter = 0;
m_NoColide = false;
hasOOBoffsetFromMesh = false;
_triMeshData = IntPtr.Zero;
m_shapetype = _shapeType;
m_lastdoneSelected = false;
m_isSelected = false;
m_delaySelect = false;
m_isphantom = pisPhantom;
m_fakeisphantom = pisPhantom;
mu = parent_scene.m_materialContactsData[(int)Material.Wood].mu;
bounce = parent_scene.m_materialContactsData[(int)Material.Wood].bounce;
CalcPrimBodyData();
m_mesh = null;
if (_parent_scene.needsMeshing(pbs))
{
bool convex;
if (m_shapetype == 0)
convex = false;
else
convex = true;
m_mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true, convex);
}
m_building = true; // control must set this to false when done
AddChange(changes.Add, null);
}
private void resetCollisionAccounting()
{
m_collisionscore = 0;
}
private void UpdateCollisionCatFlags()
{
if(m_isphysical && m_disabled)
{
m_collisionCategories = 0;
m_collisionFlags = 0;
}
else if (m_isSelected)
{
m_collisionCategories = CollisionCategories.Selected;
m_collisionFlags = 0;
}
else if (m_isVolumeDetect)
{
m_collisionCategories = CollisionCategories.VolumeDtc;
if (m_isphysical)
m_collisionFlags = CollisionCategories.Geom | CollisionCategories.Character;
else
m_collisionFlags = 0;
}
else if (m_isphantom)
{
m_collisionCategories = CollisionCategories.Phantom;
if (m_isphysical)
m_collisionFlags = CollisionCategories.Land;
else
m_collisionFlags = 0;
}
else
{
m_collisionCategories = CollisionCategories.Geom;
if (m_isphysical)
m_collisionFlags = m_default_collisionFlagsPhysical;
else
m_collisionFlags = m_default_collisionFlagsNotPhysical;
}
}
private void ApplyCollisionCatFlags()
{
if (prim_geom != IntPtr.Zero)
{
if (!childPrim && childrenPrim.Count > 0)
{
foreach (OdePrim prm in childrenPrim)
{
if (m_isphysical && m_disabled)
{
prm.m_collisionCategories = 0;
prm.m_collisionFlags = 0;
}
else
{
// preserve some
if (prm.m_isSelected)
{
prm.m_collisionCategories = CollisionCategories.Selected;
prm.m_collisionFlags = 0;
}
else if (prm.m_isVolumeDetect)
{
prm.m_collisionCategories = CollisionCategories.VolumeDtc;
if (m_isphysical)
prm.m_collisionFlags = CollisionCategories.Geom | CollisionCategories.Character;
else
prm.m_collisionFlags = 0;
}
else if (prm.m_isphantom)
{
prm.m_collisionCategories = CollisionCategories.Phantom;
if (m_isphysical)
prm.m_collisionFlags = CollisionCategories.Land;
else
prm.m_collisionFlags = 0;
}
else
{
prm.m_collisionCategories = m_collisionCategories;
prm.m_collisionFlags = m_collisionFlags;
}
}
if (prm.prim_geom != IntPtr.Zero)
{
if (prm.m_NoColide)
{
d.GeomSetCategoryBits(prm.prim_geom, 0);
if (m_isphysical)
d.GeomSetCollideBits(prm.prim_geom, (int)CollisionCategories.Land);
else
d.GeomSetCollideBits(prm.prim_geom, 0);
}
else
{
d.GeomSetCategoryBits(prm.prim_geom, (uint)prm.m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (uint)prm.m_collisionFlags);
}
}
}
}
if (m_NoColide)
{
d.GeomSetCategoryBits(prim_geom, 0);
d.GeomSetCollideBits(prim_geom, (uint)CollisionCategories.Land);
if (collide_geom != prim_geom && collide_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(collide_geom, 0);
d.GeomSetCollideBits(collide_geom, (uint)CollisionCategories.Land);
}
}
else
{
d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags);
if (collide_geom != prim_geom && collide_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(collide_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(collide_geom, (uint)m_collisionFlags);
}
}
}
}
private void createAMotor(Vector3 axis)
{
if (Body == IntPtr.Zero)
return;
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
}
int axisnum = 3 - (int)(axis.X + axis.Y + axis.Z);
if (axisnum <= 0)
return;
// stop it
d.BodySetTorque(Body, 0, 0, 0);
d.BodySetAngularVel(Body, 0, 0, 0);
Amotor = d.JointCreateAMotor(_parent_scene.world, IntPtr.Zero);
d.JointAttach(Amotor, Body, IntPtr.Zero);
d.JointSetAMotorMode(Amotor, 0);
d.JointSetAMotorNumAxes(Amotor, axisnum);
// get current orientation to lock
d.Quaternion dcur = d.BodyGetQuaternion(Body);
Quaternion curr; // crap convertion between identical things
curr.X = dcur.X;
curr.Y = dcur.Y;
curr.Z = dcur.Z;
curr.W = dcur.W;
Vector3 ax;
int i = 0;
int j = 0;
if (axis.X == 0)
{
ax = (new Vector3(1, 0, 0)) * curr; // rotate world X to current local X
// ODE should do this with axis relative to body 1 but seems to fail
d.JointSetAMotorAxis(Amotor, 0, 0, ax.X, ax.Y, ax.Z);
d.JointSetAMotorAngle(Amotor, 0, 0);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.LoStop, -0.000001f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.HiStop, 0.000001f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.Vel, 0);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.FudgeFactor, 0.0001f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.Bounce, 0f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.FMax, 5e8f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.StopCFM, 0f);
d.JointSetAMotorParam(Amotor, (int)d.JointParam.StopERP, 0.8f);
i++;
j = 256; // move to next axis set
}
if (axis.Y == 0)
{
ax = (new Vector3(0, 1, 0)) * curr;
d.JointSetAMotorAxis(Amotor, i, 0, ax.X, ax.Y, ax.Z);
d.JointSetAMotorAngle(Amotor, i, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.LoStop, -0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.HiStop, 0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Vel, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FudgeFactor, 0.0001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Bounce, 0f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FMax, 5e8f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopCFM, 0f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopERP, 0.8f);
i++;
j += 256;
}
if (axis.Z == 0)
{
ax = (new Vector3(0, 0, 1)) * curr;
d.JointSetAMotorAxis(Amotor, i, 0, ax.X, ax.Y, ax.Z);
d.JointSetAMotorAngle(Amotor, i, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.LoStop, -0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.HiStop, 0.000001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Vel, 0);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FudgeFactor, 0.0001f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.Bounce, 0f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.FMax, 5e8f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopCFM, 0f);
d.JointSetAMotorParam(Amotor, j + (int)d.JointParam.StopERP, 0.8f);
}
}
private bool setMesh(OdeScene parent_scene)
{
IntPtr vertices, indices;
int vertexCount, indexCount;
int vertexStride, triStride;
if (Body != IntPtr.Zero)
{
if (childPrim)
{
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildDelink(this, false);
}
}
else
{
DestroyBody();
}
}
IMesh mesh = null;
lock (m_meshlock)
{
if (m_mesh == null)
{
bool convex;
if (m_shapetype == 0)
convex = false;
else
convex = true;
mesh = _parent_scene.mesher.CreateMesh(Name, _pbs, _size, (int)LevelOfDetail.High, true, convex);
}
else
{
mesh = m_mesh;
}
if (mesh == null)
{
m_log.WarnFormat("[PHYSICS]: CreateMesh Failed on prim {0} at <{1},{2},{3}>.", Name, _position.X, _position.Y, _position.Z);
return false;
}
mesh.getVertexListAsPtrToFloatArray(out vertices, out vertexStride, out vertexCount); // Note, that vertices are fixed in unmanaged heap
mesh.getIndexListAsPtrToIntArray(out indices, out triStride, out indexCount); // Also fixed, needs release after usage
if (vertexCount == 0 || indexCount == 0)
{
m_log.WarnFormat("[PHYSICS]: Got invalid mesh on prim {0} at <{1},{2},{3}>. mesh UUID {4}",
Name, _position.X, _position.Y, _position.Z, _pbs.SculptTexture.ToString());
mesh.releaseSourceMeshData();
return false;
}
primOOBoffset = mesh.GetCentroid();
hasOOBoffsetFromMesh = true;
mesh.releaseSourceMeshData();
m_mesh = null;
}
IntPtr geo = IntPtr.Zero;
try
{
_triMeshData = d.GeomTriMeshDataCreate();
d.GeomTriMeshDataBuildSimple(_triMeshData, vertices, vertexStride, vertexCount, indices, indexCount, triStride);
d.GeomTriMeshDataPreprocess(_triMeshData);
_parent_scene.waitForSpaceUnlock(m_targetSpace);
geo = d.CreateTriMesh(m_targetSpace, _triMeshData, null, null, null);
}
catch (Exception e)
{
m_log.ErrorFormat("[PHYSICS]: SetGeom Mesh failed for {0} exception: {1}", Name, e);
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
return false;
}
SetGeom(geo);
return true;
}
private void SetGeom(IntPtr geom)
{
prim_geom = geom;
//Console.WriteLine("SetGeom to " + prim_geom + " for " + Name);
if (prim_geom != IntPtr.Zero)
{
if (m_NoColide)
{
d.GeomSetCategoryBits(prim_geom, 0);
if (m_isphysical)
{
d.GeomSetCollideBits(prim_geom, (uint)CollisionCategories.Land);
}
else
{
d.GeomSetCollideBits(prim_geom, 0);
d.GeomDisable(prim_geom);
}
}
else
{
d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags);
}
CalcPrimBodyData();
_parent_scene.geom_name_map[prim_geom] = Name;
_parent_scene.actor_name_map[prim_geom] = this;
}
else
m_log.Warn("Setting bad Geom");
}
/// <summary>
/// Create a geometry for the given mesh in the given target space.
