998 lines
49 KiB
C#
998 lines
49 KiB
C#
/*
|
|
* Copyright (c) Contributors, http://opensimulator.org/
|
|
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of the OpenSimulator Project nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to
|
|
* call the BulletSim system.
|
|
*/
|
|
/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
|
|
* ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
|
|
* ODEPrim.cs contains methods dealing with Prim editing, Prim
|
|
* characteristics and Kinetic motion.
|
|
* ODEDynamics.cs contains methods dealing with Prim Physical motion
|
|
* (dynamics) and the associated settings. Old Linear and angular
|
|
* motors for dynamic motion have been replace with MoveLinear()
|
|
* and MoveAngular(); 'Physical' is used only to switch ODE dynamic
|
|
* simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
|
|
* switch between 'VEHICLE' parameter use and general dynamics
|
|
* settings use.
|
|
*/
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Reflection;
|
|
using System.Runtime.InteropServices;
|
|
using log4net;
|
|
using OpenMetaverse;
|
|
using OpenSim.Framework;
|
|
using OpenSim.Region.Physics.Manager;
|
|
|
|
namespace OpenSim.Region.Physics.BulletSPlugin
|
|
{
|
|
public class BSDynamics
|
|
{
|
|
private int frcount = 0; // Used to limit dynamics debug output to
|
|
// every 100th frame
|
|
|
|
// private BSScene m_parentScene = null;
|
|
private BSPrim m_prim; // the prim this dynamic controller belongs to
|
|
|
|
// Vehicle properties
|
|
private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
|
|
public Vehicle Type
|
|
{
|
|
get { return m_type; }
|
|
}
|
|
// private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
|
|
private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
|
|
// HOVER_TERRAIN_ONLY
|
|
// HOVER_GLOBAL_HEIGHT
|
|
// NO_DEFLECTION_UP
|
|
// HOVER_WATER_ONLY
|
|
// HOVER_UP_ONLY
|
|
// LIMIT_MOTOR_UP
|
|
// LIMIT_ROLL_ONLY
|
|
private VehicleFlag m_Hoverflags = (VehicleFlag)0;
|
|
private Vector3 m_BlockingEndPoint = Vector3.Zero;
|
|
private Quaternion m_RollreferenceFrame = Quaternion.Identity;
|
|
// Linear properties
|
|
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
|
|
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
|
|
private Vector3 m_dir = Vector3.Zero; // velocity applied to body
|
|
private Vector3 m_linearFrictionTimescale = Vector3.Zero;
|
|
private float m_linearMotorDecayTimescale = 0;
|
|
private float m_linearMotorTimescale = 0;
|
|
private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
|
|
private Vector3 m_lastPositionVector = Vector3.Zero;
|
|
// private bool m_LinearMotorSetLastFrame = false;
|
|
// private Vector3 m_linearMotorOffset = Vector3.Zero;
|
|
|
|
//Angular properties
|
|
private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
|
|
private int m_angularMotorApply = 0; // application frame counter
|
|
private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
|
|
private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
|
|
private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
|
|
private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
|
|
private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
|
|
// private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
|
|
|
|
//Deflection properties
|
|
// private float m_angularDeflectionEfficiency = 0;
|
|
// private float m_angularDeflectionTimescale = 0;
|
|
// private float m_linearDeflectionEfficiency = 0;
|
|
// private float m_linearDeflectionTimescale = 0;
|
|
|
|
//Banking properties
|
|
// private float m_bankingEfficiency = 0;
|
|
// private float m_bankingMix = 0;
|
|
// private float m_bankingTimescale = 0;
|
|
|
|
//Hover and Buoyancy properties
|
|
private float m_VhoverHeight = 0f;
|
|
// private float m_VhoverEfficiency = 0f;
|
|
private float m_VhoverTimescale = 0f;
|
|
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
|
|
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
|
|
// Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
|
|
// KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
|
|
// Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
