1321 lines
63 KiB
C#
1321 lines
63 KiB
C#
/*
|
|
* Copyright (c) Contributors, http://opensimulator.org/
|
|
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of the OpenSimulator Project nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial
|
|
* are Copyright (c) 2009 Linden Research, Inc and are used under their license
|
|
* of Creative Commons Attribution-Share Alike 3.0
|
|
* (http://creativecommons.org/licenses/by-sa/3.0/).
|
|
*/
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Reflection;
|
|
using System.Runtime.InteropServices;
|
|
using OpenMetaverse;
|
|
using OpenSim.Region.Physics.Manager;
|
|
|
|
namespace OpenSim.Region.Physics.BulletSPlugin
|
|
{
|
|
public sealed class BSDynamics
|
|
{
|
|
private static string LogHeader = "[BULLETSIM VEHICLE]";
|
|
|
|
private BSScene PhysicsScene { get; set; }
|
|
// the prim this dynamic controller belongs to
|
|
private BSPrim Prim { get; set; }
|
|
|
|
// mass of the vehicle fetched each time we're calles
|
|
private float m_vehicleMass;
|
|
|
|
// Vehicle properties
|
|
public Vehicle Type { get; set; }
|
|
|
|
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
|
|
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
|
|
// HOVER_TERRAIN_ONLY
|
|
// HOVER_GLOBAL_HEIGHT
|
|
// NO_DEFLECTION_UP
|
|
// HOVER_WATER_ONLY
|
|
// HOVER_UP_ONLY
|
|
// LIMIT_MOTOR_UP
|
|
// LIMIT_ROLL_ONLY
|
|
private Vector3 m_BlockingEndPoint = Vector3.Zero;
|
|
private Quaternion m_RollreferenceFrame = Quaternion.Identity;
|
|
private Quaternion m_referenceFrame = Quaternion.Identity;
|
|
|
|
// Linear properties
|
|
private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
|
|
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
|
|
private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
|
|
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
|
|
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
|
|
private float m_linearMotorDecayTimescale = 0;
|
|
private float m_linearMotorTimescale = 0;
|
|
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
|
|
private Vector3 m_lastPositionVector = Vector3.Zero;
|
|
// private bool m_LinearMotorSetLastFrame = false;
|
|
// private Vector3 m_linearMotorOffset = Vector3.Zero;
|
|
|
|
//Angular properties
|
|
private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
|
|
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
|
|
// private int m_angularMotorApply = 0; // application frame counter
|
|
private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
|
|
private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
|
|
private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
|
|
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
|
|
private Vector3 m_lastAngularCorrection = Vector3.Zero;
|
|
private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
|
|
|
|
//Deflection properties
|
|
private float m_angularDeflectionEfficiency = 0;
|
|
private float m_angularDeflectionTimescale = 0;
|
|
private float m_linearDeflectionEfficiency = 0;
|
|
private float m_linearDeflectionTimescale = 0;
|
|
|
|
//Banking properties
|
|
private float m_bankingEfficiency = 0;
|
|
private float m_bankingMix = 0;
|
|
private float m_bankingTimescale = 0;
|
|
|
|
//Hover and Buoyancy properties
|
|
private float m_VhoverHeight = 0f;
|
|
private float m_VhoverEfficiency = 0f;
|
|
private float m_VhoverTimescale = 0f;
|
|
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
|
|
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
|
|
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
|
|
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
|
|
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
|
|
|
|
//Attractor properties
|
|
private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
|
|
private float m_verticalAttractionEfficiency = 1.0f; // damped
|
|
private float m_verticalAttractionCutoff = 500f; // per the documentation
|
|
// Timescale > cutoff means no vert attractor.
|
|
private float m_verticalAttractionTimescale = 510f;
|
|
|
|
public BSDynamics(BSScene myScene, BSPrim myPrim)
|
|
{
|
|
PhysicsScene = myScene;
|
|
Prim = myPrim;
|
|
Type = Vehicle.TYPE_NONE;
|
|
}
|
|
|
|
// Return 'true' if this vehicle is doing vehicle things
|
|
public bool IsActive
|
|
{
|
|
get { return Type != Vehicle.TYPE_NONE; }
|
|
}
|
|
|
|
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
|
|
{
|
|
VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
|
|
switch (pParam)
|
|
{
|
|
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
|
|
m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
|
|
m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
|
|
m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
|
|
m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
|
|
m_angularMotorTimescale = Math.Max(pValue, 0.01f);
|
|
m_angularMotor.TimeScale = m_angularMotorTimescale;
|
|
break;
|
|
case Vehicle.BANKING_EFFICIENCY:
|
|
m_bankingEfficiency = ClampInRange(-1f, pValue, 1f);
|
|
break;
|
|
case Vehicle.BANKING_MIX:
|
|
m_bankingMix = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.BANKING_TIMESCALE:
|
|
m_bankingTimescale = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.BUOYANCY:
|
|
m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f);
|
|
break;
|
|
case Vehicle.HOVER_EFFICIENCY:
|
|
m_VhoverEfficiency = ClampInRange(0f, pValue, 1f);
|
|
break;
|
|
case Vehicle.HOVER_HEIGHT:
|
|
m_VhoverHeight = pValue;
|
|
break;
|
|
case Vehicle.HOVER_TIMESCALE:
|
|
m_VhoverTimescale = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
|
|
m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
|
|
m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
|
|
m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
|
|
m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_TIMESCALE:
|
|
m_linearMotorTimescale = Math.Max(pValue, 0.01f);
|
|
m_linearMotor.TimeScale = m_linearMotorTimescale;
|
|
break;
|
|
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
|
|
m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f);
|
|
m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