/// </summary>
/// <param name="m_targetSpace"></param>
/// <param name="mesh">If null, then a mesh is used that is based on the profile shape data.</param>
private void CreateGeom()
{
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
bool haveMesh = false;
hasOOBoffsetFromMesh = false;
m_NoColide = false;
if (_parent_scene.needsMeshing(_pbs))
{
haveMesh = setMesh(_parent_scene); // this will give a mesh to non trivial known prims
if (!haveMesh)
m_NoColide = true;
}
if (!haveMesh)
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1
&& _size.X == _size.Y && _size.Y == _size.Z)
{ // it's a sphere
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
SetGeom(d.CreateSphere(m_targetSpace, _size.X * 0.5f));
}
catch (Exception e)
{
m_log.WarnFormat("[PHYSICS]: Create sphere failed: {0}", e);
return;
}
}
else
{// do it as a box
_parent_scene.waitForSpaceUnlock(m_targetSpace);
try
{
//Console.WriteLine(" CreateGeom 4");
SetGeom(d.CreateBox(m_targetSpace, _size.X, _size.Y, _size.Z));
}
catch (Exception e)
{
m_log.Warn("[PHYSICS]: Create box failed: {0}", e);
return;
}
}
}
}
/// <summary>
/// Set a new geometry for this prim.
/// </summary>
/// <param name="geom"></param>
private void RemoveGeom()
{
if (prim_geom != IntPtr.Zero)
{
_parent_scene.geom_name_map.Remove(prim_geom);
_parent_scene.actor_name_map.Remove(prim_geom);
try
{
d.GeomDestroy(prim_geom);
if (_triMeshData != IntPtr.Zero)
{
d.GeomTriMeshDataDestroy(_triMeshData);
_triMeshData = IntPtr.Zero;
}
}
// catch (System.AccessViolationException)
catch (Exception e)
{
m_log.ErrorFormat("[PHYSICS]: PrimGeom destruction failed for {0} exception {1}", Name, e);
}
prim_geom = IntPtr.Zero;
collide_geom = IntPtr.Zero;
}
else
{
m_log.ErrorFormat("[PHYSICS]: PrimGeom destruction BAD {0}", Name);
}
Body = IntPtr.Zero;
hasOOBoffsetFromMesh = false;
}
/*
private void ChildSetGeom(OdePrim odePrim)
{
// well..
DestroyBody();
MakeBody();
}
*/
//sets non physical prim m_targetSpace to right space in spaces grid for static prims
// should only be called for non physical prims unless they are becoming non physical
private void SetInStaticSpace(OdePrim prim)
{
IntPtr targetSpace = _parent_scene.MoveGeomToStaticSpace(prim.prim_geom, prim._position, prim.m_targetSpace);
prim.m_targetSpace = targetSpace;
collide_geom = IntPtr.Zero;
}
public void enableBodySoft()
{
m_disabled = false;
if (!childPrim && !m_isSelected)
{
if (m_isphysical && Body != IntPtr.Zero)
{
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
d.BodyEnable(Body);
}
}
resetCollisionAccounting();
}
private void disableBodySoft()
{
m_disabled = true;
if (!childPrim)
{
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_isSelected)
m_collisionFlags = CollisionCategories.Selected;
else
m_collisionCategories = 0;
m_collisionFlags = 0;
ApplyCollisionCatFlags();
d.BodyDisable(Body);
}
}
}
private void MakeBody()
{
if (!m_isphysical) // only physical get bodies
return;
if (childPrim) // child prims don't get bodies;
return;
if (m_building)
return;
if (prim_geom == IntPtr.Zero)
{
m_log.Warn("[PHYSICS]: Unable to link the linkset. Root has no geom yet");
return;
}
if (Body != IntPtr.Zero)
{
d.BodyDestroy(Body);
Body = IntPtr.Zero;
m_log.Warn("[PHYSICS]: MakeBody called having a body");
}
if (d.GeomGetBody(prim_geom) != IntPtr.Zero)
{
d.GeomSetBody(prim_geom, IntPtr.Zero);
m_log.Warn("[PHYSICS]: MakeBody root geom already had a body");
}
d.Matrix3 mymat = new d.Matrix3();
d.Quaternion myrot = new d.Quaternion();
d.Mass objdmass = new d.Mass { };
Body = d.BodyCreate(_parent_scene.world);
objdmass = primdMass;
// rotate inertia
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.RfromQ(out mymat, ref myrot);
d.MassRotate(ref objdmass, ref mymat);
// set the body rotation
d.BodySetRotation(Body, ref mymat);
// recompute full object inertia if needed
if (childrenPrim.Count > 0)
{
d.Matrix3 mat = new d.Matrix3();
d.Quaternion quat = new d.Quaternion();
d.Mass tmpdmass = new d.Mass { };
Vector3 rcm;
rcm.X = _position.X;
rcm.Y = _position.Y;
rcm.Z = _position.Z;
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
if (prm.prim_geom == IntPtr.Zero)
{
m_log.Warn("[PHYSICS]: Unable to link one of the linkset elements, skipping it. No geom yet");
continue;
}
tmpdmass = prm.primdMass;
// apply prim current rotation to inertia
quat.X = prm._orientation.X;
quat.Y = prm._orientation.Y;
quat.Z = prm._orientation.Z;
quat.W = prm._orientation.W;
d.RfromQ(out mat, ref quat);
d.MassRotate(ref tmpdmass, ref mat);
Vector3 ppos = prm._position;
ppos.X -= rcm.X;
ppos.Y -= rcm.Y;
ppos.Z -= rcm.Z;
// refer inertia to root prim center of mass position
d.MassTranslate(ref tmpdmass,
ppos.X,
ppos.Y,
ppos.Z);
d.MassAdd(ref objdmass, ref tmpdmass); // add to total object inertia
// fix prim colision cats
if (d.GeomGetBody(prm.prim_geom) != IntPtr.Zero)
{
d.GeomSetBody(prm.prim_geom, IntPtr.Zero);
m_log.Warn("[PHYSICS]: MakeBody child geom already had a body");
}
d.GeomClearOffset(prm.prim_geom);
d.GeomSetBody(prm.prim_geom, Body);
prm.Body = Body;
d.GeomSetOffsetWorldRotation(prm.prim_geom, ref mat); // set relative rotation
}
}
}
d.GeomClearOffset(prim_geom); // make sure we don't have a hidden offset
// associate root geom with body
d.GeomSetBody(prim_geom, Body);
d.BodySetPosition(Body, _position.X + objdmass.c.X, _position.Y + objdmass.c.Y, _position.Z + objdmass.c.Z);
d.GeomSetOffsetWorldPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body
myrot.X = -myrot.X;
myrot.Y = -myrot.Y;
myrot.Z = -myrot.Z;
d.RfromQ(out mymat, ref myrot);
d.MassRotate(ref objdmass, ref mymat);
d.BodySetMass(Body, ref objdmass);
_mass = objdmass.mass;
// disconnect from world gravity so we can apply buoyancy
d.BodySetGravityMode(Body, false);
d.BodySetAutoDisableFlag(Body, true);
d.BodySetAutoDisableSteps(Body, body_autodisable_frames);
// d.BodySetLinearDampingThreshold(Body, 0.01f);
// d.BodySetAngularDampingThreshold(Body, 0.001f);
d.BodySetDamping(Body, .002f, .002f);
if (m_targetSpace != IntPtr.Zero)
{
_parent_scene.waitForSpaceUnlock(m_targetSpace);
if (d.SpaceQuery(m_targetSpace, prim_geom))
d.SpaceRemove(m_targetSpace, prim_geom);
}
if (childrenPrim.Count == 0)
{
collide_geom = prim_geom;
m_targetSpace = _parent_scene.ActiveSpace;
d.SpaceAdd(m_targetSpace, prim_geom);