|
|
|
|
//Attractor properties
|
|
private float m_verticalAttractionEfficiency = 1.0f; // damped
|
|
private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
|
|
|
|
public BSDynamics(BSPrim myPrim)
|
|
{
|
|
m_prim = myPrim;
|
|
m_type = Vehicle.TYPE_NONE;
|
|
}
|
|
|
|
internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue, float timestep)
|
|
{
|
|
DetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue);
|
|
switch (pParam)
|
|
{
|
|
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_angularDeflectionEfficiency = pValue;
|
|
break;
|
|
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_angularDeflectionTimescale = pValue;
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
m_angularMotorDecayTimescale = pValue;
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
m_angularMotorTimescale = pValue;
|
|
break;
|
|
case Vehicle.BANKING_EFFICIENCY:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_bankingEfficiency = pValue;
|
|
break;
|
|
case Vehicle.BANKING_MIX:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_bankingMix = pValue;
|
|
break;
|
|
case Vehicle.BANKING_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_bankingTimescale = pValue;
|
|
break;
|
|
case Vehicle.BUOYANCY:
|
|
if (pValue < -1f) pValue = -1f;
|
|
if (pValue > 1f) pValue = 1f;
|
|
m_VehicleBuoyancy = pValue;
|
|
break;
|
|
// case Vehicle.HOVER_EFFICIENCY:
|
|
// if (pValue < 0f) pValue = 0f;
|
|
// if (pValue > 1f) pValue = 1f;
|
|
// m_VhoverEfficiency = pValue;
|
|
// break;
|
|
case Vehicle.HOVER_HEIGHT:
|
|
m_VhoverHeight = pValue;
|
|
break;
|
|
case Vehicle.HOVER_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
m_VhoverTimescale = pValue;
|
|
break;
|
|
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_linearDeflectionEfficiency = pValue;
|
|
break;
|
|
case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
// m_linearDeflectionTimescale = pValue;
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
m_linearMotorDecayTimescale = pValue;
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
m_linearMotorTimescale = pValue;
|
|
break;
|
|
case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
|
|
if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
|
|
if (pValue > 1.0f) pValue = 1.0f;
|
|
m_verticalAttractionEfficiency = pValue;
|
|
break;
|
|
case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
|
|
if (pValue < 0.01f) pValue = 0.01f;
|
|
m_verticalAttractionTimescale = pValue;
|
|
break;
|
|
|
|
// These are vector properties but the engine lets you use a single float value to
|
|
// set all of the components to the same value
|
|
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
|
m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
|
m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
|
|
m_angularMotorApply = 10;
|
|
break;
|
|
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
|
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
|
m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
|
|
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_OFFSET:
|
|
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
|
|
break;
|
|
|
|
}
|
|
}//end ProcessFloatVehicleParam
|
|
|
|
internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue, float timestep)
|
|
{
|
|
DetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue);
|
|
switch (pParam)
|
|
{
|
|
case Vehicle.ANGULAR_FRICTION_TIMESCALE:
|
|
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
case Vehicle.ANGULAR_MOTOR_DIRECTION:
|
|
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
// Limit requested angular speed to 2 rps= 4 pi rads/sec
|
|
if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
|
|
if (m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
|
|
if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
|
|
if (m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
|
|
if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
|
|
if (m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
|
|
m_angularMotorApply = 10;
|
|
break;
|
|
case Vehicle.LINEAR_FRICTION_TIMESCALE:
|
|
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_DIRECTION:
|
|
m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
case Vehicle.LINEAR_MOTOR_OFFSET:
|
|
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
case Vehicle.BLOCK_EXIT:
|
|
m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
|
|
break;
|
|
}
|
|
}//end ProcessVectorVehicleParam
|
|
|
|
internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
|
|
{
|
|
DetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue);
|
|
switch (pParam)
|
|
{
|
|
case Vehicle.REFERENCE_FRAME:
|
|
// m_referenceFrame = pValue;
|
|
break;
|
|
case Vehicle.ROLL_FRAME:
|
|
m_RollreferenceFrame = pValue;
|
|
break;
|
|
}
|
|
}//end ProcessRotationVehicleParam
|
|
|
|
internal void ProcessVehicleFlags(int pParam, bool remove)
|
|
{
|
|
DetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", m_prim.LocalID, pParam, remove);
|
|
if (remove)
|
|
{
|
|
if (pParam == -1)
|
|
{
|
|
m_flags = (VehicleFlag)0;
|
|
m_Hoverflags = (VehicleFlag)0;
|
|
return;
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT)
|
|
{
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != (VehicleFlag)0)
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY)
|
|
{
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != (VehicleFlag)0)
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY)
|
|
{
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != (VehicleFlag)0)
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_UP_ONLY);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY)
|
|
{
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != (VehicleFlag)0)
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP)
|
|
{
|
|
if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.LIMIT_MOTOR_UP);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LIMIT_ROLL_ONLY) == (int)VehicleFlag.LIMIT_ROLL_ONLY)
|
|
{
|
|
if ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK)
|
|
{
|
|
if ((m_flags & VehicleFlag.MOUSELOOK_BANK) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.MOUSELOOK_BANK);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER)
|
|
{
|
|
if ((m_flags & VehicleFlag.MOUSELOOK_STEER) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.MOUSELOOK_STEER);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP)
|
|
{
|
|
if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED)
|
|
{
|
|
if ((m_flags & VehicleFlag.CAMERA_DECOUPLED) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.CAMERA_DECOUPLED);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X)
|
|
{
|
|
if ((m_flags & VehicleFlag.NO_X) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.NO_X);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y)
|
|
{
|
|
if ((m_flags & VehicleFlag.NO_Y) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.NO_Y);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z)
|
|
{
|
|
if ((m_flags & VehicleFlag.NO_Z) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.NO_Z);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT)
|
|
{
|
|
if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != (VehicleFlag)0)
|
|
m_Hoverflags &= ~(VehicleFlag.LOCK_HOVER_HEIGHT);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION)
|
|
{
|
|
if ((m_flags & VehicleFlag.NO_DEFLECTION) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.NO_DEFLECTION);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION)
|
|
{
|
|
if ((m_flags & VehicleFlag.LOCK_ROTATION) != (VehicleFlag)0)
|
|
m_flags &= ~(VehicleFlag.LOCK_ROTATION);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT)
|
|
{
|
|
m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY)
|
|
{
|
|
m_Hoverflags |= (VehicleFlag.HOVER_TERRAIN_ONLY | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY)
|
|
{
|
|
m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY)
|
|
{
|
|
m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP)
|
|
{
|
|
m_flags |= (VehicleFlag.LIMIT_MOTOR_UP | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK)
|
|
{
|
|
m_flags |= (VehicleFlag.MOUSELOOK_BANK | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER)
|
|
{
|
|
m_flags |= (VehicleFlag.MOUSELOOK_STEER | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP)
