OpenSimMirror/OpenSim/Region/Physics/Meshing/Meshmerizer.cs

1912 lines
84 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//#define SPAM
using System;
using System.Collections.Generic;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
using OpenMetaverse;
using PrimMesher;
namespace OpenSim.Region.Physics.Meshing
{
public class MeshmerizerPlugin : IMeshingPlugin
{
public MeshmerizerPlugin()
{
}
public string GetName()
{
return "Meshmerizer";
}
public IMesher GetMesher()
{
return new Meshmerizer();
}
}
public class Meshmerizer : IMesher
{
private bool usePrimMesher = true;
//private static readonly log4net.ILog m_log = log4net.LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
// Setting baseDir to a path will enable the dumping of raw files
// raw files can be imported by blender so a visual inspection of the results can be done
#if SPAM
const string baseDir = "rawFiles";
#else
private const string baseDir = null; //"rawFiles";
#endif
private const float DEG_TO_RAD = 0.01745329238f;
private float minSizeForComplexMesh = 0.2f; // prims with all dimensions smaller than this will have a bounding box mesh
// private static void IntersectionParameterPD(PhysicsVector p1, PhysicsVector r1, PhysicsVector p2,
// PhysicsVector r2, ref float lambda, ref float mu)
// {
// p1, p2, points on the straight
// r1, r2, directional vectors of the straight. Not necessarily of length 1!
// note, that l, m can be scaled such, that the range 0..1 is mapped to the area between two points,
// thus allowing to decide whether an intersection is between two points
// float r1x = r1.X;
// float r1y = r1.Y;
// float r2x = r2.X;
// float r2y = r2.Y;
//
// float denom = r1y * r2x - r1x * r2y;
//
// if (denom == 0.0)
// {
// lambda = Single.NaN;
// mu = Single.NaN;
// return;
// }
//
// float p1x = p1.X;
// float p1y = p1.Y;
// float p2x = p2.X;
// float p2y = p2.Y;
// lambda = (-p2x * r2y + p1x * r2y + (p2y - p1y) * r2x) / denom;
// mu = (-p2x * r1y + p1x * r1y + (p2y - p1y) * r1x) / denom;
// }
private static List<Triangle> FindInfluencedTriangles(List<Triangle> triangles, Vertex v)
{
List<Triangle> influenced = new List<Triangle>();
foreach (Triangle t in triangles)
{
if (t.isInCircle(v.X, v.Y))
{
influenced.Add(t);
}
}
return influenced;
}
private static void InsertVertices(List<Vertex> vertices, int usedForSeed, List<Triangle> triangles)
{
// This is a variant of the delaunay algorithm
// each time a new vertex is inserted, all triangles that are influenced by it are deleted
// and replaced by new ones including the new vertex
// It is not very time efficient but easy to implement.
int iCurrentVertex;
int iMaxVertex = vertices.Count;
for (iCurrentVertex = usedForSeed; iCurrentVertex < iMaxVertex; iCurrentVertex++)
{
// Background: A triangle mesh fulfills the delaunay condition if (iff!)
// each circumlocutory circle (i.e. the circle that touches all three corners)
// of each triangle is empty of other vertices.
// Obviously a single (seeding) triangle fulfills this condition.
// If we now add one vertex, we need to reconstruct all triangles, that
// do not fulfill this condition with respect to the new triangle
// Find the triangles that are influenced by the new vertex
Vertex v = vertices[iCurrentVertex];
if (v == null)
continue; // Null is polygon stop marker. Ignore it
List<Triangle> influencedTriangles = FindInfluencedTriangles(triangles, v);
List<Simplex> simplices = new List<Simplex>();
// Reconstruction phase. First step, dissolve each triangle into it's simplices,
// i.e. it's "border lines"
// Goal is to find "inner" borders and delete them, while the hull gets conserved.
// Inner borders are special in the way that they always come twice, which is how we detect them
foreach (Triangle t in influencedTriangles)
{
List<Simplex> newSimplices = t.GetSimplices();
simplices.AddRange(newSimplices);
triangles.Remove(t);
}
// Now sort the simplices. That will make identical ones reside side by side in the list
simplices.Sort();
// Look for duplicate simplices here.