}
else
{
m_targetSpace = d.HashSpaceCreate(_parent_scene.ActiveSpace);
d.HashSpaceSetLevels(m_targetSpace, -2, 8);
d.SpaceSetSublevel(m_targetSpace, 3);
d.SpaceSetCleanup(m_targetSpace, false);
d.SpaceAdd(m_targetSpace, prim_geom);
d.GeomSetCategoryBits(m_targetSpace, (uint)(CollisionCategories.Space |
CollisionCategories.Geom |
CollisionCategories.Phantom |
CollisionCategories.VolumeDtc
));
d.GeomSetCollideBits(m_targetSpace, 0);
collide_geom = m_targetSpace;
}
if (m_delaySelect)
{
m_isSelected = true;
m_delaySelect = false;
}
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
if (prm.prim_geom == IntPtr.Zero)
continue;
Vector3 ppos = prm._position;
d.GeomSetOffsetWorldPosition(prm.prim_geom, ppos.X, ppos.Y, ppos.Z); // set relative position
if (prm.m_targetSpace != m_targetSpace)
{
if (prm.m_targetSpace != IntPtr.Zero)
{
_parent_scene.waitForSpaceUnlock(prm.m_targetSpace);
if (d.SpaceQuery(prm.m_targetSpace, prm.prim_geom))
d.SpaceRemove(prm.m_targetSpace, prm.prim_geom);
}
prm.m_targetSpace = m_targetSpace;
d.SpaceAdd(m_targetSpace, prm.prim_geom);
}
prm.m_collisionscore = 0;
if(!m_disabled)
prm.m_disabled = false;
_parent_scene.addActivePrim(prm);
}
}
// The body doesn't already have a finite rotation mode set here
if ((!m_angularlock.ApproxEquals(Vector3.One, 0.0f)) && _parent == null)
{
createAMotor(m_angularlock);
}
m_collisionscore = 0;
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
if (m_isSelected || m_disabled)
{
d.BodyDisable(Body);
}
else
{
d.BodySetAngularVel(Body, m_rotationalVelocity.X, m_rotationalVelocity.Y, m_rotationalVelocity.Z);
d.BodySetLinearVel(Body, _velocity.X, _velocity.Y, _velocity.Z);
}
_parent_scene.addActivePrim(this);
_parent_scene.addActiveGroups(this);
}
private void DestroyBody()
{
if (Body != IntPtr.Zero)
{
_parent_scene.remActivePrim(this);
collide_geom = IntPtr.Zero;
if (m_disabled)
m_collisionCategories = 0;
else if (m_isSelected)
m_collisionCategories = CollisionCategories.Selected;
else if (m_isVolumeDetect)
m_collisionCategories = CollisionCategories.VolumeDtc;
else if (m_isphantom)
m_collisionCategories = CollisionCategories.Phantom;
else
m_collisionCategories = CollisionCategories.Geom;
m_collisionFlags = 0;
if (prim_geom != IntPtr.Zero)
{
if (m_NoColide)
{
d.GeomSetCategoryBits(prim_geom, 0);
d.GeomSetCollideBits(prim_geom, 0);
}
else
{
d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags);
}
UpdateDataFromGeom();
d.GeomSetBody(prim_geom, IntPtr.Zero);
SetInStaticSpace(this);
}
if (!childPrim)
{
lock (childrenPrim)
{
foreach (OdePrim prm in childrenPrim)
{
_parent_scene.remActivePrim(prm);
if (prm.m_isSelected)
prm.m_collisionCategories = CollisionCategories.Selected;
else if (prm.m_isVolumeDetect)
prm.m_collisionCategories = CollisionCategories.VolumeDtc;
else if (prm.m_isphantom)
prm.m_collisionCategories = CollisionCategories.Phantom;
else
prm.m_collisionCategories = CollisionCategories.Geom;
prm.m_collisionFlags = 0;
if (prm.prim_geom != IntPtr.Zero)
{
if (prm.m_NoColide)
{
d.GeomSetCategoryBits(prm.prim_geom, 0);
d.GeomSetCollideBits(prm.prim_geom, 0);
}
else
{
d.GeomSetCategoryBits(prm.prim_geom, (uint)prm.m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (uint)prm.m_collisionFlags);
}
prm.UpdateDataFromGeom();
SetInStaticSpace(prm);
}
prm.Body = IntPtr.Zero;
prm._mass = prm.primMass;
prm.m_collisionscore = 0;
}
}
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
}
_parent_scene.remActiveGroup(this);
d.BodyDestroy(Body);
}
Body = IntPtr.Zero;
}
_mass = primMass;
m_collisionscore = 0;
}
private void FixInertia(Vector3 NewPos,Quaternion newrot)
{
d.Matrix3 mat = new d.Matrix3();
d.Quaternion quat = new d.Quaternion();
d.Mass tmpdmass = new d.Mass { };
d.Mass objdmass = new d.Mass { };
d.BodyGetMass(Body, out tmpdmass);
objdmass = tmpdmass;
d.Vector3 dobjpos;
d.Vector3 thispos;
// get current object position and rotation
dobjpos = d.BodyGetPosition(Body);
// get prim own inertia in its local frame
tmpdmass = primdMass;
// transform to object frame
mat = d.GeomGetOffsetRotation(prim_geom);
d.MassRotate(ref tmpdmass, ref mat);
thispos = d.GeomGetOffsetPosition(prim_geom);
d.MassTranslate(ref tmpdmass,
thispos.X,
thispos.Y,
thispos.Z);
// subtract current prim inertia from object
DMassSubPartFromObj(ref tmpdmass, ref objdmass);
// back prim own inertia
tmpdmass = primdMass;
// update to new position and orientation
_position = NewPos;
d.GeomSetOffsetWorldPosition(prim_geom, NewPos.X, NewPos.Y, NewPos.Z);
_orientation = newrot;
quat.X = newrot.X;
quat.Y = newrot.Y;
quat.Z = newrot.Z;
quat.W = newrot.W;
d.GeomSetOffsetWorldQuaternion(prim_geom, ref quat);
mat = d.GeomGetOffsetRotation(prim_geom);
d.MassRotate(ref tmpdmass, ref mat);
thispos = d.GeomGetOffsetPosition(prim_geom);
d.MassTranslate(ref tmpdmass,
thispos.X,
thispos.Y,
thispos.Z);
d.MassAdd(ref objdmass, ref tmpdmass);
// fix all positions
IntPtr g = d.BodyGetFirstGeom(Body);
while (g != IntPtr.Zero)
{
thispos = d.GeomGetOffsetPosition(g);
thispos.X -= objdmass.c.X;
thispos.Y -= objdmass.c.Y;
thispos.Z -= objdmass.c.Z;
d.GeomSetOffsetPosition(g, thispos.X, thispos.Y, thispos.Z);
g = d.dBodyGetNextGeom(g);
}
d.BodyVectorToWorld(Body,objdmass.c.X, objdmass.c.Y, objdmass.c.Z,out thispos);
d.BodySetPosition(Body, dobjpos.X + thispos.X, dobjpos.Y + thispos.Y, dobjpos.Z + thispos.Z);
d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body
d.BodySetMass(Body, ref objdmass);
_mass = objdmass.mass;
}
private void FixInertia(Vector3 NewPos)
{
d.Matrix3 primmat = new d.Matrix3();
d.Mass tmpdmass = new d.Mass { };
d.Mass objdmass = new d.Mass { };
d.Mass primmass = new d.Mass { };
d.Vector3 dobjpos;
d.Vector3 thispos;
d.BodyGetMass(Body, out objdmass);
// get prim own inertia in its local frame
primmass = primdMass;
// transform to object frame
primmat = d.GeomGetOffsetRotation(prim_geom);
d.MassRotate(ref primmass, ref primmat);
tmpdmass = primmass;
thispos = d.GeomGetOffsetPosition(prim_geom);
d.MassTranslate(ref tmpdmass,
thispos.X,
thispos.Y,
thispos.Z);
// subtract current prim inertia from object
DMassSubPartFromObj(ref tmpdmass, ref objdmass);
// update to new position
_position = NewPos;
d.GeomSetOffsetWorldPosition(prim_geom, NewPos.X, NewPos.Y, NewPos.Z);