|
|
{
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED)
|
|
{
|
|
m_flags |= (VehicleFlag.CAMERA_DECOUPLED | m_flags);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X)
|
|
{
|
|
m_flags |= (VehicleFlag.NO_X);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y)
|
|
{
|
|
m_flags |= (VehicleFlag.NO_Y);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z)
|
|
{
|
|
m_flags |= (VehicleFlag.NO_Z);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT)
|
|
{
|
|
m_Hoverflags |= (VehicleFlag.LOCK_HOVER_HEIGHT);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION)
|
|
{
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION);
|
|
}
|
|
if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION)
|
|
{
|
|
m_flags |= (VehicleFlag.LOCK_ROTATION);
|
|
}
|
|
}
|
|
}//end ProcessVehicleFlags
|
|
|
|
internal void ProcessTypeChange(Vehicle pType)
|
|
{
|
|
DetailLog("{0},ProcessTypeChange,type={1}", m_prim.LocalID, pType);
|
|
// Set Defaults For Type
|
|
m_type = pType;
|
|
switch (pType)
|
|
{
|
|
case Vehicle.TYPE_NONE:
|
|
m_linearFrictionTimescale = new Vector3(0, 0, 0);
|
|
m_angularFrictionTimescale = new Vector3(0, 0, 0);
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 0;
|
|
m_linearMotorDecayTimescale = 0;
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 0;
|
|
m_angularMotorDecayTimescale = 0;
|
|
m_VhoverHeight = 0;
|
|
m_VhoverTimescale = 0;
|
|
m_VehicleBuoyancy = 0;
|
|
m_flags = (VehicleFlag)0;
|
|
break;
|
|
|
|
case Vehicle.TYPE_SLED:
|
|
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
|
|
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 1000;
|
|
m_linearMotorDecayTimescale = 120;
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 1000;
|
|
m_angularMotorDecayTimescale = 120;
|
|
m_VhoverHeight = 0;
|
|
// m_VhoverEfficiency = 1;
|
|
m_VhoverTimescale = 10;
|
|
m_VehicleBuoyancy = 0;
|
|
// m_linearDeflectionEfficiency = 1;
|
|
// m_linearDeflectionTimescale = 1;
|
|
// m_angularDeflectionEfficiency = 1;
|
|
// m_angularDeflectionTimescale = 1000;
|
|
// m_bankingEfficiency = 0;
|
|
// m_bankingMix = 1;
|
|
// m_bankingTimescale = 10;
|
|
// m_referenceFrame = Quaternion.Identity;
|
|
m_Hoverflags &=
|
|
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
|
|
break;
|
|
case Vehicle.TYPE_CAR:
|
|
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
|
|
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 1;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 1;
|
|
m_angularMotorDecayTimescale = 0.8f;
|
|
m_VhoverHeight = 0;
|
|
// m_VhoverEfficiency = 0;
|
|
m_VhoverTimescale = 1000;
|
|
m_VehicleBuoyancy = 0;
|
|
// // m_linearDeflectionEfficiency = 1;
|
|
// // m_linearDeflectionTimescale = 2;
|
|
// // m_angularDeflectionEfficiency = 0;
|
|
// m_angularDeflectionTimescale = 10;
|
|
m_verticalAttractionEfficiency = 1f;
|
|
m_verticalAttractionTimescale = 10f;
|
|
// m_bankingEfficiency = -0.2f;
|
|
// m_bankingMix = 1;
|
|
// m_bankingTimescale = 1;
|
|
// m_referenceFrame = Quaternion.Identity;
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY |
|
|
VehicleFlag.LIMIT_MOTOR_UP);
|
|
m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY);
|
|
break;
|
|
case Vehicle.TYPE_BOAT:
|
|
m_linearFrictionTimescale = new Vector3(10, 3, 2);
|
|
m_angularFrictionTimescale = new Vector3(10,10,10);
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 5;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 4;
|
|
m_angularMotorDecayTimescale = 4;
|
|
m_VhoverHeight = 0;
|
|
// m_VhoverEfficiency = 0.5f;
|
|
m_VhoverTimescale = 2;
|
|
m_VehicleBuoyancy = 1;
|
|
// m_linearDeflectionEfficiency = 0.5f;
|
|
// m_linearDeflectionTimescale = 3;
|
|
// m_angularDeflectionEfficiency = 0.5f;
|
|
// m_angularDeflectionTimescale = 5;
|
|
m_verticalAttractionEfficiency = 0.5f;
|
|
m_verticalAttractionTimescale = 5f;
|
|
// m_bankingEfficiency = -0.3f;
|
|
// m_bankingMix = 0.8f;
|
|
// m_bankingTimescale = 1;
|
|
// m_referenceFrame = Quaternion.Identity;
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
|
m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY);
|
|
m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