// Remember, they are directly side by side in the list right now,
// So we only check directly neighbours
int iSimplex;
List<Simplex> innerSimplices = new List<Simplex>();
for (iSimplex = 1; iSimplex < simplices.Count; iSimplex++) // Startindex=1, so we can refer backwards
{
if (simplices[iSimplex - 1].CompareTo(simplices[iSimplex]) == 0)
{
innerSimplices.Add(simplices[iSimplex - 1]);
innerSimplices.Add(simplices[iSimplex]);
}
}
foreach (Simplex s in innerSimplices)
{
simplices.Remove(s);
}
// each simplex still in the list belongs to the hull of the region in question
// The new vertex (yes, we still deal with verices here :-)) forms a triangle
// with each of these simplices. Build the new triangles and add them to the list
foreach (Simplex s in simplices)
{
Triangle t = new Triangle(s.v1, s.v2, vertices[iCurrentVertex]);
if (!t.isDegraded())
{
triangles.Add(t);
}
}
}
}
private static SimpleHull BuildHoleHull(PrimitiveBaseShape pbs, ProfileShape pshape, HollowShape hshape, UInt16 hollowFactor)
{
// Tackle HollowShape.Same
float fhollowFactor = (float)hollowFactor;
switch (pshape)
{
case ProfileShape.Square:
if (hshape == HollowShape.Same)
hshape= HollowShape.Square;
break;
case ProfileShape.EquilateralTriangle:
fhollowFactor = ((float)hollowFactor / 1.9f);
if (hshape == HollowShape.Same)
{
hshape = HollowShape.Triangle;
}
break;
case ProfileShape.HalfCircle:
case ProfileShape.Circle:
if (pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hshape == HollowShape.Same)
{
hshape = HollowShape.Circle;
}
}
break;
default:
if (hshape == HollowShape.Same)
hshape= HollowShape.Square;
break;
}
SimpleHull holeHull = null;
if (hshape == HollowShape.Square)
{
float hollowFactorF = (float)fhollowFactor / (float)50000;
Vertex IMM;
Vertex IPM;
Vertex IPP;
Vertex IMP;
if (pshape == ProfileShape.Circle)
{ // square cutout in cylinder is 45 degress rotated
IMM = new Vertex(0.0f, -0.707f * hollowFactorF, 0.0f);
IPM = new Vertex(0.707f * hollowFactorF, 0.0f, 0.0f);
IPP = new Vertex(0.0f, 0.707f * hollowFactorF, 0.0f);
IMP = new Vertex(-0.707f * hollowFactorF, 0.0f, 0.0f);
}
else if (pshape == ProfileShape.EquilateralTriangle)
{
IMM = new Vertex(0.0f, -0.667f * hollowFactorF, 0.0f);
IPM = new Vertex(0.667f * hollowFactorF, 0.0f, 0.0f);
IPP = new Vertex(0.0f, 0.667f * hollowFactorF, 0.0f);
IMP = new Vertex(-0.667f * hollowFactorF, 0.0f, 0.0f);
}
else
{
IMM = new Vertex(-0.5f * hollowFactorF, -0.5f * hollowFactorF, 0.0f);
IPM = new Vertex(+0.5f * hollowFactorF, -0.5f * hollowFactorF, 0.0f);
IPP = new Vertex(+0.5f * hollowFactorF, +0.5f * hollowFactorF, 0.0f);
IMP = new Vertex(-0.5f * hollowFactorF, +0.5f * hollowFactorF, 0.0f);
}
holeHull = new SimpleHull();
holeHull.AddVertex(IMM);
holeHull.AddVertex(IMP);
holeHull.AddVertex(IPP);
holeHull.AddVertex(IPM);
}
//if (hshape == HollowShape.Circle && pbs.PathCurve == (byte)Extrusion.Straight)
if (hshape == HollowShape.Circle)
{
float hollowFactorF = (float)fhollowFactor / (float)50000;
//Counter clockwise around the quadrants
holeHull = new SimpleHull();
holeHull.AddVertex(new Vertex(0.353553f * hollowFactorF, 0.353553f * hollowFactorF, 0.0f)); // 45 degrees