|
|
break;
|
|
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
|
|
m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
|
|
m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
|
|
break;
|
|
|
|
// These are vector properties but the engine lets you use a single float value to
|
|
// set all of the components to the same value
|
|
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
|
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
|
m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
|
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
|
|
m_angularMotor.SetTarget(m_angularMotorDirection);
|
|
break;
|
|
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
|
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
|
m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
|
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
|
|
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
|
|
m_linearMotor.SetTarget(m_linearMotorDirection);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_OFFSET:
|
|
m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
|
|
break;
|
|
|
|
}
|
|
}//end ProcessFloatVehicleParam
|
|
|
|
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
|
|
{
|
|
VDetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
|
|
switch (pParam)
|
|
{
|
|
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
|
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
|
// Limit requested angular speed to 2 rps= 4 pi rads/sec
|
|
pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f);
|
|
pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f);
|
|
pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f);
|
|
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
m_angularMotor.SetTarget(m_angularMotorDirection);
|
|
break;
|
|
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
|
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
|
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
m_linearMotor.SetTarget(m_linearMotorDirection);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_OFFSET:
|
|
m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
case Vehicle.BLOCK_EXIT:
|
|
m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
}
|
|
}//end ProcessVectorVehicleParam
|
|
|
|
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
|
|
{
|
|
VDetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
|
|
switch (pParam)
|
|
{
|
|
case Vehicle.REFERENCE_FRAME:
|
|
m_referenceFrame = pValue;
|
|
break;
|
|
case Vehicle.ROLL_FRAME:
|
|
m_RollreferenceFrame = pValue;
|
|
break;
|
|
}
|
|
}//end ProcessRotationVehicleParam
|
|
|
|
internal void ProcessVehicleFlags(int pParam, bool remove)
|
|
{
|
|
VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove);
|
|
VehicleFlag parm = (VehicleFlag)pParam;
|
|
if (pParam == -1)
|
|
m_flags = (VehicleFlag)0;
|
|
else
|
|
{
|
|
if (remove)
|
|
m_flags &= ~parm;
|
|
else
|
|
m_flags |= parm;
|
|
}
|
|
}
|
|
|
|
internal void ProcessTypeChange(Vehicle pType)
|
|
{
|
|
VDetailLog("{0},ProcessTypeChange,type={1}", Prim.LocalID, pType);
|
|
// Set Defaults For Type
|
|
Type = pType;
|
|
switch (pType)
|
|
{
|
|
case Vehicle.TYPE_NONE:
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 0;
|
|
m_linearMotorDecayTimescale = 0;
|
|
m_linearFrictionTimescale = new Vector3(0, 0, 0);
|
|
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorDecayTimescale = 0;
|
|
m_angularMotorTimescale = 0;
|
|
m_angularFrictionTimescale = new Vector3(0, 0, 0);
|
|
|
|
m_VhoverHeight = 0;
|
|
m_VhoverEfficiency = 0;
|
|
m_VhoverTimescale = 0;
|
|
m_VehicleBuoyancy = 0;
|
|
|
|
m_linearDeflectionEfficiency = 1;
|
|
m_linearDeflectionTimescale = 1;
|
|
|
|
m_angularDeflectionEfficiency = 0;
|
|
m_angularDeflectionTimescale = 1000;
|
|
|
|
m_verticalAttractionEfficiency = 0;
|
|
m_verticalAttractionTimescale = 0;
|
|
|
|
m_bankingEfficiency = 0;
|
|
m_bankingTimescale = 1000;
|
|
m_bankingMix = 1;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
m_flags = (VehicleFlag)0;
|
|
|
|
break;
|
|
|
|
case Vehicle.TYPE_SLED:
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 1000;
|
|
m_linearMotorDecayTimescale = 120;
|
|
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
|
|
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 1000;
|
|
m_angularMotorDecayTimescale = 120;
|
|
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
|
|
|
|
m_VhoverHeight = 0;
|
|
m_VhoverEfficiency = 10; // TODO: this looks wrong!!
|
|
m_VhoverTimescale = 10;
|
|
m_VehicleBuoyancy = 0;
|
|
|
|
m_linearDeflectionEfficiency = 1;
|
|
m_linearDeflectionTimescale = 1;
|
|
|
|
m_angularDeflectionEfficiency = 1;
|
|
m_angularDeflectionTimescale = 1000;
|
|
|
|
m_verticalAttractionEfficiency = 0;
|
|
m_verticalAttractionTimescale = 0;
|
|
|
|
m_bankingEfficiency = 0;
|
|
m_bankingTimescale = 10;
|
|
m_bankingMix = 1;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
|
|
| VehicleFlag.HOVER_TERRAIN_ONLY
|
|
| VehicleFlag.HOVER_GLOBAL_HEIGHT
|
|
| VehicleFlag.HOVER_UP_ONLY);
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP
|
|
| VehicleFlag.LIMIT_ROLL_ONLY
|
|
| VehicleFlag.LIMIT_MOTOR_UP);
|
|
|
|
break;
|
|
case Vehicle.TYPE_CAR:
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 1;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
|
|
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 1;
|
|
m_angularMotorDecayTimescale = 0.8f;
|
|
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
|
|
|
|
m_VhoverHeight = 0;
|
|
m_VhoverEfficiency = 0;
|
|
m_VhoverTimescale = 1000;
|
|
m_VehicleBuoyancy = 0;
|
|
|
|
m_linearDeflectionEfficiency = 1;
|
|
m_linearDeflectionTimescale = 2;
|
|
|
|
m_angularDeflectionEfficiency = 0;
|
|
m_angularDeflectionTimescale = 10;
|
|
|
|
m_verticalAttractionEfficiency = 1f;
|
|
m_verticalAttractionTimescale = 10f;
|
|
|
|
m_bankingEfficiency = -0.2f;
|
|
m_bankingMix = 1;
|
|
m_bankingTimescale = 1;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
|
|
| VehicleFlag.HOVER_TERRAIN_ONLY
|
|
| VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP
|
|
| VehicleFlag.LIMIT_ROLL_ONLY
|
|
| VehicleFlag.LIMIT_MOTOR_UP