|
|
VehicleFlag.LIMIT_MOTOR_UP);
|
|
m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY);
|
|
break;
|
|
case Vehicle.TYPE_AIRPLANE:
|
|
m_linearFrictionTimescale = new Vector3(200, 10, 5);
|
|
m_angularFrictionTimescale = new Vector3(20, 20, 20);
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 2;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 4;
|
|
m_angularMotorDecayTimescale = 4;
|
|
m_VhoverHeight = 0;
|
|
// m_VhoverEfficiency = 0.5f;
|
|
m_VhoverTimescale = 1000;
|
|
m_VehicleBuoyancy = 0;
|
|
// m_linearDeflectionEfficiency = 0.5f;
|
|
// m_linearDeflectionTimescale = 3;
|
|
// m_angularDeflectionEfficiency = 1;
|
|
// m_angularDeflectionTimescale = 2;
|
|
m_verticalAttractionEfficiency = 0.9f;
|
|
m_verticalAttractionTimescale = 2f;
|
|
// m_bankingEfficiency = 1;
|
|
// m_bankingMix = 0.7f;
|
|
// m_bankingTimescale = 2;
|
|
// m_referenceFrame = Quaternion.Identity;
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
|
|
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP);
|
|
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
|
|
break;
|
|
case Vehicle.TYPE_BALLOON:
|
|
m_linearFrictionTimescale = new Vector3(5, 5, 5);
|
|
m_angularFrictionTimescale = new Vector3(10, 10, 10);
|
|
m_linearMotorDirection = Vector3.Zero;
|
|
m_linearMotorTimescale = 5;
|
|
m_linearMotorDecayTimescale = 60;
|
|
m_angularMotorDirection = Vector3.Zero;
|
|
m_angularMotorTimescale = 6;
|
|
m_angularMotorDecayTimescale = 10;
|
|
m_VhoverHeight = 5;
|
|
// m_VhoverEfficiency = 0.8f;
|
|
m_VhoverTimescale = 10;
|
|
m_VehicleBuoyancy = 1;
|
|
// m_linearDeflectionEfficiency = 0;
|
|
// m_linearDeflectionTimescale = 5;
|
|
// m_angularDeflectionEfficiency = 0;
|
|
// m_angularDeflectionTimescale = 5;
|
|
m_verticalAttractionEfficiency = 1f;
|
|
m_verticalAttractionTimescale = 100f;
|
|
// m_bankingEfficiency = 0;
|
|
// m_bankingMix = 0.7f;
|
|
// m_bankingTimescale = 5;
|
|
// m_referenceFrame = Quaternion.Identity;
|
|
m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
|
|
VehicleFlag.HOVER_UP_ONLY);
|
|
m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP);
|
|
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
|
|
m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT);
|
|
break;
|
|
}
|
|
}//end SetDefaultsForType
|
|
|
|
internal void Step(float pTimestep, BSScene pParentScene)
|
|
{
|
|
if (m_type == Vehicle.TYPE_NONE) return;
|
|
|
|
frcount++; // used to limit debug comment output
|
|
if (frcount > 100)
|
|
frcount = 0;
|
|
|
|
MoveLinear(pTimestep, pParentScene);
|
|
MoveAngular(pTimestep);
|
|
LimitRotation(pTimestep);
|
|
DetailLog("{0},step,pos={1},force={2},velocity={3},angvel={4}",
|
|
m_prim.LocalID, m_prim.Position, m_prim.Force, m_prim.Velocity, m_prim.RotationalVelocity);
|
|
}// end Step
|
|
|
|
private void MoveLinear(float pTimestep, BSScene _pParentScene)
|
|
{
|
|
if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
|
|
{
|
|
Vector3 origDir = m_linearMotorDirection;
|
|
Vector3 origVel = m_lastLinearVelocityVector;
|
|
|
|
// add drive to body
|
|
Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
|
|
m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
|
|
|
|
// This will work temporarily, but we really need to compare speed on an axis
|
|
// KF: Limit body velocity to applied velocity?
|
|
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
|
|
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
|
|
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
|
|
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
|
|
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
|
|
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
|
|
|
|
// decay applied velocity
|
|
Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
|
|
m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
|
|
|
|
DetailLog("{0},MoveLinear,nonZero,origdir={1},origvel={2},add={3},decay={4},dir={5},vel={6}",
|
|
m_prim.LocalID, origDir, origVel, addAmount, decayfraction, m_linearMotorDirection, m_lastLinearVelocityVector);
|
|
}
|
|
else
|
|
{ // requested is not significant
|
|
// if what remains of applied is small, zero it.