holeHull.AddVertex(new Vertex(0.433013f * hollowFactorF, 0.250000f * hollowFactorF, 0.0f)); // 30 degrees
holeHull.AddVertex(new Vertex(0.482963f * hollowFactorF, 0.129410f * hollowFactorF, 0.0f)); // 15 degrees
holeHull.AddVertex(new Vertex(0.500000f * hollowFactorF, 0.000000f * hollowFactorF, 0.0f)); // 0 degrees
holeHull.AddVertex(new Vertex(0.482963f * hollowFactorF, -0.129410f * hollowFactorF, 0.0f)); // 345 degrees
holeHull.AddVertex(new Vertex(0.433013f * hollowFactorF, -0.250000f * hollowFactorF, 0.0f)); // 330 degrees
holeHull.AddVertex(new Vertex(0.353553f * hollowFactorF, -0.353553f * hollowFactorF, 0.0f)); // 315 degrees
holeHull.AddVertex(new Vertex(0.250000f * hollowFactorF, -0.433013f * hollowFactorF, 0.0f)); // 300 degrees
holeHull.AddVertex(new Vertex(0.129410f * hollowFactorF, -0.482963f * hollowFactorF, 0.0f)); // 285 degrees
holeHull.AddVertex(new Vertex(0.000000f * hollowFactorF, -0.500000f * hollowFactorF, 0.0f)); // 270 degrees
holeHull.AddVertex(new Vertex(-0.129410f * hollowFactorF, -0.482963f * hollowFactorF, 0.0f)); // 255 degrees
holeHull.AddVertex(new Vertex(-0.250000f * hollowFactorF, -0.433013f * hollowFactorF, 0.0f)); // 240 degrees
holeHull.AddVertex(new Vertex(-0.353553f * hollowFactorF, -0.353553f * hollowFactorF, 0.0f)); // 225 degrees
holeHull.AddVertex(new Vertex(-0.433013f * hollowFactorF, -0.250000f * hollowFactorF, 0.0f)); // 210 degrees
holeHull.AddVertex(new Vertex(-0.482963f * hollowFactorF, -0.129410f * hollowFactorF, 0.0f)); // 195 degrees
holeHull.AddVertex(new Vertex(-0.500000f * hollowFactorF, 0.000000f * hollowFactorF, 0.0f)); // 180 degrees
holeHull.AddVertex(new Vertex(-0.482963f * hollowFactorF, 0.129410f * hollowFactorF, 0.0f)); // 165 degrees
holeHull.AddVertex(new Vertex(-0.433013f * hollowFactorF, 0.250000f * hollowFactorF, 0.0f)); // 150 degrees
holeHull.AddVertex(new Vertex(-0.353553f * hollowFactorF, 0.353553f * hollowFactorF, 0.0f)); // 135 degrees
holeHull.AddVertex(new Vertex(-0.250000f * hollowFactorF, 0.433013f * hollowFactorF, 0.0f)); // 120 degrees
holeHull.AddVertex(new Vertex(-0.129410f * hollowFactorF, 0.482963f * hollowFactorF, 0.0f)); // 105 degrees
holeHull.AddVertex(new Vertex(0.000000f * hollowFactorF, 0.500000f * hollowFactorF, 0.0f)); // 90 degrees
holeHull.AddVertex(new Vertex(0.129410f * hollowFactorF, 0.482963f * hollowFactorF, 0.0f)); // 75 degrees
holeHull.AddVertex(new Vertex(0.250000f * hollowFactorF, 0.433013f * hollowFactorF, 0.0f)); // 60 degrees
holeHull.AddVertex(new Vertex(0.353553f * hollowFactorF, 0.353553f * hollowFactorF, 0.0f)); // 45 degrees
}
if (hshape == HollowShape.Triangle)
{
float hollowFactorF = (float)fhollowFactor / (float)50000;
Vertex IMM;
Vertex IPM;
Vertex IPP;
if (pshape == ProfileShape.Square)
{
// corner points are at 345, 105, and 225 degrees for the triangle within a box
//IMM = new Vertex(((float)Math.Cos(345.0 * DEG_TO_RAD) * 0.5f) * hollowFactorF, ((float)Math.Sin(345.0 * DEG_TO_RAD) * 0.5f) * hollowFactorF, 0.0f);
//IPM = new Vertex(((float)Math.Cos(105.0 * DEG_TO_RAD) * 0.5f) * hollowFactorF, ((float)Math.Sin(105.0 * DEG_TO_RAD) * 0.5f) * hollowFactorF, 0.0f);