|
|
| VehicleFlag.HOVER_UP_ONLY);
|
|
break;
|
|
case Vehicle.TYPE_BOAT:
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 5;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_linearFrictionTimescale = new Vector3(10, 3, 2);
|
|
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 4;
|
|
m_angularMotorDecayTimescale = 4;
|
|
m_angularFrictionTimescale = new Vector3(10,10,10);
|
|
|
|
m_VhoverHeight = 0;
|
|
m_VhoverEfficiency = 0.5f;
|
|
m_VhoverTimescale = 2;
|
|
m_VehicleBuoyancy = 1;
|
|
|
|
m_linearDeflectionEfficiency = 0.5f;
|
|
m_linearDeflectionTimescale = 3;
|
|
|
|
m_angularDeflectionEfficiency = 0.5f;
|
|
m_angularDeflectionTimescale = 5;
|
|
|
|
m_verticalAttractionEfficiency = 0.5f;
|
|
m_verticalAttractionTimescale = 5f;
|
|
|
|
m_bankingEfficiency = -0.3f;
|
|
m_bankingMix = 0.8f;
|
|
m_bankingTimescale = 1;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY
|
|
| VehicleFlag.HOVER_GLOBAL_HEIGHT
|
|
| VehicleFlag.LIMIT_ROLL_ONLY
|
|
| VehicleFlag.HOVER_UP_ONLY);
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP
|
|
| VehicleFlag.LIMIT_MOTOR_UP
|
|
| VehicleFlag.HOVER_WATER_ONLY);
|
|
break;
|
|
case Vehicle.TYPE_AIRPLANE:
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 2;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_linearFrictionTimescale = new Vector3(200, 10, 5);
|
|
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 4;
|
|
m_angularMotorDecayTimescale = 4;
|
|
m_angularFrictionTimescale = new Vector3(20, 20, 20);
|
|
|
|
m_VhoverHeight = 0;
|
|
m_VhoverEfficiency = 0.5f;
|
|
m_VhoverTimescale = 1000;
|
|
m_VehicleBuoyancy = 0;
|
|
|
|
m_linearDeflectionEfficiency = 0.5f;
|
|
m_linearDeflectionTimescale = 3;
|
|
|
|
m_angularDeflectionEfficiency = 1;
|
|
m_angularDeflectionTimescale = 2;
|
|
|
|
m_verticalAttractionEfficiency = 0.9f;
|
|
m_verticalAttractionTimescale = 2f;
|
|
|
|
m_bankingEfficiency = 1;
|
|
m_bankingMix = 0.7f;
|
|
m_bankingTimescale = 2;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
|
|
| VehicleFlag.HOVER_TERRAIN_ONLY
|
|
| VehicleFlag.HOVER_GLOBAL_HEIGHT
|
|
| VehicleFlag.HOVER_UP_ONLY
|
|
| VehicleFlag.NO_DEFLECTION_UP
|
|
| VehicleFlag.LIMIT_MOTOR_UP);
|
|
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
|
|
break;
|
|
case Vehicle.TYPE_BALLOON:
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 5;
|
|
m_linearFrictionTimescale = new Vector3(5, 5, 5);
|
|
m_linearMotorDecayTimescale = 60;
|
|
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 6;
|
|
m_angularFrictionTimescale = new Vector3(10, 10, 10);
|
|
m_angularMotorDecayTimescale = 10;
|
|
|
|
m_VhoverHeight = 5;
|
|
m_VhoverEfficiency = 0.8f;
|
|
m_VhoverTimescale = 10;
|
|
m_VehicleBuoyancy = 1;
|
|
|
|
m_linearDeflectionEfficiency = 0;
|
|
m_linearDeflectionTimescale = 5;
|
|
|
|
m_angularDeflectionEfficiency = 0;
|
|
m_angularDeflectionTimescale = 5;
|
|
|
|
m_verticalAttractionEfficiency = 1f;
|
|
m_verticalAttractionTimescale = 100f;
|
|
|
|
m_bankingEfficiency = 0;
|
|
m_bankingMix = 0.7f;
|
|
m_bankingTimescale = 5;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
|
|
m_referenceFrame = Quaternion.Identity;
|
|
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
|
|
| VehicleFlag.HOVER_TERRAIN_ONLY
|
|
| VehicleFlag.HOVER_UP_ONLY
|
|
| VehicleFlag.NO_DEFLECTION_UP
|
|
| VehicleFlag.LIMIT_MOTOR_UP);
|
|
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY
|
|
| VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
break;
|
|
}
|
|
|
|
// Update any physical parameters based on this type.
|
|
Refresh();
|
|
|
|
m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
|
|
m_linearMotorDecayTimescale, m_linearFrictionTimescale,
|
|
1f);
|
|
m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
|
|
|
|
m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
|
|
m_angularMotorDecayTimescale, m_angularFrictionTimescale,
|
|
1f);
|
|
m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
|
|
|
|
m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
|
|
BSMotor.Infinite, BSMotor.InfiniteVector,
|
|
m_verticalAttractionEfficiency);
|
|
// Z goes away and we keep X and Y
|
|
m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f);
|
|
m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
|
|
}
|
|
|
|
// Some of the properties of this prim may have changed.
|
|
// Do any updating needed for a vehicle
|
|
public void Refresh()
|
|
{
|
|
if (IsActive)
|
|
{
|
|
// Remember the mass so we don't have to fetch it every step
|
|
m_vehicleMass = Prim.Linkset.LinksetMass;
|
|
|
|
// Friction affects are handled by this vehicle code
|
|
float friction = 0f;
|
|
BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, friction);
|
|
|
|
// Moderate angular movement introduced by Bullet.
|
|
// TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
|
|
// Maybe compute linear and angular factor and damping from params.
|
|
float angularDamping = PhysicsScene.Params.vehicleAngularDamping;
|
|
BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, angularDamping);
|
|
|
|
// Vehicles report collision events so we know when it's on the ground
|
|
BulletSimAPI.AddToCollisionFlags2(Prim.PhysBody.ptr, CollisionFlags.BS_VEHICLE_COLLISIONS);
|
|
|
|
// DEBUG DEBUG DEBUG: use uniform inertia to smooth movement added by Bullet
|
|
// Vector3 localInertia = new Vector3(1f, 1f, 1f);
|
|
// Vector3 localInertia = new Vector3(m_vehicleMass, m_vehicleMass, m_vehicleMass);
|
|
Vector3 localInertia = BulletSimAPI.CalculateLocalInertia2(Prim.PhysShape.ptr, m_vehicleMass);
|
|
BulletSimAPI.SetMassProps2(Prim.PhysBody.ptr, m_vehicleMass, localInertia);
|
|
BulletSimAPI.UpdateInertiaTensor2(Prim.PhysBody.ptr);
|
|
|
|
VDetailLog("{0},BSDynamics.Refresh,mass={1},frict={2},inert={3},aDamp={4}",
|
|
Prim.LocalID, m_vehicleMass, friction, localInertia, angularDamping);
|
|
}
|
|
else
|
|
{
|
|
BulletSimAPI.RemoveFromCollisionFlags2(Prim.PhysBody.ptr, CollisionFlags.BS_VEHICLE_COLLISIONS);
|
|
}
|
|
}
|
|
|
|
public bool RemoveBodyDependencies(BSPhysObject prim)
|
|
{
|
|
// If active, we need to add our properties back when the body is rebuilt.
