OpenSimMirror/OpenSim/Region/Physics/OdePlugin/ODEVehicleSettings.cs

609 lines
27 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.InteropServices;
using log4net;
using OpenMetaverse;
using Ode.NET;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.OdePlugin
{
public class ODEVehicleSettings
{
public Vehicle Type
{
get { return m_type; }
}
public IntPtr Body
{
get { return m_body; }
}
private Vehicle m_type = Vehicle.TYPE_NONE;
private OdeScene m_parentScene = null;
private IntPtr m_body = IntPtr.Zero;
private IntPtr m_jointGroup = IntPtr.Zero;
private IntPtr m_aMotor = IntPtr.Zero;
private IntPtr m_lMotor1 = IntPtr.Zero;
private IntPtr m_lMotor2 = IntPtr.Zero;
private IntPtr m_lMotor3 = IntPtr.Zero;
// Vehicle properties
private Quaternion m_referenceFrame = Quaternion.Identity;
private Vector3 m_angularFrictionTimescale = Vector3.Zero;
private Vector3 m_angularMotorDirection = Vector3.Zero;
private Vector3 m_angularMotorDirectionLASTSET = Vector3.Zero;
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
private Vector3 m_linearMotorDirection = Vector3.Zero;
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero;
private Vector3 m_linearMotorOffset = Vector3.Zero;
private float m_angularDeflectionEfficiency = 0;
private float m_angularDeflectionTimescale = 0;
private float m_angularMotorDecayTimescale = 0;
private float m_angularMotorTimescale = 0;
private float m_bankingEfficiency = 0;
private float m_bankingMix = 0;
private float m_bankingTimescale = 0;
private float m_buoyancy = 0;
private float m_hoverHeight = 0;
private float m_hoverEfficiency = 0;
private float m_hoverTimescale = 0;
private float m_linearDeflectionEfficiency = 0;
private float m_linearDeflectionTimescale = 0;
private float m_linearMotorDecayTimescale = 0;
private float m_linearMotorTimescale = 0;
private float m_verticalAttractionEfficiency = 0;
private float m_verticalAttractionTimescale = 0;
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
private Vector3 m_lastAngularVelocityVector = Vector3.Zero;
private VehicleFlag m_flags = (VehicleFlag) 0;
private bool m_LinearMotorSetLastFrame = false;
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
m_angularDeflectionEfficiency = pValue;
break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularDeflectionTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorDecayTimescale = pValue;
break;
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_angularMotorTimescale = pValue;
break;
case Vehicle.BANKING_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
m_bankingEfficiency = pValue;
break;
case Vehicle.BANKING_MIX:
if (pValue < 0.01f) pValue = 0.01f;
m_bankingMix = pValue;
break;
case Vehicle.BANKING_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_bankingTimescale = pValue;
break;
case Vehicle.BUOYANCY:
m_buoyancy = pValue;
break;
case Vehicle.HOVER_EFFICIENCY:
m_hoverEfficiency = pValue;
break;
case Vehicle.HOVER_HEIGHT:
m_hoverHeight = pValue;
break;
case Vehicle.HOVER_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_hoverTimescale = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
m_linearDeflectionEfficiency = pValue;
break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearDeflectionTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorDecayTimescale = pValue;
break;
case Vehicle.LINEAR_MOTOR_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_linearMotorTimescale = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
if (pValue < 0.01f) pValue = 0.01f;
m_verticalAttractionEfficiency = pValue;
break;
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
if (pValue < 0.01f) pValue = 0.01f;
m_verticalAttractionTimescale = pValue;
break;
// These are vector properties but the engine lets you use a single float value to
// set all of the components to the same value
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
m_angularMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break;
}
Reset();
}
internal void ProcessVectorVehicleParam(Vehicle pParam, PhysicsVector pValue)
{
switch (pParam)
{
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_angularMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_DIRECTION:
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
case Vehicle.LINEAR_MOTOR_OFFSET:
m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break;
}
Reset();
}
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
{
switch (pParam)
{
case Vehicle.REFERENCE_FRAME:
m_referenceFrame = pValue;
break;
}
Reset();
}
internal void ProcessTypeChange(Vehicle pType)
{
if (m_type == Vehicle.TYPE_NONE && pType != Vehicle.TYPE_NONE)
{
// Activate whatever it is
SetDefaultsForType(pType);
Reset();
}
else if (m_type != Vehicle.TYPE_NONE && pType != Vehicle.TYPE_NONE )
{
// Set properties
SetDefaultsForType(pType);
// then reset
Reset();
}
else if (m_type != Vehicle.TYPE_NONE && pType == Vehicle.TYPE_NONE)
{
Destroy();
}
}
internal void Disable()
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
if (m_aMotor != IntPtr.Zero)
{
}
}
internal void Enable(IntPtr pBody, OdeScene pParentScene)
{
if (m_type == Vehicle.TYPE_NONE)
return;
m_body = pBody;
m_parentScene = pParentScene;
if (m_jointGroup == IntPtr.Zero)
m_jointGroup = d.JointGroupCreate(3);
if (pBody != IntPtr.Zero)
{
if (m_lMotor1 == IntPtr.Zero)
{
d.BodySetAutoDisableFlag(Body, false);
m_lMotor1 = d.JointCreateLMotor(pParentScene.world, m_jointGroup);
d.JointSetLMotorNumAxes(m_lMotor1, 1);
d.JointAttach(m_lMotor1, Body, IntPtr.Zero);
}
if (m_aMotor == IntPtr.Zero)
{
m_aMotor = d.JointCreateAMotor(pParentScene.world, m_jointGroup);
d.JointSetAMotorNumAxes(m_aMotor, 3);
d.JointAttach(m_aMotor, Body, IntPtr.Zero);
}
}
}
internal void Reset()
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
}
internal void Destroy()
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
if (m_aMotor != IntPtr.Zero)
{
d.JointDestroy(m_aMotor);
}
if (m_lMotor1 != IntPtr.Zero)
{
d.JointDestroy(m_lMotor1);
}
}
internal void Step(float pTimestep)
{
if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
return;
VerticalAttractor(pTimestep);
LinearMotor(pTimestep);
AngularMotor(pTimestep);
}
private void SetDefaultsForType(Vehicle pType)
{
m_type = pType;
switch (pType)
{
case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120;
m_hoverHeight = 0;
m_hoverEfficiency = 10;
m_hoverTimescale = 10;
m_buoyancy = 0;
m_linearDeflectionEfficiency = 1;
m_linearDeflectionTimescale = 1;
m_angularDeflectionEfficiency = 1;
m_angularDeflectionTimescale = 1000;
m_bankingEfficiency = 0;
m_bankingMix = 1;
m_bankingTimescale = 10;
m_referenceFrame = Quaternion.Identity;
m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f;
m_hoverHeight = 0;
m_hoverEfficiency = 0;
m_hoverTimescale = 1000;
m_buoyancy = 0;
m_linearDeflectionEfficiency = 1;
m_linearDeflectionTimescale = 2;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1;
m_verticalAttractionTimescale = 10;
m_bankingEfficiency = -0.2f;
m_bankingMix = 1;
m_bankingTimescale = 1;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_hoverHeight = 0;
m_hoverEfficiency = 0.5f;
m_hoverTimescale = 2;
m_buoyancy = 1;
m_linearDeflectionEfficiency = 0.5f;
m_linearDeflectionTimescale = 3;
m_angularDeflectionEfficiency = 0.5f;
m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5;
m_bankingEfficiency = -0.3f;
m_bankingMix = 0.8f;
m_bankingTimescale = 1;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~( VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_UP_ONLY |
VehicleFlag.LIMIT_MOTOR_UP);
break;
case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4;
m_hoverHeight = 0;
m_hoverEfficiency = 0.5f;
m_hoverTimescale = 1000;
m_buoyancy = 0;
m_linearDeflectionEfficiency = 0.5f;
m_linearDeflectionTimescale = 3;
m_angularDeflectionEfficiency = 1;
m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2;
m_bankingEfficiency = 1;
m_bankingMix = 0.7f;
m_bankingTimescale = 2;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break;
case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6;
m_angularMotorDecayTimescale = 10;
m_hoverHeight = 5;
m_hoverEfficiency = 0.8f;
m_hoverTimescale = 10;
m_buoyancy = 1;
m_linearDeflectionEfficiency = 0;
m_linearDeflectionTimescale = 5;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1;
m_verticalAttractionTimescale = 1000;
m_bankingEfficiency = 0;
m_bankingMix = 0.7f;
m_bankingTimescale = 5;
m_referenceFrame = Quaternion.Identity;
m_flags = (VehicleFlag)0;
break;
}
}
private void VerticalAttractor(float pTimestep)
{
// The purpose of this routine here is to quickly stabilize the Body while it's popped up in the air.