//IPP = new Vertex(((float)Math.Cos(225.0 * DEG_TO_RAD) * 0.5f) * hollowFactorF, ((float)Math.Sin(225.0 * DEG_TO_RAD) * 0.5f) * hollowFactorF, 0.0f);
// hard coded here for speed, the equations are in the commented out lines above
IMM = new Vertex(0.48296f * hollowFactorF, -0.12941f * hollowFactorF, 0.0f);
IPM = new Vertex(-0.12941f * hollowFactorF, 0.48296f * hollowFactorF, 0.0f);
IPP = new Vertex(-0.35355f * hollowFactorF, -0.35355f * hollowFactorF, 0.0f);
}
else
{
IMM = new Vertex(-0.25f * hollowFactorF, -0.45f * hollowFactorF, 0.0f);
IPM = new Vertex(+0.5f * hollowFactorF, +0f * hollowFactorF, 0.0f);
IPP = new Vertex(-0.25f * hollowFactorF, +0.45f * hollowFactorF, 0.0f);
}
holeHull = new SimpleHull();
holeHull.AddVertex(IMM);
holeHull.AddVertex(IPP);
holeHull.AddVertex(IPM);
}
return holeHull;
}
/// <summary>
/// creates a simple box mesh of the specified size
/// </summary>
/// <param name="minX"></param>
/// <param name="maxX"></param>
/// <param name="minY"></param>
/// <param name="maxY"></param>
/// <param name="minZ"></param>
/// <param name="maxZ"></param>
/// <returns></returns>
private static Mesh CreateSimpleBoxMesh(float minX, float maxX, float minY, float maxY, float minZ, float maxZ)
{
Mesh box = new Mesh();
// bottom
box.Add(new Vertex(minX, maxY, minZ));
box.Add(new Vertex(maxX, maxY, minZ));
box.Add(new Vertex(maxX, minY, minZ));
box.Add(new Vertex(minX, minY, minZ));
box.Add(new Triangle(box.vertices[0], box.vertices[1], box.vertices[2]));
box.Add(new Triangle(box.vertices[0], box.vertices[2], box.vertices[3]));
// top
box.Add(new Vertex(maxX, maxY, maxZ));
box.Add(new Vertex(minX, maxY, maxZ));
box.Add(new Vertex(minX, minY, maxZ));
box.Add(new Vertex(maxX, minY, maxZ));
box.Add(new Triangle(box.vertices[4], box.vertices[5], box.vertices[6]));
box.Add(new Triangle(box.vertices[4], box.vertices[6], box.vertices[7]));
// sides
box.Add(new Triangle(box.vertices[5], box.vertices[0], box.vertices[3]));
box.Add(new Triangle(box.vertices[5], box.vertices[3], box.vertices[6]));
box.Add(new Triangle(box.vertices[1], box.vertices[0], box.vertices[5]));
box.Add(new Triangle(box.vertices[1], box.vertices[5], box.vertices[4]));
box.Add(new Triangle(box.vertices[7], box.vertices[1], box.vertices[4]));
box.Add(new Triangle(box.vertices[7], box.vertices[2], box.vertices[1]));
box.Add(new Triangle(box.vertices[3], box.vertices[2], box.vertices[7]));
box.Add(new Triangle(box.vertices[3], box.vertices[7], box.vertices[6]));
return box;
}
/// <summary>
/// Creates a simple bounding box mesh for a complex input mesh
/// </summary>
/// <param name="meshIn"></param>
/// <returns></returns>
private static Mesh CreateBoundingBoxMesh(Mesh meshIn)
{
float minX = float.MaxValue;
float maxX = float.MinValue;
float minY = float.MaxValue;
float maxY = float.MinValue;
float minZ = float.MaxValue;
float maxZ = float.MinValue;
foreach (Vertex v in meshIn.vertices)
{
if (v != null)
{
if (v.X < minX) minX = v.X;
if (v.Y < minY) minY = v.Y;
if (v.Z < minZ) minZ = v.Z;
if (v.X > maxX) maxX = v.X;
if (v.Y > maxY) maxY = v.Y;
if (v.Z > maxZ) maxZ = v.Z;
}
}
return CreateSimpleBoxMesh(minX, maxX, minY, maxY, minZ, maxZ);
}