|
|
if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
|
|
m_lastLinearVelocityVector = Vector3.Zero;
|
|
}
|
|
|
|
// convert requested object velocity to world-referenced vector
|
|
m_dir = m_lastLinearVelocityVector;
|
|
m_dir *= m_prim.Orientation;
|
|
|
|
// Add the various forces into m_dir which will be our new direction vector (velocity)
|
|
|
|
// add Gravity and Buoyancy
|
|
// KF: So far I have found no good method to combine a script-requested
|
|
// .Z velocity and gravity. Therefore only 0g will used script-requested
|
|
// .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
|
|
Vector3 grav = Vector3.Zero;
|
|
// There is some gravity, make a gravity force vector that is applied after object velocity.
|
|
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
|
|
grav.Z = _pParentScene.DefaultGravity.Z * m_prim.Mass * (1f - m_VehicleBuoyancy);
|
|
// Preserve the current Z velocity
|
|
Vector3 vel_now = m_prim.Velocity;
|
|
m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
|
|
|
|
Vector3 pos = m_prim.Position;
|
|
Vector3 posChange = pos;
|
|
// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f);
|
|
double Zchange = Math.Abs(posChange.Z);
|
|
if (m_BlockingEndPoint != Vector3.Zero)
|
|
{
|
|
bool changed = false;
|
|
if (pos.X >= (m_BlockingEndPoint.X - (float)1))
|
|
{
|
|
pos.X -= posChange.X + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
|
|
{
|
|
pos.Y -= posChange.Y + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
|
|
{
|
|
pos.Z -= posChange.Z + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.X <= 0)
|
|
{
|
|
pos.X += posChange.X + 1;
|
|
changed = true;
|
|
}
|
|
if (pos.Y <= 0)
|
|
{
|
|
pos.Y += posChange.Y + 1;
|
|
changed = true;
|
|
}
|
|
if (changed)
|
|
{
|
|
m_prim.Position = pos;
|
|
DetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
|
|
m_prim.LocalID, m_BlockingEndPoint, posChange, pos);
|
|
}
|
|
}
|
|
if (pos.Z < _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y))
|
|
{
|
|
pos.Z = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + 2;
|
|
m_prim.Position = pos;
|
|
DetailLog("{0},MoveLinear,terrainHeight,pos={1}", m_prim.LocalID, pos);
|
|
}
|
|
|
|
// Check if hovering
|
|
if ((m_Hoverflags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
|
|
{
|
|
// We should hover, get the target height
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != 0)
|
|
{
|
|
m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
|
|
}
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
|
|
{
|
|
m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
|
|
}
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
|
|
{
|
|
m_VhoverTargetHeight = m_VhoverHeight;
|
|
}
|
|
|
|
if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != 0)
|
|
{
|
|
// If body is aready heigher, use its height as target height
|
|
if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
|
|
}
|
|
if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
|
|
{
|
|
if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2)
|
|
{
|
|
m_prim.Position = pos;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float herr0 = pos.Z - m_VhoverTargetHeight;
|
|
// Replace Vertical speed with correction figure if significant
|
|
if (Math.Abs(herr0) > 0.01f)
|
|
{
|
|
m_dir.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
|
|
//KF: m_VhoverEfficiency is not yet implemented
|
|
}
|
|
else
|
|
{
|
|
m_dir.Z = 0f;
|
|
}
|
|
}
|
|
|
|
DetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", m_prim.LocalID, pos, m_dir, m_VhoverHeight, m_VhoverTargetHeight);
|
|
|
|
// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
|
|
// m_VhoverTimescale = 0f; // time to acheive height
|
|
// pTimestep is time since last frame,in secs
|
|
}
|
|
|
|
if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
|
|
{
|
|
//Start Experimental Values
|
|
if (Zchange > .3)
|
|
{
|
|
grav.Z = (float)(grav.Z * 3);
|
|
}
|
|
if (Zchange > .15)
|
|
{
|
|
grav.Z = (float)(grav.Z * 2);
|
|
}
|
|
if (Zchange > .75)
|
|
{
|
|
grav.Z = (float)(grav.Z * 1.5);
|
|
}
|
|
if (Zchange > .05)
|
|
{
|
|
grav.Z = (float)(grav.Z * 1.25);
|
|
}
|
|
if (Zchange > .025)
|
|
{
|
|
grav.Z = (float)(grav.Z * 1.125);
|
|
}
|
|
float terraintemp = _pParentScene.GetTerrainHeightAtXYZ(pos);
|
|
float postemp = (pos.Z - terraintemp);
|
|
if (postemp > 2.5f)
|
|
{
|
|
grav.Z = (float)(grav.Z * 1.037125);
|
|
}
|
|
DetailLog("{0},MoveLinear,limitMotorUp,grav={1}", m_prim.LocalID, grav);
|
|
//End Experimental Values
|
|
}
|
|
if ((m_flags & (VehicleFlag.NO_X)) != 0)
|
|
{
|
|
m_dir.X = 0;
|
|
}
|
|
if ((m_flags & (VehicleFlag.NO_Y)) != 0)
|
|
{
|
|
m_dir.Y = 0;
|
|
}
|
|
if ((m_flags & (VehicleFlag.NO_Z)) != 0)
|
|
{
|
|
m_dir.Z = 0;
|
|
}
|
|
|
|
m_lastPositionVector = m_prim.Position;
|
|
|
|
// Apply velocity
|
|
m_prim.Velocity = m_dir;
|
|
// apply gravity force
|
|
m_prim.Force = grav;
|
|
|
|
|
|
// Apply friction
|
|
Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
|
|
m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
|
|
|
|
DetailLog("{0},MoveLinear,done,pos={1},vel={2},force={3},decay={4}",
|
|
m_prim.LocalID, m_lastPositionVector, m_dir, grav, decayamount);
|
|
|
|
} // end MoveLinear()
|
|
|
|
private void MoveAngular(float pTimestep)
|
|
{
|
|
// m_angularMotorDirection // angular velocity requested by LSL motor
|
|
// m_angularMotorApply // application frame counter
|
|
// m_angularMotorVelocity // current angular motor velocity (ramps up and down)
|
|
// m_angularMotorTimescale // motor angular velocity ramp up rate
|
|
// m_angularMotorDecayTimescale // motor angular velocity decay rate
|
|
// m_angularFrictionTimescale // body angular velocity decay rate
|
|
// m_lastAngularVelocity // what was last applied to body
|
|
|
|
// Get what the body is doing, this includes 'external' influences
|
|
Vector3 angularVelocity = m_prim.RotationalVelocity;
|
|
|
|
if (m_angularMotorApply > 0)
|
|
{
|
|
// Rather than snapping the angular motor velocity from the old value to
|
|
// a newly set velocity, this routine steps the value from the previous
|
|
// value (m_angularMotorVelocity) to the requested value (m_angularMotorDirection).
|
|
// There are m_angularMotorApply steps.
|
|
Vector3 origAngularVelocity = m_angularMotorVelocity;
|
|
// ramp up to new value
|
|
// current velocity += error / (time to get there / step interval)
|
|
// requested speed - last motor speed
|
|
m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep);
|
|
m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
|
|
m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);
|
|
|
|
DetailLog("{0},MoveAngular,angularMotorApply,apply={1},origvel={2},dir={3},vel={4}",
|
|
m_prim.LocalID,m_angularMotorApply,origAngularVelocity, m_angularMotorDirection, m_angularMotorVelocity);
|
|
|
|
m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected
|
|
// velocity may still be acheived.