thispos = d.GeomGetOffsetPosition(prim_geom);
d.MassTranslate(ref primmass,
thispos.X,
thispos.Y,
thispos.Z);
d.MassAdd(ref objdmass, ref primmass);
// fix all positions
IntPtr g = d.BodyGetFirstGeom(Body);
while (g != IntPtr.Zero)
{
thispos = d.GeomGetOffsetPosition(g);
thispos.X -= objdmass.c.X;
thispos.Y -= objdmass.c.Y;
thispos.Z -= objdmass.c.Z;
d.GeomSetOffsetPosition(g, thispos.X, thispos.Y, thispos.Z);
g = d.dBodyGetNextGeom(g);
}
d.BodyVectorToWorld(Body, objdmass.c.X, objdmass.c.Y, objdmass.c.Z, out thispos);
// get current object position and rotation
dobjpos = d.BodyGetPosition(Body);
d.BodySetPosition(Body, dobjpos.X + thispos.X, dobjpos.Y + thispos.Y, dobjpos.Z + thispos.Z);
d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body
d.BodySetMass(Body, ref objdmass);
_mass = objdmass.mass;
}
private void FixInertia(Quaternion newrot)
{
d.Matrix3 mat = new d.Matrix3();
d.Quaternion quat = new d.Quaternion();
d.Mass tmpdmass = new d.Mass { };
d.Mass objdmass = new d.Mass { };
d.Vector3 dobjpos;
d.Vector3 thispos;
d.BodyGetMass(Body, out objdmass);
// get prim own inertia in its local frame
tmpdmass = primdMass;
mat = d.GeomGetOffsetRotation(prim_geom);
d.MassRotate(ref tmpdmass, ref mat);
// transform to object frame
thispos = d.GeomGetOffsetPosition(prim_geom);
d.MassTranslate(ref tmpdmass,
thispos.X,
thispos.Y,
thispos.Z);
// subtract current prim inertia from object
DMassSubPartFromObj(ref tmpdmass, ref objdmass);
// update to new orientation
_orientation = newrot;
quat.X = newrot.X;
quat.Y = newrot.Y;
quat.Z = newrot.Z;
quat.W = newrot.W;
d.GeomSetOffsetWorldQuaternion(prim_geom, ref quat);
tmpdmass = primdMass;
mat = d.GeomGetOffsetRotation(prim_geom);
d.MassRotate(ref tmpdmass, ref mat);
d.MassTranslate(ref tmpdmass,
thispos.X,
thispos.Y,
thispos.Z);
d.MassAdd(ref objdmass, ref tmpdmass);
// fix all positions
IntPtr g = d.BodyGetFirstGeom(Body);
while (g != IntPtr.Zero)
{
thispos = d.GeomGetOffsetPosition(g);
thispos.X -= objdmass.c.X;
thispos.Y -= objdmass.c.Y;
thispos.Z -= objdmass.c.Z;
d.GeomSetOffsetPosition(g, thispos.X, thispos.Y, thispos.Z);
g = d.dBodyGetNextGeom(g);
}
d.BodyVectorToWorld(Body, objdmass.c.X, objdmass.c.Y, objdmass.c.Z, out thispos);
// get current object position and rotation
dobjpos = d.BodyGetPosition(Body);
d.BodySetPosition(Body, dobjpos.X + thispos.X, dobjpos.Y + thispos.Y, dobjpos.Z + thispos.Z);
d.MassTranslate(ref objdmass, -objdmass.c.X, -objdmass.c.Y, -objdmass.c.Z); // ode wants inertia at center of body
d.BodySetMass(Body, ref objdmass);
_mass = objdmass.mass;
}
#region Mass Calculation
private float CalculatePrimVolume()
{
float volume = _size.X * _size.Y * _size.Z; // default
float tmp;
float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f;
float hollowVolume = hollowAmount * hollowAmount;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// default box
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= (0.5f * .5f);
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
//a tube
volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - 2.0e-2f * (float)(200 - _pbs.PathScaleY);
volume -= volume * tmp * tmp;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= 0.5f * 0.5f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.78539816339f; // elipse base
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.5236f;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Circle:
case HollowShape.Triangle: // diference in sl is minor and odd
case HollowShape.Same:
break;
case HollowShape.Square:
hollowVolume *= 0.909f;
break;
// case HollowShape.Triangle:
// hollowVolume *= .827f;
// break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.EquilateralTriangle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.32475953f;
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.32475953f;
volume *= 0.01f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
default:
break;
}
float taperX1;
float taperY1;
float taperX;
float taperY;
float pathBegin;
float pathEnd;
float profileBegin;
float profileEnd;
if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible)
{
taperX1 = _pbs.PathScaleX * 0.01f;
if (taperX1 > 1.0f)
taperX1 = 2.0f - taperX1;
taperX = 1.0f - taperX1;
taperY1 = _pbs.PathScaleY * 0.01f;
if (taperY1 > 1.0f)
taperY1 = 2.0f - taperY1;
taperY = 1.0f - taperY1;
}
else
{
taperX = _pbs.PathTaperX * 0.01f;
if (taperX < 0.0f)
taperX = -taperX;
taperX1 = 1.0f - taperX;
taperY = _pbs.PathTaperY * 0.01f;
if (taperY < 0.0f)
taperY = -taperY;
taperY1 = 1.0f - taperY;
}
volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);
pathBegin = (float)_pbs.PathBegin * 2.0e-5f;
pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f;
volume *= (pathEnd - pathBegin);
// this is crude aproximation
profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f;
profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f;
volume *= (profileEnd - profileBegin);
return volume;
}
private void CalcPrimBodyData()
{
float volume;
if (prim_geom == IntPtr.Zero)
{
// Ubit let's have a initial basic OOB
primOOBsize.X = _size.X;
primOOBsize.Y = _size.Y;
primOOBsize.Z = _size.Z;
primOOBoffset = Vector3.Zero;
}
else
{
d.AABB AABB;
d.GeomGetAABB(prim_geom, out AABB); // get the AABB from engine geom
primOOBsize.X = (AABB.MaxX - AABB.MinX);
primOOBsize.Y = (AABB.MaxY - AABB.MinY);
primOOBsize.Z = (AABB.MaxZ - AABB.MinZ);
if (!hasOOBoffsetFromMesh)
{
primOOBoffset.X = (AABB.MaxX + AABB.MinX) * 0.5f;
primOOBoffset.Y = (AABB.MaxY + AABB.MinY) * 0.5f;
primOOBoffset.Z = (AABB.MaxZ + AABB.MinZ) * 0.5f;
}
}
// also its own inertia and mass
// keep using basic shape mass for now
volume = CalculatePrimVolume();
primVolume = volume;
primMass = m_density * volume;
if (primMass <= 0)
primMass = 0.0001f;//ckrinke: Mass must be greater then zero.
if (primMass > _parent_scene.maximumMassObject)
primMass = _parent_scene.maximumMassObject;
_mass = primMass; // just in case
d.MassSetBoxTotal(out primdMass, primMass, primOOBsize.X, primOOBsize.Y, primOOBsize.Z);
d.MassTranslate(ref primdMass,
primOOBoffset.X,
primOOBoffset.Y,
primOOBoffset.Z);
primOOBsize *= 0.5f; // let obb size be a corner coords
primOOBradiusSQ = primOOBsize.LengthSquared();
}
#endregion
/// <summary>
/// Add a child prim to this parent prim.