private static Mesh CreateBoxMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
// Builds the z (+ and -) surfaces of a box shaped prim
{
UInt16 hollowFactor = primShape.ProfileHollow;
UInt16 profileBegin = primShape.ProfileBegin;
UInt16 profileEnd = primShape.ProfileEnd;
UInt16 taperX = primShape.PathScaleX;
UInt16 taperY = primShape.PathScaleY;
UInt16 pathShearX = primShape.PathShearX;
UInt16 pathShearY = primShape.PathShearY;
#if SPAM
reportPrimParams("[BOX] " + primName, primShape);
#endif
// Procedure: This is based on the fact that the upper (plus) and lower (minus) Z-surface
// of a block are basically the same
// They may be warped differently but the shape is identical
// So we only create one surface as a model and derive both plus and minus surface of the block from it
// This is done in a model space where the block spans from -.5 to +.5 in X and Y
// The mapping to Scene space is done later during the "extrusion" phase
// Base
Vertex MM = new Vertex(-0.5f, -0.5f, 0.0f);
Vertex PM = new Vertex(+0.5f, -0.5f, 0.0f);
Vertex PP = new Vertex(+0.5f, +0.5f, 0.0f);
Vertex MP = new Vertex(-0.5f, +0.5f, 0.0f);
SimpleHull outerHull = new SimpleHull();
outerHull.AddVertex(PP);
outerHull.AddVertex(MP);
outerHull.AddVertex(MM);
outerHull.AddVertex(PM);
// Deal with cuts now
if ((profileBegin != 0) || (profileEnd != 0))
{
double fProfileBeginAngle = profileBegin / 50000.0*360.0;
// In degree, for easier debugging and understanding
fProfileBeginAngle -= (90.0 + 45.0); // for some reasons, the SL client counts from the corner -X/-Y
double fProfileEndAngle = 360.0 - profileEnd / 50000.0*360.0; // Pathend comes as complement to 1.0
fProfileEndAngle -= (90.0 + 45.0);
// avoid some problem angles until the hull subtraction routine is fixed
if ((fProfileBeginAngle + 45.0f) % 90.0f == 0.0f)
fProfileBeginAngle += 5.0f;
if ((fProfileEndAngle + 45.0f) % 90.0f == 0.0f)
fProfileEndAngle -= 5.0f;
if (fProfileBeginAngle % 90.0f == 0.0f)
fProfileBeginAngle += 1.0f;
if (fProfileEndAngle % 90.0f == 0.0f)
fProfileEndAngle -= 1.0f;
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
#if SPAM
Console.WriteLine("Meshmerizer: fProfileBeginAngle: " + fProfileBeginAngle.ToString() + " fProfileEndAngle: " + fProfileEndAngle.ToString());
#endif
// Note, that we don't want to cut out a triangle, even if this is a
// good approximation for small cuts. Indeed we want to cut out an arc
// and we approximate this arc by a polygon chain
// Also note, that these vectors are of length 1.0 and thus their endpoints lay outside the model space
// So it can easily be subtracted from the outer hull
int iSteps = (int) (((fProfileBeginAngle - fProfileEndAngle)/45.0) + .5);
// how many steps do we need with approximately 45 degree
double dStepWidth = (fProfileBeginAngle - fProfileEndAngle)/iSteps;
Vertex origin = new Vertex(0.0f, 0.0f, 0.0f);
// Note the sequence of vertices here. It's important to have the other rotational sense than in outerHull
SimpleHull cutHull = new SimpleHull();
cutHull.AddVertex(origin);
for (int i = 0; i < iSteps; i++)
{
double angle = fProfileBeginAngle - i*dStepWidth; // we count against the angle orientation!!!!