|
|
return IsActive;
|
|
}
|
|
|
|
public void RestoreBodyDependencies(BSPhysObject prim)
|
|
{
|
|
if (Prim.LocalID != prim.LocalID)
|
|
{
|
|
// The call should be on us by our prim. Error if not.
|
|
PhysicsScene.Logger.ErrorFormat("{0} RestoreBodyDependencies: called by not my prim. passedLocalID={1}, vehiclePrimLocalID={2}",
|
|
LogHeader, prim.LocalID, Prim.LocalID);
|
|
return;
|
|
}
|
|
Refresh();
|
|
}
|
|
|
|
#region Known vehicle value functions
|
|
// Vehicle physical parameters that we buffer from constant getting and setting.
|
|
// The "m_known*" variables are initialized to 'null', fetched only if referenced
|
|
// and stored back into the physics engine only if updated.
|
|
// This does two things: 1) saves continuious calls into unmanaged code, and
|
|
// 2) signals when a physics property update must happen back to the simulator
|
|
// to update values modified for the vehicle.
|
|
private int m_knownChanged;
|
|
private float? m_knownTerrainHeight;
|
|
private float? m_knownWaterLevel;
|
|
private Vector3? m_knownPosition;
|
|
private Vector3? m_knownVelocity;
|
|
private Vector3 m_knownForce;
|
|
private Quaternion? m_knownOrientation;
|
|
private Vector3? m_knownRotationalVelocity;
|
|
private Vector3 m_knownRotationalForce;
|
|
private float? m_knownForwardSpeed;
|
|
|
|
private const int m_knownChangedPosition = 1 << 0;
|
|
private const int m_knownChangedVelocity = 1 << 1;
|
|
private const int m_knownChangedForce = 1 << 2;
|
|
private const int m_knownChangedOrientation = 1 << 3;
|
|
private const int m_knownChangedRotationalVelocity = 1 << 4;
|
|
private const int m_knownChangedRotationalForce = 1 << 5;
|
|
|
|
private void ForgetKnownVehicleProperties()
|
|
{
|
|
m_knownTerrainHeight = null;
|
|
m_knownWaterLevel = null;
|
|
m_knownPosition = null;
|
|
m_knownVelocity = null;
|
|
m_knownForce = Vector3.Zero;
|
|
m_knownOrientation = null;
|
|
m_knownRotationalVelocity = null;
|
|
m_knownRotationalForce = Vector3.Zero;
|
|
m_knownForwardSpeed = null;
|
|
m_knownChanged = 0;
|
|
}
|
|
private void PushKnownChanged()
|
|
{
|
|
if (m_knownChanged != 0)
|
|
{
|
|
if ((m_knownChanged & m_knownChangedPosition) != 0)
|
|
Prim.ForcePosition = VehiclePosition;
|
|
if ((m_knownChanged & m_knownChangedOrientation) != 0)
|
|
Prim.ForceOrientation = VehicleOrientation;
|
|
if ((m_knownChanged & m_knownChangedVelocity) != 0)
|
|
{
|
|
Prim.ForceVelocity = VehicleVelocity;
|
|
BulletSimAPI.SetInterpolationLinearVelocity2(Prim.PhysBody.ptr, VehicleVelocity);
|
|
}
|
|
if ((m_knownChanged & m_knownChangedForce) != 0)
|
|
Prim.AddForce((Vector3)m_knownForce, false, true);
|
|
|
|
if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0)
|
|
{
|
|
Prim.ForceRotationalVelocity = VehicleRotationalVelocity;
|
|
// Fake out Bullet by making it think the velocity is the same as last time.
|
|
BulletSimAPI.SetInterpolationAngularVelocity2(Prim.PhysBody.ptr, VehicleRotationalVelocity);
|
|
}
|
|
if ((m_knownChanged & m_knownChangedRotationalForce) != 0)
|
|
Prim.AddAngularForce((Vector3)m_knownRotationalForce, false, true);
|
|
|
|
// If we set one of the values (ie, the physics engine didn't do it) we must force
|
|
// an UpdateProperties event to send the changes up to the simulator.
|
|
BulletSimAPI.PushUpdate2(Prim.PhysBody.ptr);
|
|
}
|
|
}
|
|
|
|
// Since the computation of terrain height can be a little involved, this routine
|
|
// is used ot fetch the height only once for each vehicle simulation step.
|
|
private float GetTerrainHeight(Vector3 pos)
|
|
{
|
|
if (m_knownTerrainHeight == null)
|
|
m_knownTerrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
|
|
return (float)m_knownTerrainHeight;
|
|
}
|
|
|
|
// Since the computation of water level can be a little involved, this routine
|
|
// is used ot fetch the level only once for each vehicle simulation step.