/// </summary>
/// <param name="prim">Child prim</param>
// I'm the parent
// prim is the child
public void ParentPrim(OdePrim prim)
{
//Console.WriteLine("ParentPrim " + m_primName);
if (this.m_localID != prim.m_localID)
{
DestroyBody(); // for now we need to rebuil entire object on link change
lock (childrenPrim)
{
// adopt the prim
if (!childrenPrim.Contains(prim))
childrenPrim.Add(prim);
// see if this prim has kids and adopt them also
// should not happen for now
foreach (OdePrim prm in prim.childrenPrim)
{
if (!childrenPrim.Contains(prm))
{
if (prm.Body != IntPtr.Zero)
{
if (prm.prim_geom != IntPtr.Zero)
d.GeomSetBody(prm.prim_geom, IntPtr.Zero);
if (prm.Body != prim.Body)
prm.DestroyBody(); // don't loose bodies around
prm.Body = IntPtr.Zero;
}
childrenPrim.Add(prm);
prm._parent = this;
}
}
}
//Remove old children from the prim
prim.childrenPrim.Clear();
if (prim.Body != IntPtr.Zero)
{
if (prim.prim_geom != IntPtr.Zero)
d.GeomSetBody(prim.prim_geom, IntPtr.Zero);
prim.DestroyBody(); // don't loose bodies around
prim.Body = IntPtr.Zero;
}
prim.childPrim = true;
prim._parent = this;
MakeBody(); // full nasty reconstruction
}
}
private void UpdateChildsfromgeom()
{
if (childrenPrim.Count > 0)
{
foreach (OdePrim prm in childrenPrim)
prm.UpdateDataFromGeom();
}
}
private void UpdateDataFromGeom()
{
if (prim_geom != IntPtr.Zero)
{
d.Quaternion qtmp;
d.GeomCopyQuaternion(prim_geom, out qtmp);
_orientation.W = qtmp.W;
_orientation.X = qtmp.X;
_orientation.Y = qtmp.Y;
_orientation.Z = qtmp.Z;
d.Vector3 lpos = d.GeomGetPosition(prim_geom);
_position.X = lpos.X;
_position.Y = lpos.Y;
_position.Z = lpos.Z;
}
}
private void ChildDelink(OdePrim odePrim, bool remakebodies)
{
// Okay, we have a delinked child.. destroy all body and remake
if (odePrim != this && !childrenPrim.Contains(odePrim))
return;
DestroyBody();
if (odePrim == this) // delinking the root prim
{
OdePrim newroot = null;
lock (childrenPrim)
{
if (childrenPrim.Count > 0)
{
newroot = childrenPrim[0];
childrenPrim.RemoveAt(0);
foreach (OdePrim prm in childrenPrim)
{
newroot.childrenPrim.Add(prm);
}
childrenPrim.Clear();
}
if (newroot != null)
{
newroot.childPrim = false;
newroot._parent = null;
if (remakebodies)
newroot.MakeBody();
}
}
}
else
{
lock (childrenPrim)
{
childrenPrim.Remove(odePrim);
odePrim.childPrim = false;
odePrim._parent = null;
// odePrim.UpdateDataFromGeom();
if (remakebodies)
odePrim.MakeBody();
}
}
if (remakebodies)
MakeBody();
}
protected void ChildRemove(OdePrim odePrim, bool reMakeBody)
{
// Okay, we have a delinked child.. destroy all body and remake
if (odePrim != this && !childrenPrim.Contains(odePrim))
return;
DestroyBody();
if (odePrim == this)
{
OdePrim newroot = null;
lock (childrenPrim)
{
if (childrenPrim.Count > 0)
{
newroot = childrenPrim[0];
childrenPrim.RemoveAt(0);
foreach (OdePrim prm in childrenPrim)
{
newroot.childrenPrim.Add(prm);
}
childrenPrim.Clear();
}
if (newroot != null)
{
newroot.childPrim = false;
newroot._parent = null;
newroot.MakeBody();
}
}
if (reMakeBody)
MakeBody();
return;
}
else
{
lock (childrenPrim)
{
childrenPrim.Remove(odePrim);
odePrim.childPrim = false;
odePrim._parent = null;
if (reMakeBody)
odePrim.MakeBody();
}
}
MakeBody();
}
#region changes
private void changeadd()
{
CreateGeom();
if (prim_geom != IntPtr.Zero)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
if (!m_isphysical)
{
SetInStaticSpace(this);
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
}
else
MakeBody();
}
}
private void changeAngularLock(Vector3 newLock)
{
// do we have a Physical object?
if (Body != IntPtr.Zero)
{
//Check that we have a Parent
//If we have a parent then we're not authorative here
if (_parent == null)
{
if (!newLock.ApproxEquals(Vector3.One, 0f))
{
createAMotor(newLock);
}
else
{
if (Amotor != IntPtr.Zero)
{
d.JointDestroy(Amotor);
Amotor = IntPtr.Zero;
}
}
}
}
// Store this for later in case we get turned into a separate body
m_angularlock = newLock;
}
private void changeLink(OdePrim NewParent)
{
if (_parent == null && NewParent != null)
{
NewParent.ParentPrim(this);
}
else if (_parent != null)
{
if (_parent is OdePrim)
{
if (NewParent != _parent)
{
(_parent as OdePrim).ChildDelink(this, false); // for now...
childPrim = false;
if (NewParent != null)
{
NewParent.ParentPrim(this);
}
}
}
}
_parent = NewParent;
}
private void Stop()
{
if (!childPrim)
{
m_force = Vector3.Zero;
m_forceacc = Vector3.Zero;
m_angularForceacc = Vector3.Zero;
_torque = Vector3.Zero;
_velocity = Vector3.Zero;
_acceleration = Vector3.Zero;
m_rotationalVelocity = Vector3.Zero;
_target_velocity = Vector3.Zero;
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
m_vehicle.Stop();
}
if (Body != IntPtr.Zero)
{
d.BodySetForce(Body, 0f, 0f, 0f);
d.BodySetTorque(Body, 0f, 0f, 0f);
d.BodySetLinearVel(Body, 0f, 0f, 0f);
d.BodySetAngularVel(Body, 0f, 0f, 0f);
}
}
private void changePhantomStatus(bool newval)
{
m_isphantom = newval;
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
}
/* not in use
internal void ChildSelectedChange(bool childSelect)
{
if(childPrim)
return;
if (childSelect == m_isSelected)
return;
if (childSelect)
{
DoSelectedStatus(true);
}
else
{
foreach (OdePrim prm in childrenPrim)
{
if (prm.m_isSelected)
return;
}
DoSelectedStatus(false);
}
}
*/
private void changeSelectedStatus(bool newval)
{
if (m_lastdoneSelected == newval)
return;
m_lastdoneSelected = newval;
DoSelectedStatus(newval);
}
private void CheckDelaySelect()
{
if (m_delaySelect)
{
DoSelectedStatus(m_isSelected);
}
}
private void DoSelectedStatus(bool newval)
{
m_isSelected = newval;
Stop();
if (newval)
{
if (!childPrim && Body != IntPtr.Zero)
d.BodyDisable(Body);
if (m_delaySelect || m_isphysical)
{
m_collisionCategories = CollisionCategories.Selected;
m_collisionFlags = 0;
if (!childPrim)
{
foreach (OdePrim prm in childrenPrim)
{
prm.m_collisionCategories = m_collisionCategories;
prm.m_collisionFlags = m_collisionFlags;
if (prm.prim_geom != null)
{
if (prm.m_NoColide)
{
d.GeomSetCategoryBits(prm.prim_geom, 0);
d.GeomSetCollideBits(prm.prim_geom, 0);
}
else
{
d.GeomSetCategoryBits(prm.prim_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(prm.prim_geom, (uint)m_collisionFlags);
}
}
prm.m_delaySelect = false;
}
}
// else if (_parent != null)
// ((OdePrim)_parent).ChildSelectedChange(true);
if (prim_geom != null)
{
if (m_NoColide)
{
d.GeomSetCategoryBits(prim_geom, 0);
d.GeomSetCollideBits(prim_geom, 0);
if (collide_geom != prim_geom && collide_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(collide_geom, 0);
d.GeomSetCollideBits(collide_geom, 0);
}
}
else
{
d.GeomSetCategoryBits(prim_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(prim_geom, (uint)m_collisionFlags);
if (collide_geom != prim_geom && collide_geom != IntPtr.Zero)
{
d.GeomSetCategoryBits(collide_geom, (uint)m_collisionCategories);
d.GeomSetCollideBits(collide_geom, (uint)m_collisionFlags);
}
}
}
m_delaySelect = false;
}
else if(!m_isphysical)
{
m_delaySelect = true;
}
}
else
{
if (!childPrim)
{
if (Body != IntPtr.Zero && !m_disabled)
d.BodyEnable(Body);
}
// else if (_parent != null)
// ((OdePrim)_parent).ChildSelectedChange(false);
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
m_delaySelect = false;
}
resetCollisionAccounting();
}
private void changePosition(Vector3 newPos)
{
CheckDelaySelect();