Vertex v = Vertex.FromAngle(angle*Math.PI/180.0);
cutHull.AddVertex(v);
}
Vertex legEnd = Vertex.FromAngle(fProfileEndAngle*Math.PI/180.0);
// Calculated separately to avoid errors
cutHull.AddVertex(legEnd);
//m_log.DebugFormat("Starting cutting of the hollow shape from the prim {1}", 0, primName);
SimpleHull cuttedHull = SimpleHull.SubtractHull(outerHull, cutHull);
outerHull = cuttedHull;
}
// Deal with the hole here
if (hollowFactor > 0)
{
if (hollowFactor < 1000)
hollowFactor = 1000; // some sane minimum for our beloved SimpleHull routines
SimpleHull holeHull = BuildHoleHull(primShape, primShape.ProfileShape, primShape.HollowShape, hollowFactor);
if (holeHull != null)
{
SimpleHull hollowedHull = SimpleHull.SubtractHull(outerHull, holeHull);
outerHull = hollowedHull;
}
}
Mesh m = new Mesh();
Vertex Seed1 = new Vertex(0.0f, -10.0f, 0.0f);
Vertex Seed2 = new Vertex(-10.0f, 10.0f, 0.0f);
Vertex Seed3 = new Vertex(10.0f, 10.0f, 0.0f);
m.Add(Seed1);
m.Add(Seed2);
m.Add(Seed3);
m.Add(new Triangle(Seed1, Seed2, Seed3));
m.Add(outerHull.getVertices());
InsertVertices(m.vertices, 3, m.triangles);
m.DumpRaw(baseDir, primName, "Proto first Mesh");
m.Remove(Seed1);
m.Remove(Seed2);
m.Remove(Seed3);
m.DumpRaw(baseDir, primName, "Proto seeds removed");
m.RemoveTrianglesOutside(outerHull);
m.DumpRaw(baseDir, primName, "Proto outsides removed");
foreach (Triangle t in m.triangles)
{
PhysicsVector n = t.getNormal();
if (n.Z < 0.0)
t.invertNormal();
}
Extruder extr = new Extruder();
extr.size = size;
if (taperX != 100)
{
if (taperX > 100)
{
extr.taperTopFactorX = 1.0f - ((float)(taperX - 100) / 100);
}
else
{
extr.taperBotFactorX = 1.0f - ((100 - (float)taperX) / 100);
}
}
if (taperY != 100)
{
if (taperY > 100)
{
extr.taperTopFactorY = 1.0f - ((float)(taperY - 100) / 100);
}
else
{
extr.taperBotFactorY = 1.0f - ((100 - (float)taperY) / 100);
}
}
if (pathShearX != 0)
{
if (pathShearX > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushX = (((float)(256 - pathShearX) / 100) * -1f);
}
else
{
extr.pushX = (float)pathShearX / 100;
}
}
if (pathShearY != 0)
{
if (pathShearY > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushY = (((float)(256 - pathShearY) / 100) * -1f);
}
else
{
extr.pushY = (float)pathShearY / 100;
}
}
extr.twistTop = (float)primShape.PathTwist * (float)Math.PI * 0.01f;
extr.twistBot = (float)primShape.PathTwistBegin * (float)Math.PI * 0.01f;
extr.pathBegin = primShape.PathBegin;
extr.pathEnd = primShape.PathEnd;
Mesh result = extr.ExtrudeLinearPath(m);
result.DumpRaw(baseDir, primName, "Z extruded");
#if SPAM
int vCount = 0;
foreach (Vertex v in result.vertices)
if (v != null)
vCount++;
System.Console.WriteLine("Mesh vertex count: " + vCount.ToString());
#endif
return result;
}
private static Mesh CreateCylinderMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
// Builds the z (+ and -) surfaces of a box shaped prim
{
UInt16 hollowFactor = primShape.ProfileHollow;
UInt16 profileBegin = primShape.ProfileBegin;
UInt16 profileEnd = primShape.ProfileEnd;
UInt16 taperX = primShape.PathScaleX;
UInt16 taperY = primShape.PathScaleY;
UInt16 pathShearX = primShape.PathShearX;
UInt16 pathShearY = primShape.PathShearY;
#if SPAM
reportPrimParams("[CYLINDER] " + primName, primShape);
#endif
// Procedure: This is based on the fact that the upper (plus) and lower (minus) Z-surface
// of a block are basically the same
// They may be warped differently but the shape is identical
// So we only create one surface as a model and derive both plus and minus surface of the block from it
// This is done in a model space where the block spans from -.5 to +.5 in X and Y