|
|
private float GetWaterLevel(Vector3 pos)
|
|
{
|
|
if (m_knownWaterLevel == null)
|
|
m_knownWaterLevel = Prim.PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(pos);
|
|
return (float)m_knownWaterLevel;
|
|
}
|
|
|
|
private Vector3 VehiclePosition
|
|
{
|
|
get
|
|
{
|
|
if (m_knownPosition == null)
|
|
m_knownPosition = Prim.ForcePosition;
|
|
return (Vector3)m_knownPosition;
|
|
}
|
|
set
|
|
{
|
|
m_knownPosition = value;
|
|
m_knownChanged |= m_knownChangedPosition;
|
|
}
|
|
}
|
|
|
|
private Quaternion VehicleOrientation
|
|
{
|
|
get
|
|
{
|
|
if (m_knownOrientation == null)
|
|
m_knownOrientation = Prim.ForceOrientation;
|
|
return (Quaternion)m_knownOrientation;
|
|
}
|
|
set
|
|
{
|
|
m_knownOrientation = value;
|
|
m_knownChanged |= m_knownChangedOrientation;
|
|
}
|
|
}
|
|
|
|
private Vector3 VehicleVelocity
|
|
{
|
|
get
|
|
{
|
|
if (m_knownVelocity == null)
|
|
m_knownVelocity = Prim.ForceVelocity;
|
|
return (Vector3)m_knownVelocity;
|
|
}
|
|
set
|
|
{
|
|
m_knownVelocity = value;
|
|
m_knownChanged |= m_knownChangedVelocity;
|
|
}
|
|
}
|
|
|
|
private void VehicleAddForce(Vector3 aForce)
|
|
{
|
|
m_knownForce += aForce;
|
|
m_knownChanged |= m_knownChangedForce;
|
|
}
|
|
|
|
private Vector3 VehicleRotationalVelocity
|
|
{
|
|
get
|
|
{
|
|
if (m_knownRotationalVelocity == null)
|
|
m_knownRotationalVelocity = Prim.ForceRotationalVelocity;
|
|
return (Vector3)m_knownRotationalVelocity;
|
|
}
|
|
set
|
|
{
|
|
m_knownRotationalVelocity = value;
|
|
m_knownChanged |= m_knownChangedRotationalVelocity;
|
|
}
|
|
}
|
|
private void VehicleAddAngularForce(Vector3 aForce)
|
|
{
|
|
m_knownRotationalForce += aForce;
|
|
m_knownChanged |= m_knownChangedRotationalForce;
|
|
}
|
|
private float VehicleForwardSpeed
|
|
{
|
|
get
|
|
{
|
|
if (m_knownForwardSpeed == null)
|
|
m_knownForwardSpeed = (VehicleVelocity * Quaternion.Inverse(VehicleOrientation)).X;
|
|
return (float)m_knownForwardSpeed;
|
|
}
|
|
}
|
|
|
|
#endregion // Known vehicle value functions
|
|
|
|
// One step of the vehicle properties for the next 'pTimestep' seconds.
|
|
internal void Step(float pTimestep)
|
|
{
|
|
if (!IsActive) return;
|
|
|
|
ForgetKnownVehicleProperties();
|
|
|
|
MoveLinear(pTimestep);
|
|
MoveAngular(pTimestep);
|
|
|
|
LimitRotation(pTimestep);
|
|
|
|
// remember the position so next step we can limit absolute movement effects
|
|
m_lastPositionVector = VehiclePosition;
|
|
|
|
// If we forced the changing of some vehicle parameters, update the values and
|
|
// for the physics engine to note the changes so an UpdateProperties event will happen.
|
|
PushKnownChanged();
|
|
|
|
VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
|
|
Prim.LocalID, VehiclePosition, Prim.Force, VehicleVelocity, VehicleRotationalVelocity);
|
|
}
|
|
|
|
// Apply the effect of the linear motor and other linear motions (like hover and float).
|
|
private void MoveLinear(float pTimestep)
|
|
{
|
|
Vector3 linearMotorContribution = m_linearMotor.Step(pTimestep);
|
|
|
|
// The movement computed in the linear motor is relative to the vehicle
|
|
// coordinates. Rotate the movement to world coordinates.
|
|
linearMotorContribution *= VehicleOrientation;
|
|
|
|
// ==================================================================
|
|
// Buoyancy: force to overcome gravity.
|
|
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
|
|
// So, if zero, don't change anything (let gravity happen). If one, negate the effect of gravity.
|
|
Vector3 buoyancyContribution = Prim.PhysicsScene.DefaultGravity * m_VehicleBuoyancy;
|
|
|
|
Vector3 terrainHeightContribution = ComputeLinearTerrainHeightCorrection(pTimestep);
|
|
|
|
Vector3 hoverContribution = ComputeLinearHover(pTimestep);
|
|
|
|
ComputeLinearBlockingEndPoint(pTimestep);
|
|
|
|
Vector3 limitMotorUpContribution = ComputeLinearMotorUp(pTimestep);
|
|
|
|
// ==================================================================
|
|
Vector3 newVelocity = linearMotorContribution
|
|
+ terrainHeightContribution
|
|
+ hoverContribution
|
|
+ limitMotorUpContribution;
|
|
|
|
Vector3 newForce = buoyancyContribution;
|
|
|
|
// If not changing some axis, reduce out velocity
|
|
if ((m_flags & (VehicleFlag.NO_X)) != 0)
|
|
newVelocity.X = 0;
|
|
if ((m_flags & (VehicleFlag.NO_Y)) != 0)
|
|
newVelocity.Y = 0;
|
|
if ((m_flags & (VehicleFlag.NO_Z)) != 0)
|
|
newVelocity.Z = 0;
|
|
|
|
// ==================================================================
|
|
// Clamp high or low velocities
|
|
float newVelocityLengthSq = newVelocity.LengthSquared();
|
|
// if (newVelocityLengthSq > 1e6f)
|
|
if (newVelocityLengthSq > 1000f)
|
|
{
|
|
newVelocity /= newVelocity.Length();
|
|
newVelocity *= 1000f;
|
|
}
|
|
// else if (newVelocityLengthSq < 1e-6f)
|
|
else if (newVelocityLengthSq < 0.001f)
|
|
newVelocity = Vector3.Zero;
|
|
|
|
// ==================================================================
|
|
// Stuff new linear velocity into the vehicle.
|
|
// Since the velocity is just being set, it is not scaled by pTimeStep. Bullet will do that for us.
|
|
VehicleVelocity = newVelocity;
|
|
|
|
// Other linear forces are applied as forces.