if (m_isphysical)
{
if (childPrim) // inertia is messed, must rebuild
{
if (m_building)
{
_position = newPos;
}
else if (m_forcePosOrRotation && _position != newPos && Body != IntPtr.Zero)
{
FixInertia(newPos);
if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
if (_position != newPos)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
}
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
if (prim_geom != IntPtr.Zero)
{
if (newPos != _position)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
m_targetSpace = _parent_scene.MoveGeomToStaticSpace(prim_geom, _position, m_targetSpace);
}
}
}
givefakepos--;
if (givefakepos < 0)
givefakepos = 0;
// changeSelectedStatus();
resetCollisionAccounting();
}
private void changeOrientation(Quaternion newOri)
{
CheckDelaySelect();
if (m_isphysical)
{
if (childPrim) // inertia is messed, must rebuild
{
if (m_building)
{
_orientation = newOri;
}
/*
else if (m_forcePosOrRotation && _orientation != newOri && Body != IntPtr.Zero)
{
FixInertia(_position, newOri);
if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
*/
}
else
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
if (Body != IntPtr.Zero && !m_angularlock.ApproxEquals(Vector3.One, 0f))
createAMotor(m_angularlock);
}
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
if (prim_geom != IntPtr.Zero)
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
}
}
}
givefakeori--;
if (givefakeori < 0)
givefakeori = 0;
resetCollisionAccounting();
}
private void changePositionAndOrientation(Vector3 newPos, Quaternion newOri)
{
CheckDelaySelect();
if (m_isphysical)
{
if (childPrim && m_building) // inertia is messed, must rebuild
{
_position = newPos;
_orientation = newOri;
}
else
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
if (Body != IntPtr.Zero && !m_angularlock.ApproxEquals(Vector3.One, 0f))
createAMotor(m_angularlock);
}
if (_position != newPos)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
}
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
else
{
// string primScenAvatarIn = _parent_scene.whichspaceamIin(_position);
// int[] arrayitem = _parent_scene.calculateSpaceArrayItemFromPos(_position);
if (prim_geom != IntPtr.Zero)
{
if (newOri != _orientation)
{
d.Quaternion myrot = new d.Quaternion();
myrot.X = newOri.X;
myrot.Y = newOri.Y;
myrot.Z = newOri.Z;
myrot.W = newOri.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
_orientation = newOri;
}
if (newPos != _position)
{
d.GeomSetPosition(prim_geom, newPos.X, newPos.Y, newPos.Z);
_position = newPos;
m_targetSpace = _parent_scene.MoveGeomToStaticSpace(prim_geom, _position, m_targetSpace);
}
}
}
givefakepos--;
if (givefakepos < 0)
givefakepos = 0;
givefakeori--;
if (givefakeori < 0)
givefakeori = 0;
resetCollisionAccounting();
}
private void changeDisable(bool disable)
{
if (disable)
{
if (!m_disabled)
disableBodySoft();
}
else
{
if (m_disabled)
enableBodySoft();
}
}
private void changePhysicsStatus(bool NewStatus)
{
CheckDelaySelect();
m_isphysical = NewStatus;
if (!childPrim)
{
if (NewStatus)
{
if (Body == IntPtr.Zero)
MakeBody();
}
else
{
if (Body != IntPtr.Zero)
{
DestroyBody();
}
Stop();
}
}
resetCollisionAccounting();
}
private void changeprimsizeshape()
{
CheckDelaySelect();
OdePrim parent = (OdePrim)_parent;
bool chp = childPrim;
if (chp)
{
if (parent != null)
{
parent.DestroyBody();
}
}
else
{
DestroyBody();
}
RemoveGeom();
// we don't need to do space calculation because the client sends a position update also.
if (_size.X <= 0)
_size.X = 0.01f;
if (_size.Y <= 0)
_size.Y = 0.01f;
if (_size.Z <= 0)
_size.Z = 0.01f;
// Construction of new prim
CreateGeom();
if (prim_geom != IntPtr.Zero)
{
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
d.Quaternion myrot = new d.Quaternion();
myrot.X = _orientation.X;
myrot.Y = _orientation.Y;
myrot.Z = _orientation.Z;
myrot.W = _orientation.W;
d.GeomSetQuaternion(prim_geom, ref myrot);
}
if (m_isphysical)
{
if (chp)
{
if (parent != null)
{
parent.MakeBody();
}
}
else
MakeBody();
}
else
{
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
}
resetCollisionAccounting();
}
private void changeSize(Vector3 newSize)
{
_size = newSize;
changeprimsizeshape();
}
private void changeShape(PrimitiveBaseShape newShape)
{
if(newShape != null)
_pbs = newShape;
changeprimsizeshape();
}
private void changeFloatOnWater(bool newval)
{
m_collidesWater = newval;
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
}
private void changeSetTorque(Vector3 newtorque)
{
if (!m_isSelected)
{
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
_torque = newtorque;
}
}
private void changeForce(Vector3 force)
{
m_force = force;
if (Body != IntPtr.Zero && !d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
private void changeAddImpulse(Vector3 impulse)
{
m_forceacc += impulse *m_invTimeStep;
if (!m_isSelected)
{
lock (this)
{
//m_log.Info("[PHYSICS]: dequeing forcelist");
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
m_collisionscore = 0;
}
}
// actually angular impulse
private void changeAddAngularImpulse(Vector3 aimpulse)
{
m_angularForceacc += aimpulse * m_invTimeStep;
if (!m_isSelected)
{
lock (this)
{
if (m_isphysical && Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
}
}
m_collisionscore = 0;
}
}
private void changevelocity(Vector3 newVel)
{
if (!m_isSelected)
{
if (Body != IntPtr.Zero)
{
if (m_disabled)
enableBodySoft();
else if (!d.BodyIsEnabled(Body))
d.BodyEnable(Body);
d.BodySetLinearVel(Body, newVel.X, newVel.Y, newVel.Z);
}
//resetCollisionAccounting();
}
_velocity = newVel;
}
private void changeVolumedetetion(bool newVolDtc)
{
m_isVolumeDetect = newVolDtc;
m_fakeisVolumeDetect = newVolDtc;
UpdateCollisionCatFlags();
ApplyCollisionCatFlags();
}
protected void changeBuilding(bool newbuilding)
{
if ((bool)newbuilding)
{
m_building = true;
if (!childPrim)
DestroyBody();
}
else
{
m_building = false;
CheckDelaySelect();
if (!childPrim)
MakeBody();
}
if (!childPrim && childrenPrim.Count > 0)
{
foreach (OdePrim prm in childrenPrim)
prm.changeBuilding(m_building); // call directly
}
}
public void changeSetVehicle(VehicleData vdata)
{
if (m_vehicle == null)
m_vehicle = new ODEDynamics(this);
m_vehicle.DoSetVehicle(vdata);
}
private void changeVehicleType(int value)
{
if (value == (int)Vehicle.TYPE_NONE)
{
if (m_vehicle != null)
m_vehicle = null;
}
else
{
if (m_vehicle == null)
m_vehicle = new ODEDynamics(this);
m_vehicle.ProcessTypeChange((Vehicle)value);
}
}
private void changeVehicleFloatParam(strVehicleFloatParam fp)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessFloatVehicleParam((Vehicle)fp.param, fp.value);
}
private void changeVehicleVectorParam(strVehicleVectorParam vp)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessVectorVehicleParam((Vehicle)vp.param, vp.value);
}
private void changeVehicleRotationParam(strVehicleQuatParam qp)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessRotationVehicleParam((Vehicle)qp.param, qp.value);
}
private void changeVehicleFlags(strVehicleBoolParam bp)
{
if (m_vehicle == null)
return;
m_vehicle.ProcessVehicleFlags(bp.param, bp.value);
}
#endregion
public void Move()
{
if (!childPrim && m_isphysical && Body != IntPtr.Zero &&
!m_disabled && !m_isSelected && !m_building && !m_outbounds)
{
if (!d.BodyIsEnabled(Body))
{
// let vehicles sleep
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