// The amotor needs a few seconds to stabilize so without it, the avatar shoots up sky high when you
// change appearance and when you enter the simulator
// After this routine is done, the amotor stabilizes much quicker
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
//d.BodyGetS
d.Vector3 feet;
d.Vector3 head;
d.BodyGetRelPointPos(m_body, 0.0f, 0.0f, -1.0f, out feet);
d.BodyGetRelPointPos(m_body, 0.0f, 0.0f, 1.0f, out head);
float posture = head.Z - feet.Z;
// restoring force proportional to lack of posture:
float servo = (2.5f - posture) * (objMass.mass * m_verticalAttractionEfficiency / (m_verticalAttractionTimescale * pTimestep)) * objMass.mass;
d.BodyAddForceAtRelPos(m_body, 0.0f, 0.0f, servo, 0.0f, 0.0f, 1.0f);
d.BodyAddForceAtRelPos(m_body, 0.0f, 0.0f, -servo, 0.0f, 0.0f, -1.0f);
//d.Matrix3 bodyrotation = d.BodyGetRotation(Body);
//m_log.Info("[PHYSICSAV]: Rotation: " + bodyrotation.M00 + " : " + bodyrotation.M01 + " : " + bodyrotation.M02 + " : " + bodyrotation.M10 + " : " + bodyrotation.M11 + " : " + bodyrotation.M12 + " : " + bodyrotation.M20 + " : " + bodyrotation.M21 + " : " + bodyrotation.M22);
}
private void LinearMotor(float pTimestep)
{
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
{
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
m_lastLinearVelocityVector += (addAmount*10);
// This will work temporarily, but we really need to compare speed on an axis
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
//Console.WriteLine("add: " + addAmount);
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_linearMotorDirection -= m_linearMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
//System.Console.WriteLine(m_linearMotorDirection + " " + m_lastLinearVelocityVector);
SetLinearMotorProperties();
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
//m_linearMotorDirection *= decayamount;
}
private void SetLinearMotorProperties()
{
Vector3 dirNorm = m_lastLinearVelocityVector;
dirNorm.Normalize();
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
dirNorm *= rotq;
if (m_lMotor1 != IntPtr.Zero)
{
d.JointSetLMotorAxis(m_lMotor1, 0, 1, dirNorm.X, dirNorm.Y, dirNorm.Z);
d.JointSetLMotorParam(m_lMotor1, (int)dParam.Vel, m_lastLinearVelocityVector.Length());
d.JointSetLMotorParam(m_lMotor1, (int)dParam.FMax, 35f * objMass.mass);
}
}
private void AngularMotor(float pTimestep)
{
if (!m_angularMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))
{
Vector3 addAmount = m_angularMotorDirection / (m_angularMotorTimescale / pTimestep);
m_lastAngularVelocityVector += (addAmount * 10);
// This will work temporarily, but we really need to compare speed on an axis
if (Math.Abs(m_lastAngularVelocityVector.X) > Math.Abs(m_angularMotorDirectionLASTSET.X))
m_lastAngularVelocityVector.X = m_angularMotorDirectionLASTSET.X;
if (Math.Abs(m_lastAngularVelocityVector.Y) > Math.Abs(m_angularMotorDirectionLASTSET.Y))
m_lastAngularVelocityVector.Y = m_angularMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastAngularVelocityVector.Z) > Math.Abs(m_angularMotorDirectionLASTSET.Z))
m_lastAngularVelocityVector.Z = m_angularMotorDirectionLASTSET.Z;
//Console.WriteLine("add: " + addAmount);
Vector3 decayfraction = ((Vector3.One / (m_angularMotorDecayTimescale / pTimestep)));
//Console.WriteLine("decay: " + decayfraction);
m_angularMotorDirection -= m_angularMotorDirection * decayfraction;
//Console.WriteLine("actual: " + m_linearMotorDirection);
}
//System.Console.WriteLine(m_linearMotorDirection + " " + m_lastLinearVelocityVector);
SetAngularMotorProperties();
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
m_lastAngularVelocityVector -= m_lastAngularVelocityVector * decayamount;
//m_linearMotorDirection *= decayamount;
}
private void SetAngularMotorProperties()
{
d.Mass objMass;
d.BodyGetMass(Body, out objMass);
d.Quaternion rot = d.BodyGetQuaternion(Body);
Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
Vector3 axis0 = Vector3.UnitX;
Vector3 axis1 = Vector3.UnitY;
Vector3 axis2 = Vector3.UnitZ;
axis0 *= rotq;
axis1 *= rotq;
axis2 *= rotq;
if (m_aMotor != IntPtr.Zero)
{
d.JointSetAMotorAxis(m_aMotor, 0, 1, axis0.X, axis0.Y, axis0.Z);
d.JointSetAMotorAxis(m_aMotor, 1, 1, axis1.X, axis1.Y, axis1.Z);
d.JointSetAMotorAxis(m_aMotor, 2, 1, axis2.X, axis2.Y, axis2.Z);
d.JointSetAMotorParam(m_aMotor, (int)dParam.FMax, 30*objMass.mass);
d.JointSetAMotorParam(m_aMotor, (int)dParam.FMax2, 30*objMass.mass);
d.JointSetAMotorParam(m_aMotor, (int)dParam.FMax3, 30 * objMass.mass);
d.JointSetAMotorParam(m_aMotor, (int)dParam.Vel, m_lastAngularVelocityVector.X);
d.JointSetAMotorParam(m_aMotor, (int)dParam.Vel2, m_lastAngularVelocityVector.Y);
d.JointSetAMotorParam(m_aMotor, (int)dParam.Vel3, m_lastAngularVelocityVector.Z);
}
}
}
}