|
|
Vector3 totalDownForce = newForce * m_vehicleMass;
|
|
if (!totalDownForce.ApproxEquals(Vector3.Zero, 0.01f))
|
|
{
|
|
VehicleAddForce(totalDownForce);
|
|
}
|
|
|
|
VDetailLog("{0}, MoveLinear,done,newVel={1},totDown={2},IsColliding={3}",
|
|
Prim.LocalID, newVelocity, totalDownForce, Prim.IsColliding);
|
|
VDetailLog("{0}, MoveLinear,done,linContrib={1},terrContrib={2},hoverContrib={3},limitContrib={4},buoyContrib={5}",
|
|
Prim.LocalID,
|
|
linearMotorContribution, terrainHeightContribution, hoverContribution,
|
|
limitMotorUpContribution, buoyancyContribution
|
|
);
|
|
|
|
} // end MoveLinear()
|
|
|
|
public Vector3 ComputeLinearTerrainHeightCorrection(float pTimestep)
|
|
{
|
|
Vector3 ret = Vector3.Zero;
|
|
// If below the terrain, move us above the ground a little.
|
|
// TODO: Consider taking the rotated size of the object or possibly casting a ray.
|
|
if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition))
|
|
{
|
|
// TODO: correct position by applying force rather than forcing position.
|
|
VehiclePosition += new Vector3(0f, 0f, GetTerrainHeight(VehiclePosition) + 2f);
|
|
VDetailLog("{0}, MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
public Vector3 ComputeLinearHover(float pTimestep)
|
|
{
|
|
Vector3 ret = Vector3.Zero;
|
|
|
|
// m_VhoverEfficiency: 0=bouncy, 1=totally damped
|
|
// m_VhoverTimescale: time to achieve height
|
|
if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
|
|
{
|
|
// We should hover, get the target height
|
|
if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
|
|
{
|
|
m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight;
|
|
}
|
|
if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
|
|
{
|
|
m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight;
|
|
}
|
|
if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
|
|
{
|
|
m_VhoverTargetHeight = m_VhoverHeight;
|
|
}
|
|
|
|
if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
|
|
{
|
|
// If body is already heigher, use its height as target height
|
|
if (VehiclePosition.Z > m_VhoverTargetHeight)
|
|
m_VhoverTargetHeight = VehiclePosition.Z;
|
|
}
|
|
|
|
if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
|
|
{
|
|
if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f)
|
|
{
|
|
Vector3 pos = VehiclePosition;
|
|
pos.Z = m_VhoverTargetHeight;
|
|
VehiclePosition = pos;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Error is positive if below the target and negative if above.
|
|
float verticalError = m_VhoverTargetHeight - VehiclePosition.Z;
|
|
float verticalCorrectionVelocity = verticalError / m_VhoverTimescale;
|
|
|
|
// TODO: implement m_VhoverEfficiency correctly
|
|
if (Math.Abs(verticalError) > m_VhoverEfficiency)
|
|
{
|
|
ret = new Vector3(0f, 0f, verticalCorrectionVelocity);
|
|
}
|
|
}
|
|
|
|
VDetailLog("{0}, MoveLinear,hover,pos={1},ret={2},hoverTS={3},height={4},target={5}",
|
|
Prim.LocalID, VehiclePosition, ret, m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
public bool ComputeLinearBlockingEndPoint(float pTimestep)
|
|
{
|
|
bool changed = false;
|
|
|
|
Vector3 pos = VehiclePosition;
|
|
Vector3 posChange = pos - m_lastPositionVector;
|
|
if (m_BlockingEndPoint != Vector3.Zero)
|
|
{
|
|
if (pos.X >= (m_BlockingEndPoint.X - (float)1))
|
|
{
|
|
pos.X -= posChange.X + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
|
|
{
|
|
pos.Y -= posChange.Y + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
|
|
{
|
|
pos.Z -= posChange.Z + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.X <= 0)
|
|
{
|
|
pos.X += posChange.X + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.Y <= 0)
|
|
{
|
|
pos.Y += posChange.Y + 1;
|
|
changed = true;
|
|
}
|
|
if (changed)
|
|
{
|
|
VehiclePosition = pos;
|
|
VDetailLog("{0}, MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
|
|
Prim.LocalID, m_BlockingEndPoint, posChange, pos);
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
// From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
|
|
// Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when
|
|
// used with conjunction with banking: the strength of the banking will decay when the
|
|
// vehicle no longer experiences collisions. The decay timescale is the same as
|
|
// VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering
|
|
// when they are in mid jump.
|
|
// TODO: this code is wrong. Also, what should it do for boats (height from water)?
|
|
// This is just using the ground and a general collision check. Should really be using
|
|
// a downward raycast to find what is below.
|
|
public Vector3 ComputeLinearMotorUp(float pTimestep)
|
|
{
|
|
Vector3 ret = Vector3.Zero;
|
|
|
|
if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
|
|
{
|
|
float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition);
|
|
float distanceAboveGround = VehiclePosition.Z - targetHeight;
|
|
// Not colliding if the vehicle is off the ground
|
|
if (!Prim.IsColliding)
|
|
{
|
|
// downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
|
|
// downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
|
|
ret = new Vector3(0, 0, -distanceAboveGround);
|
|
}
|
|
// TODO: this calculation is wrong. From the description at
|
|
// (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
|
|
// has a decay factor. This says this force should
|
|
// be computed with a motor.
|
|
// TODO: add interaction with banking.
|
|
VDetailLog("{0}, MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}",
|
|
Prim.LocalID, distanceAboveGround, Prim.IsColliding, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// =======================================================================
|
|
// =======================================================================
|
|
// Apply the effect of the angular motor.
|
|
// The 'contribution' is how much angular correction velocity each function wants.
|
|
// All the contributions are added together and the resulting velocity is
|
|
// set directly on the vehicle.
|
|
private void MoveAngular(float pTimestep)
|
|
{
|
|
// The user wants how many radians per second angular change?
|
|
Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep);
|
|
|
|
// ==================================================================
|
|
// From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
|
|
// This flag prevents linear deflection parallel to world z-axis. This is useful
|
|
// for preventing ground vehicles with large linear deflection, like bumper cars,
|
|
// from climbing their linear deflection into the sky.