|
|
}
|
|
else
|
|
{
|
|
// No motor recently applied, keep the body velocity
|
|
// and decay the velocity
|
|
m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
|
|
} // end motor section
|
|
|
|
// Vertical attractor section
|
|
Vector3 vertattr = Vector3.Zero;
|
|
if (m_verticalAttractionTimescale < 300)
|
|
{
|
|
float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep);
|
|
// get present body rotation
|
|
Quaternion rotq = m_prim.Orientation;
|
|
// make a vector pointing up
|
|
Vector3 verterr = Vector3.Zero;
|
|
verterr.Z = 1.0f;
|
|
// rotate it to Body Angle
|
|
verterr = verterr * rotq;
|
|
// verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
|
|
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
|
|
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
|
|
if (verterr.Z < 0.0f)
|
|
{
|
|
verterr.X = 2.0f - verterr.X;
|
|
verterr.Y = 2.0f - verterr.Y;
|
|
}
|
|
// Error is 0 (no error) to +/- 2 (max error)
|
|
// scale it by VAservo
|
|
verterr = verterr * VAservo;
|
|
|
|
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
|
|
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
|
|
vertattr.X = verterr.Y;
|
|
vertattr.Y = - verterr.X;
|
|
vertattr.Z = 0f;
|
|
|
|
// scaling appears better usingsquare-law
|
|
float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
|
|
vertattr.X += bounce * angularVelocity.X;
|
|
vertattr.Y += bounce * angularVelocity.Y;
|
|
|
|
DetailLog("{0},MoveAngular,verticalAttraction,verterr={1},bounce={2},vertattr={3}",
|
|
m_prim.LocalID, verterr, bounce, vertattr);
|
|
|
|
} // else vertical attractor is off
|
|
|
|
// m_lastVertAttractor = vertattr;
|
|
|
|
// Bank section tba
|
|
|
|
// Deflection section tba
|
|
|
|
// Sum velocities
|
|
m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection
|
|
|
|
if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
|
|
{
|
|
m_lastAngularVelocity.X = 0;
|
|
m_lastAngularVelocity.Y = 0;
|
|
DetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", m_prim.LocalID, m_lastAngularVelocity);
|
|
}
|
|
|
|
if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
|
|
{
|
|
m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
|
|
DetailLog("{0},MoveAngular,zeroSmallValues,lastAngular={1}", m_prim.LocalID, m_lastAngularVelocity);
|
|
}
|
|
|
|
// apply friction
|
|
Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
|
|
m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
|
|
|
|
// Apply to the body
|
|
m_prim.RotationalVelocity = m_lastAngularVelocity;
|
|
|
|
DetailLog("{0},MoveAngular,done,decay={1},lastAngular={2}", m_prim.LocalID, decayamount, m_lastAngularVelocity);
|
|
} //end MoveAngular
|
|
|
|
} //end MoveAngular
|
|
internal void LimitRotation(float timestep)
|
|
{
|
|
Quaternion rotq = m_prim.Orientation;
|
|
Quaternion m_rot = rotq;
|
|
bool changed = false;
|
|
if (m_RollreferenceFrame != Quaternion.Identity)
|
|
{
|
|
if (rotq.X >= m_RollreferenceFrame.X)
|
|
{
|
|
m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
|
|
changed = true;
|
|
}
|
|
if (rotq.Y >= m_RollreferenceFrame.Y)
|
|
{
|
|
m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
|
|
changed = true;
|
|
}
|
|
if (rotq.X <= -m_RollreferenceFrame.X)
|
|
{
|
|
m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
|
|
changed = true;
|
|
}
|
|
if (rotq.Y <= -m_RollreferenceFrame.Y)
|
|
{
|
|
m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
|
|
changed = true;
|
|
}
|
|
changed = true;
|
|
}
|
|
if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
|
|
{
|
|
m_rot.X = 0;
|
|
m_rot.Y = 0;
|
|
changed = true;
|
|
}
|
|
if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
|
|
{
|
|
m_rot.X = 0;
|
|
m_rot.Y = 0;
|
|
changed = true;
|
|
}
|
|
if (changed)
|
|
m_prim.Orientation = m_rot;
|
|
|
|
DetailLog("{0},LimitRotation,done,changed={1},orig={2},new={3}", m_prim.LocalID, changed, rotq, m_rot);
|
|
}
|
|
|
|
// Invoke the detailed logger and output something if it's enabled.
|
|
private void DetailLog(string msg, params Object[] args)
|
|
{
|
|
m_prim.Scene.VehicleLogging.Write(msg, args);
|
|
}
|
|
}
|
|
}
|