return;
if (++bodydisablecontrol < 20)
return;
bodydisablecontrol = 0;
d.BodyEnable(Body);
}
d.Vector3 lpos = d.GeomGetPosition(prim_geom); // root position that is seem by rest of simulator
/* moved down to UpdateMove... where it belongs again
// check outside region
if (lpos.Z < -100 || lpos.Z > 100000f)
{
m_outbounds = true;
lpos.Z = Util.Clip(lpos.Z, -100f, 100000f);
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0); // stop it
d.BodySetPosition(Body, lpos.X, lpos.Y, lpos.Z); // put it somewhere
m_lastposition = _position;
m_lastorientation = _orientation;
base.RequestPhysicsterseUpdate();
throttleCounter = 0;
_zeroFlag = true;
disableBodySoft(); // disable it and colisions
base.RaiseOutOfBounds(_position);
return;
}
if (lpos.X < 0f)
{
_position.X = Util.Clip(lpos.X, -2f, -0.1f);
m_outbounds = true;
}
else if (lpos.X > _parent_scene.WorldExtents.X)
{
_position.X = Util.Clip(lpos.X, _parent_scene.WorldExtents.X + 0.1f, _parent_scene.WorldExtents.X + 2f);
m_outbounds = true;
}
if (lpos.Y < 0f)
{
_position.Y = Util.Clip(lpos.Y, -2f, -0.1f);
m_outbounds = true;
}
else if (lpos.Y > _parent_scene.WorldExtents.Y)
{
_position.Y = Util.Clip(lpos.Y, _parent_scene.WorldExtents.Y + 0.1f, _parent_scene.WorldExtents.Y + 2f);
m_outbounds = true;
}
if (m_outbounds)
{
m_lastposition = _position;
m_lastorientation = _orientation;
d.Vector3 dtmp = d.BodyGetAngularVel(Body);
m_rotationalVelocity.X = dtmp.X;
m_rotationalVelocity.Y = dtmp.Y;
m_rotationalVelocity.Z = dtmp.Z;
dtmp = d.BodyGetLinearVel(Body);
_velocity.X = dtmp.X;
_velocity.Y = dtmp.Y;
_velocity.Z = dtmp.Z;
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
disableBodySoft(); // stop collisions
base.RequestPhysicsterseUpdate();
return;
}
*/
if (m_vehicle != null && m_vehicle.Type != Vehicle.TYPE_NONE)
{
// 'VEHICLES' are dealt with in ODEDynamics.cs
m_vehicle.Step();
return;
}
float fx = 0;
float fy = 0;
float fz = 0;
float m_mass = _mass;
if (m_usePID && m_PIDTau > 0)
{
// for now position error
_target_velocity =
new Vector3(
(m_PIDTarget.X - lpos.X),
(m_PIDTarget.Y - lpos.Y),
(m_PIDTarget.Z - lpos.Z)
);
if (_target_velocity.ApproxEquals(Vector3.Zero, 0.02f))
{
d.BodySetPosition(Body, m_PIDTarget.X, m_PIDTarget.Y, m_PIDTarget.Z);
d.BodySetLinearVel(Body, 0, 0, 0);
return;
}
else
{
_zeroFlag = false;
float tmp = 1 / m_PIDTau;
_target_velocity *= tmp;
// apply limits
tmp = _target_velocity.Length();
if (tmp > 50.0f)
{
tmp = 50 / tmp;
_target_velocity *= tmp;
}
else if (tmp < 0.05f)
{
tmp = 0.05f / tmp;
_target_velocity *= tmp;
}
d.Vector3 vel = d.BodyGetLinearVel(Body);
fx = (_target_velocity.X - vel.X) * m_invTimeStep;
fy = (_target_velocity.Y - vel.Y) * m_invTimeStep;
fz = (_target_velocity.Z - vel.Z) * m_invTimeStep;
// d.BodySetLinearVel(Body, _target_velocity.X, _target_velocity.Y, _target_velocity.Z);
}
} // end if (m_usePID)
// Hover PID Controller needs to be mutually exlusive to MoveTo PID controller
else if (m_useHoverPID && m_PIDHoverTau != 0 && m_PIDHoverHeight != 0)
{
// Non-Vehicles have a limited set of Hover options.
// determine what our target height really is based on HoverType
m_groundHeight = _parent_scene.GetTerrainHeightAtXY(lpos.X, lpos.Y);
switch (m_PIDHoverType)
{
case PIDHoverType.Ground:
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
break;
case PIDHoverType.GroundAndWater:
m_waterHeight = _parent_scene.GetWaterLevel();
if (m_groundHeight > m_waterHeight)
m_targetHoverHeight = m_groundHeight + m_PIDHoverHeight;
else
m_targetHoverHeight = m_waterHeight + m_PIDHoverHeight;
break;
} // end switch (m_PIDHoverType)
// don't go underground unless volumedetector
if (m_targetHoverHeight > m_groundHeight || m_isVolumeDetect)
{
d.Vector3 vel = d.BodyGetLinearVel(Body);
fz = (m_targetHoverHeight - lpos.Z);
// if error is zero, use position control; otherwise, velocity control
if (Math.Abs(fz) < 0.01f)
{
d.BodySetPosition(Body, lpos.X, lpos.Y, m_targetHoverHeight);
d.BodySetLinearVel(Body, vel.X, vel.Y, 0);
}
else
{
_zeroFlag = false;
fz /= m_PIDHoverTau;
float tmp = Math.Abs(fz);
if (tmp > 50)
fz = 50 * Math.Sign(fz);
else if (tmp < 0.1)
fz = 0.1f * Math.Sign(fz);
fz = ((fz - vel.Z) * m_invTimeStep);
}
}
}
else
{
float b = (1.0f - m_buoyancy);
fx = _parent_scene.gravityx * b;
fy = _parent_scene.gravityy * b;
fz = _parent_scene.gravityz * b;
}
fx *= m_mass;
fy *= m_mass;
fz *= m_mass;
// constant force
fx += m_force.X;
fy += m_force.Y;
fz += m_force.Z;
fx += m_forceacc.X;
fy += m_forceacc.Y;
fz += m_forceacc.Z;
m_forceacc = Vector3.Zero;
//m_log.Info("[OBJPID]: X:" + fx.ToString() + " Y:" + fy.ToString() + " Z:" + fz.ToString());
if (fx != 0 || fy != 0 || fz != 0)
{
d.BodyAddForce(Body, fx, fy, fz);
//Console.WriteLine("AddForce " + fx + "," + fy + "," + fz);
}
Vector3 trq;
trq = _torque;
trq += m_angularForceacc;
m_angularForceacc = Vector3.Zero;
if (trq.X != 0 || trq.Y != 0 || trq.Z != 0)
{
d.BodyAddTorque(Body, trq.X, trq.Y, trq.Z);
}
}
else
{ // is not physical, or is not a body or is selected
// _zeroPosition = d.BodyGetPosition(Body);
return;
//Console.WriteLine("Nothing " + Name);
}
}
public void UpdatePositionAndVelocity()
{
if (_parent == null && !m_disabled && !m_building && !m_outbounds && Body != IntPtr.Zero)
{
if (d.BodyIsEnabled(Body) || !_zeroFlag)
{
bool lastZeroFlag = _zeroFlag;
d.Vector3 lpos = d.GeomGetPosition(prim_geom);
// check outside region
if (lpos.Z < -100 || lpos.Z > 100000f)
{
m_outbounds = true;
lpos.Z = Util.Clip(lpos.Z, -100f, 100000f);
_acceleration.X = 0;
_acceleration.Y = 0;
_acceleration.Z = 0;
_velocity.X = 0;
_velocity.Y = 0;
_velocity.Z = 0;
m_rotationalVelocity.X = 0;
m_rotationalVelocity.Y = 0;
m_rotationalVelocity.Z = 0;
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0); // stop it
d.BodySetPosition(Body, lpos.X, lpos.Y, lpos.Z); // put it somewhere
m_lastposition = _position;
m_lastorientation = _orientation;
base.RequestPhysicsterseUpdate();
throttleCounter = 0;
_zeroFlag = true;
disableBodySoft(); // disable it and colisions
base.RaiseOutOfBounds(_position);
return;
}
if (lpos.X < 0f)
{
_position.X = Util.Clip(lpos.X, -2f, -0.1f);
m_outbounds = true;
}
else if (lpos.X > _parent_scene.WorldExtents.X)
{
_position.X = Util.Clip(lpos.X, _parent_scene.WorldExtents.X + 0.1f, _parent_scene.WorldExtents.X + 2f);
m_outbounds = true;
}
if (lpos.Y < 0f)
{
_position.Y = Util.Clip(lpos.Y, -2f, -0.1f);
m_outbounds = true;
}
else if (lpos.Y > _parent_scene.WorldExtents.Y)
{
_position.Y = Util.Clip(lpos.Y, _parent_scene.WorldExtents.Y + 0.1f, _parent_scene.WorldExtents.Y + 2f);
m_outbounds = true;
}
if (m_outbounds)
{
m_lastposition = _position;
m_lastorientation = _orientation;
d.Vector3 dtmp = d.BodyGetAngularVel(Body);
m_rotationalVelocity.X = dtmp.X;
m_rotationalVelocity.Y = dtmp.Y;
m_rotationalVelocity.Z = dtmp.Z;
dtmp = d.BodyGetLinearVel(Body);
_velocity.X = dtmp.X;
_velocity.Y = dtmp.Y;
_velocity.Z = dtmp.Z;
d.BodySetLinearVel(Body, 0, 0, 0); // stop it
d.BodySetAngularVel(Body, 0, 0, 0);
d.GeomSetPosition(prim_geom, _position.X, _position.Y, _position.Z);
disableBodySoft(); // stop collisions
base.RequestPhysicsterseUpdate();
return;
}
d.Quaternion ori;
d.GeomCopyQuaternion(prim_geom, out ori);
// decide if moving
// use positions since this are integrated quantities
// tolerance values depende a lot on simulation noise...