|
|
// That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
|
|
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
|
|
{
|
|
angularMotorContribution.X = 0f;
|
|
angularMotorContribution.Y = 0f;
|
|
VDetailLog("{0}, MoveAngular,noDeflectionUp,angularMotorContrib={1}", Prim.LocalID, angularMotorContribution);
|
|
}
|
|
|
|
Vector3 verticalAttractionContribution = ComputeAngularVerticalAttraction();
|
|
|
|
Vector3 deflectionContribution = ComputeAngularDeflection();
|
|
|
|
Vector3 bankingContribution = ComputeAngularBanking();
|
|
|
|
// ==================================================================
|
|
m_lastVertAttractor = verticalAttractionContribution;
|
|
|
|
// Sum corrections
|
|
m_lastAngularCorrection = angularMotorContribution
|
|
+ verticalAttractionContribution
|
|
+ deflectionContribution
|
|
+ bankingContribution;
|
|
|
|
// ==================================================================
|
|
// Apply the correction velocity.
|
|
// TODO: Should this be applied as an angular force (torque)?
|
|
if (!m_lastAngularCorrection.ApproxEquals(Vector3.Zero, 0.01f))
|
|
{
|
|
// DEBUG DEBUG DEBUG: optionally scale the angular velocity. Debugging SL vs ODE turning functions.
|
|
Vector3 scaledCorrection = m_lastAngularCorrection;
|
|
if (PhysicsScene.VehicleScaleAngularVelocityByTimestep)
|
|
scaledCorrection *= pTimestep;
|
|
VehicleRotationalVelocity = scaledCorrection;
|
|
|
|
VDetailLog("{0}, MoveAngular,done,nonZero,angMotorContrib={1},vertAttrContrib={2},bankContrib={3},deflectContrib={4},totalContrib={5},scaledCorr={6}",
|
|
Prim.LocalID,
|
|
angularMotorContribution, verticalAttractionContribution,
|
|
bankingContribution, deflectionContribution,
|
|
m_lastAngularCorrection, scaledCorrection
|
|
);
|
|
}
|
|
else
|
|
{
|
|
// The vehicle is not adding anything angular wise.
|
|
VehicleRotationalVelocity = Vector3.Zero;
|
|
VDetailLog("{0}, MoveAngular,done,zero", Prim.LocalID);
|
|
}
|
|
|
|
// ==================================================================
|
|
//Offset section
|
|
if (m_linearMotorOffset != Vector3.Zero)
|
|
{
|
|
//Offset of linear velocity doesn't change the linear velocity,
|
|
// but causes a torque to be applied, for example...
|
|
//
|
|
// IIIII >>> IIIII
|
|
// IIIII >>> IIIII
|
|
// IIIII >>> IIIII
|
|
// ^
|
|
// | Applying a force at the arrow will cause the object to move forward, but also rotate
|
|
//
|
|
//
|
|
// The torque created is the linear velocity crossed with the offset
|
|
|
|
// TODO: this computation should be in the linear section
|
|
// because that is where we know the impulse being applied.
|
|
Vector3 torqueFromOffset = Vector3.Zero;
|
|
// torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
|
|
if (float.IsNaN(torqueFromOffset.X))
|
|
torqueFromOffset.X = 0;
|
|
if (float.IsNaN(torqueFromOffset.Y))
|
|
torqueFromOffset.Y = 0;
|
|
if (float.IsNaN(torqueFromOffset.Z))
|
|
torqueFromOffset.Z = 0;
|
|
|
|
VehicleAddAngularForce(torqueFromOffset * m_vehicleMass);
|
|
VDetailLog("{0}, BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
|
|
}
|
|
|
|
}
|
|
// From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
|
|
// Some vehicles, like boats, should always keep their up-side up. This can be done by
|
|
// enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to
|
|
// the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the
|
|
// VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency,
|
|
// and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An
|
|
// efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an
|
|
// efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay.
|
|
public Vector3 ComputeAngularVerticalAttraction()
|
|
{
|
|
Vector3 ret = Vector3.Zero;
|
|
|
|
// If vertical attaction timescale is reasonable and we applied an angular force last time...
|
|
if (m_verticalAttractionTimescale < m_verticalAttractionCutoff)
|
|
{
|
|
// Take a vector pointing up and convert it from world to vehicle relative coords.
|
|
Vector3 verticalError = Vector3.UnitZ * VehicleOrientation;
|
|
verticalError.Normalize();
|
|
|
|
// If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
|
|
// is now leaning to one side (rotated around the X axis) and the Y value will
|
|
// go from zero (nearly straight up) to one (completely to the side) or leaning
|
|
// front-to-back (rotated around the Y axis) and the value of X will be between
|
|
// zero and one.
|
|
// The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.
|
|
|
|
// If verticalError.Z is negative, the vehicle is upside down. Add additional push.
|
|
if (verticalError.Z < 0f)
|
|
{
|
|
verticalError.X = 2f - verticalError.X;
|
|
verticalError.Y = 2f - verticalError.Y;
|
|
}
|
|
|
|
// Y error means needed rotation around X axis and visa versa.
|
|
ret.X = verticalError.Y;
|
|
ret.Y = - verticalError.X;
|
|
ret.Z = 0f;
|
|
|
|
// Scale the correction force by how far we're off from vertical.
|
|
// Z error of one says little error. As Z gets smaller, the vehicle is leaning farther over.
|
|
float clampedSqrZError = ClampInRange(0.01f, verticalError.Z * verticalError.Z, 1f);
|
|
float vertForce = 1f / clampedSqrZError;
|
|
|
|
ret *= vertForce;
|
|
|
|
// Correction happens over a number of seconds.
|
|
Vector3 unscaledContrib = ret;
|
|
ret /= m_verticalAttractionTimescale;
|
|
|
|
VDetailLog("{0}, MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},vertForce={3},eff={4},vertAttr={5}",
|
|
Prim.LocalID, verticalError, unscaledContrib, vertForce, m_verticalAttractionEfficiency, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Return the angular correction to correct the direction the vehicle is pointing to be
|
|
// the direction is should want to be pointing.
|
|
// The vehicle is moving in some direction and correct its orientation to it is pointing
|
|
// in that direction.
|
|
// TODO: implement reference frame.