// use simple math.abs since we dont need to be exact
if (
(Math.Abs(_position.X - lpos.X) < 0.001f)
&& (Math.Abs(_position.Y - lpos.Y) < 0.001f)
&& (Math.Abs(_position.Z - lpos.Z) < 0.001f)
&& (Math.Abs(_orientation.X - ori.X) < 0.0001f)
&& (Math.Abs(_orientation.Y - ori.Y) < 0.0001f)
&& (Math.Abs(_orientation.Z - ori.Z) < 0.0001f) // ignore W
)
{
_zeroFlag = true;
}
else
_zeroFlag = false;
// update velocities and aceleration
if (!(_zeroFlag && lastZeroFlag))
{
d.Vector3 vel = d.BodyGetLinearVel(Body);
_acceleration = _velocity;
if ((Math.Abs(vel.X) < 0.001f) &&
(Math.Abs(vel.Y) < 0.001f) &&
(Math.Abs(vel.Z) < 0.001f))
{
_velocity = Vector3.Zero;
float t = -m_invTimeStep;
_acceleration = _acceleration * t;
}
else
{
_velocity.X = vel.X;
_velocity.Y = vel.Y;
_velocity.Z = vel.Z;
_acceleration = (_velocity - _acceleration) * m_invTimeStep;
}
if ((Math.Abs(_acceleration.X) < 0.01f) &&
(Math.Abs(_acceleration.Y) < 0.01f) &&
(Math.Abs(_acceleration.Z) < 0.01f))
{
_acceleration = Vector3.Zero;
}
if ((Math.Abs(_orientation.X - ori.X) < 0.0001) &&
(Math.Abs(_orientation.Y - ori.Y) < 0.0001) &&
(Math.Abs(_orientation.Z - ori.Z) < 0.0001)
)
{
m_rotationalVelocity = Vector3.Zero;
}
else
{
vel = d.BodyGetAngularVel(Body);
m_rotationalVelocity.X = vel.X;
m_rotationalVelocity.Y = vel.Y;
m_rotationalVelocity.Z = vel.Z;
}
}
if (_zeroFlag)
{
if (lastZeroFlag)
{
_velocity = Vector3.Zero;
_acceleration = Vector3.Zero;
m_rotationalVelocity = Vector3.Zero;
}
if (!m_lastUpdateSent)
{
base.RequestPhysicsterseUpdate();
if (lastZeroFlag)
m_lastUpdateSent = true;
}
return;
}
_position.X = lpos.X;
_position.Y = lpos.Y;
_position.Z = lpos.Z;
_orientation.X = ori.X;
_orientation.Y = ori.Y;
_orientation.Z = ori.Z;
_orientation.W = ori.W;
base.RequestPhysicsterseUpdate();
m_lastUpdateSent = false;
}
}
}
internal static bool QuaternionIsFinite(Quaternion q)
{
if (Single.IsNaN(q.X) || Single.IsInfinity(q.X))
return false;
if (Single.IsNaN(q.Y) || Single.IsInfinity(q.Y))
return false;
if (Single.IsNaN(q.Z) || Single.IsInfinity(q.Z))
return false;
if (Single.IsNaN(q.W) || Single.IsInfinity(q.W))
return false;
return true;
}
internal static void DMassSubPartFromObj(ref d.Mass part, ref d.Mass theobj)
{
// assumes object center of mass is zero
float smass = part.mass;
theobj.mass -= smass;
smass *= 1.0f / (theobj.mass); ;
theobj.c.X -= part.c.X * smass;
theobj.c.Y -= part.c.Y * smass;
theobj.c.Z -= part.c.Z * smass;
theobj.I.M00 -= part.I.M00;
theobj.I.M01 -= part.I.M01;
theobj.I.M02 -= part.I.M02;
theobj.I.M10 -= part.I.M10;
theobj.I.M11 -= part.I.M11;
theobj.I.M12 -= part.I.M12;
theobj.I.M20 -= part.I.M20;
theobj.I.M21 -= part.I.M21;
theobj.I.M22 -= part.I.M22;
}
private void donullchange()
{
}
public bool DoAChange(changes what, object arg)
{
if (prim_geom == IntPtr.Zero && what != changes.Add && what != changes.Remove)
{
return false;
}
// nasty switch
switch (what)
{
case changes.Add:
changeadd();
break;
case changes.Remove:
//If its being removed, we don't want to rebuild the physical rep at all, so ignore this stuff...
//When we return true, it destroys all of the prims in the linkset anyway
if (_parent != null)
{
OdePrim parent = (OdePrim)_parent;
parent.ChildRemove(this, false);
}
else
ChildRemove(this, false);
m_vehicle = null;
RemoveGeom();
m_targetSpace = IntPtr.Zero;
if (m_eventsubscription > 0)
UnSubscribeEvents();
return true;
case changes.Link:
OdePrim tmp = (OdePrim)arg;
changeLink(tmp);
break;
case changes.DeLink:
changeLink(null);
break;
case changes.Position:
changePosition((Vector3)arg);
break;
case changes.Orientation:
changeOrientation((Quaternion)arg);
break;
case changes.PosOffset:
donullchange();
break;
case changes.OriOffset:
donullchange();
break;
case changes.Velocity:
changevelocity((Vector3)arg);
break;
// case changes.Acceleration:
// changeacceleration((Vector3)arg);
// break;
// case changes.AngVelocity:
// changeangvelocity((Vector3)arg);
// break;
case changes.Force:
changeForce((Vector3)arg);
break;
case changes.Torque:
changeSetTorque((Vector3)arg);
break;
case changes.AddForce:
changeAddImpulse((Vector3)arg);
break;
case changes.AddAngForce:
changeAddAngularImpulse((Vector3)arg);
break;
case changes.AngLock:
changeAngularLock((Vector3)arg);
break;
case changes.Size:
changeSize((Vector3)arg);
break;
case changes.Shape:
changeShape((PrimitiveBaseShape)arg);
break;
case changes.CollidesWater:
changeFloatOnWater((bool)arg);
break;
case changes.VolumeDtc:
changeVolumedetetion((bool)arg);
break;
case changes.Phantom:
changePhantomStatus((bool)arg);
break;
case changes.Physical:
changePhysicsStatus((bool)arg);
break;
case changes.Selected:
changeSelectedStatus((bool)arg);
break;
case changes.disabled:
changeDisable((bool)arg);
break;
case changes.building:
changeBuilding((bool)arg);
break;
case changes.VehicleType:
changeVehicleType((int)arg);
break;
case changes.VehicleFlags:
changeVehicleFlags((strVehicleBoolParam) arg);
break;
case changes.VehicleFloatParam:
changeVehicleFloatParam((strVehicleFloatParam) arg);
break;
case changes.VehicleVectorParam:
changeVehicleVectorParam((strVehicleVectorParam) arg);
break;
case changes.VehicleRotationParam:
changeVehicleRotationParam((strVehicleQuatParam) arg);
break;
case changes.SetVehicle:
changeSetVehicle((VehicleData) arg);
break;
case changes.Null:
donullchange();
break;
default:
donullchange();
break;
}
return false;
}
public void AddChange(changes what, object arg)
{
_parent_scene.AddChange((PhysicsActor) this, what, arg);
}
private struct strVehicleBoolParam
{
public int param;
public bool value;
}
private struct strVehicleFloatParam
{
public int param;
public float value;
}
private struct strVehicleQuatParam
{
public int param;
public Quaternion value;
}
private struct strVehicleVectorParam
{
public int param;
public Vector3 value;
}
}
}