|
|
public Vector3 ComputeAngularDeflection()
|
|
{
|
|
Vector3 ret = Vector3.Zero;
|
|
return ret; // DEBUG DEBUG DEBUG debug one force at a time
|
|
|
|
if (m_angularDeflectionEfficiency != 0)
|
|
{
|
|
// The direction the vehicle is moving
|
|
Vector3 movingDirection = VehicleVelocity;
|
|
movingDirection.Normalize();
|
|
|
|
// The direction the vehicle is pointing
|
|
Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
|
|
pointingDirection.Normalize();
|
|
|
|
// The difference between what is and what should be
|
|
Vector3 deflectionError = movingDirection - pointingDirection;
|
|
|
|
// Scale the correction by recovery timescale and efficiency
|
|
ret = (-deflectionError * VehicleForwardSpeed) * m_angularDeflectionEfficiency;
|
|
ret /= m_angularDeflectionTimescale;
|
|
|
|
VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}",
|
|
Prim.LocalID, movingDirection, pointingDirection, deflectionError, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Return an angular change to rotate the vehicle around the Z axis when the vehicle
|
|
// is tipped around the X axis.
|
|
// From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
|
|
// The vertical attractor feature must be enabled in order for the banking behavior to
|
|
// function. The way banking works is this: a rotation around the vehicle's roll-axis will
|
|
// produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude
|
|
// of the yaw effect will be proportional to the
|
|
// VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's
|
|
// velocity along its preferred axis of motion.
|
|
// The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any
|
|
// positive rotation (by the right-hand rule) about the roll-axis will effect a
|
|
// (negative) torque around the yaw-axis, making it turn to the right--that is the
|
|
// vehicle will lean into the turn, which is how real airplanes and motorcycle's work.
|
|
// Negating the banking coefficient will make it so that the vehicle leans to the
|
|
// outside of the turn (not very "physical" but might allow interesting vehicles so why not?).
|
|
// The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making
|
|
// banking vehicles do what you want rather than what the laws of physics allow.
|
|
// For example, consider a real motorcycle...it must be moving forward in order for
|
|
// it to turn while banking, however video-game motorcycles are often configured
|
|
// to turn in place when at a dead stop--because they are often easier to control
|
|
// that way using the limited interface of the keyboard or game controller. The
|
|
// VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic
|
|
// banking by functioning as a slider between a banking that is correspondingly
|
|
// totally static (0.0) and totally dynamic (1.0). By "static" we mean that the
|
|
// banking effect depends only on the vehicle's rotation about its roll-axis compared
|
|
// to "dynamic" where the banking is also proportional to its velocity along its
|
|
// roll-axis. Finding the best value of the "mixture" will probably require trial and error.
|
|
// The time it takes for the banking behavior to defeat a preexisting angular velocity about the
|
|
// world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to
|
|
// bank quickly then give it a banking timescale of about a second or less, otherwise you can
|
|
// make a sluggish vehicle by giving it a timescale of several seconds.
|
|
public Vector3 ComputeAngularBanking()
|
|
{
|
|
Vector3 ret = Vector3.Zero;
|
|
|
|
if (m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
|
|
{
|
|
// This works by rotating a unit vector to the orientation of the vehicle. The
|
|
// roll (tilt) will be Y component of a tilting Z vector (zero for no tilt
|
|
// up to one for full over).
|
|
Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation;
|
|
|
|
// Figure out the yaw value for this much roll.
|
|
float turnComponent = rollComponents.Y * rollComponents.Y * m_bankingEfficiency;
|
|
// Keep the sign
|
|
if (rollComponents.Y < 0f)
|
|
turnComponent = -turnComponent;
|
|
|
|
// TODO: there must be a better computation of the banking force.
|
|
float bankingTurnForce = turnComponent;
|
|
|
|
// actual error = static turn error + dynamic turn error
|
|
float mixedBankingError = bankingTurnForce * (1f - m_bankingMix) + bankingTurnForce * m_bankingMix * VehicleForwardSpeed;
|
|
// TODO: the banking effect should not go to infinity but what to limit it to?
|
|
mixedBankingError = ClampInRange(-20f, mixedBankingError, 20f);
|
|
|
|
// Build the force vector to change rotation from what it is to what it should be
|
|
ret.Z = -mixedBankingError;
|
|
|
|
// Don't do it all at once.
|
|
ret /= m_bankingTimescale;
|
|
|
|
VDetailLog("{0}, MoveAngular,Banking,rollComp={1},speed={2},turnComp={3},bankErr={4},mixedBankErr={5},ret={6}",
|
|
Prim.LocalID, rollComponents, VehicleForwardSpeed, turnComponent, bankingTurnForce, mixedBankingError, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// This is from previous instantiations of XXXDynamics.cs.
|
|
// Applies roll reference frame.
|
|
// TODO: is this the right way to separate the code to do this operation?
|
|
// Should this be in MoveAngular()?
|
|
internal void LimitRotation(float timestep)
|
|
{
|
|
Quaternion rotq = VehicleOrientation;
|
|
Quaternion m_rot = rotq;
|
|
if (m_RollreferenceFrame != Quaternion.Identity)
|
|
{
|
|
if (rotq.X >= m_RollreferenceFrame.X)
|
|
{
|
|
m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
|
|
}
|
|
if (rotq.Y >= m_RollreferenceFrame.Y)
|
|
{
|
|
m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
|
|
}
|
|
if (rotq.X <= -m_RollreferenceFrame.X)
|
|
{
|
|
m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
|
|
}
|
|
if (rotq.Y <= -m_RollreferenceFrame.Y)
|
|
{
|
|
m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
|
|
}
|
|
}
|
|
if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
|
|
{
|
|
m_rot.X = 0;
|
|
m_rot.Y = 0;
|
|
}
|
|
if (rotq != m_rot)
|
|
{
|
|
VehicleOrientation = m_rot;
|
|
VDetailLog("{0}, LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
|
|
}
|
|
|
|
}
|
|
|
|
private float ClampInRange(float low, float val, float high)
|
|
{
|
|
return Math.Max(low, Math.Min(val, high));
|
|
}
|
|
|
|
// Invoke the detailed logger and output something if it's enabled.
|
|
private void VDetailLog(string msg, params Object[] args)
|
|
{
|
|
if (Prim.PhysicsScene.VehicleLoggingEnabled)
|
|
Prim.PhysicsScene.DetailLog(msg, args);
|
|
}
|
|
}
|
|
}
|