// The mapping to Scene space is done later during the "extrusion" phase
// Base
SimpleHull outerHull = new SimpleHull();
// counter-clockwise around the quadrants, start at 45 degrees
outerHull.AddVertex(new Vertex(0.353553f, 0.353553f, 0.0f)); // 45 degrees
outerHull.AddVertex(new Vertex(0.250000f, 0.433013f, 0.0f)); // 60 degrees
outerHull.AddVertex(new Vertex(0.129410f, 0.482963f, 0.0f)); // 75 degrees
outerHull.AddVertex(new Vertex(0.000000f, 0.500000f, 0.0f)); // 90 degrees
outerHull.AddVertex(new Vertex(-0.129410f, 0.482963f, 0.0f)); // 105 degrees
outerHull.AddVertex(new Vertex(-0.250000f, 0.433013f, 0.0f)); // 120 degrees
outerHull.AddVertex(new Vertex(-0.353553f, 0.353553f, 0.0f)); // 135 degrees
outerHull.AddVertex(new Vertex(-0.433013f, 0.250000f, 0.0f)); // 150 degrees
outerHull.AddVertex(new Vertex(-0.482963f, 0.129410f, 0.0f)); // 165 degrees
outerHull.AddVertex(new Vertex(-0.500000f, 0.000000f, 0.0f)); // 180 degrees
outerHull.AddVertex(new Vertex(-0.482963f, -0.129410f, 0.0f)); // 195 degrees
outerHull.AddVertex(new Vertex(-0.433013f, -0.250000f, 0.0f)); // 210 degrees
outerHull.AddVertex(new Vertex(-0.353553f, -0.353553f, 0.0f)); // 225 degrees
outerHull.AddVertex(new Vertex(-0.250000f, -0.433013f, 0.0f)); // 240 degrees
outerHull.AddVertex(new Vertex(-0.129410f, -0.482963f, 0.0f)); // 255 degrees
outerHull.AddVertex(new Vertex(0.000000f, -0.500000f, 0.0f)); // 270 degrees
outerHull.AddVertex(new Vertex(0.129410f, -0.482963f, 0.0f)); // 285 degrees
outerHull.AddVertex(new Vertex(0.250000f, -0.433013f, 0.0f)); // 300 degrees
outerHull.AddVertex(new Vertex(0.353553f, -0.353553f, 0.0f)); // 315 degrees
outerHull.AddVertex(new Vertex(0.433013f, -0.250000f, 0.0f)); // 330 degrees
outerHull.AddVertex(new Vertex(0.482963f, -0.129410f, 0.0f)); // 345 degrees
outerHull.AddVertex(new Vertex(0.500000f, 0.000000f, 0.0f)); // 0 degrees
outerHull.AddVertex(new Vertex(0.482963f, 0.129410f, 0.0f)); // 15 degrees
outerHull.AddVertex(new Vertex(0.433013f, 0.250000f, 0.0f)); // 30 degrees
// Deal with cuts now
if ((profileBegin != 0) || (profileEnd != 0))
{
double fProfileBeginAngle = profileBegin / 50000.0 * 360.0;
// In degree, for easier debugging and understanding
double fProfileEndAngle = 360.0 - profileEnd / 50000.0 * 360.0; // Pathend comes as complement to 1.0
#if SPAM
Console.WriteLine("Extruder: Cylinder fProfileBeginAngle: " + fProfileBeginAngle.ToString() + " fProfileEndAngle: " + fProfileEndAngle.ToString());
#endif
if (fProfileBeginAngle > 270.0f && fProfileBeginAngle < 271.8f) // a problem angle for the hull subtract routine :(
fProfileBeginAngle = 271.8f; // workaround - use the smaller slice
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
#if SPAM
Console.WriteLine("Extruder: Cylinder fProfileBeginAngle: " + fProfileBeginAngle.ToString() + " fProfileEndAngle: " + fProfileEndAngle.ToString());
#endif
// Note, that we don't want to cut out a triangle, even if this is a
// good approximation for small cuts. Indeed we want to cut out an arc
// and we approximate this arc by a polygon chain
// Also note, that these vectors are of length 1.0 and thus their endpoints lay outside the model space
// So it can easily be subtracted from the outer hull
int iSteps = (int)(((fProfileBeginAngle - fProfileEndAngle) / 45.0) + .5);
// how many steps do we need with approximately 45 degree
double dStepWidth = (fProfileBeginAngle - fProfileEndAngle) / iSteps;
Vertex origin = new Vertex(0.0f, 0.0f, 0.0f);
// Note the sequence of vertices here. It's important to have the other rotational sense than in outerHull
SimpleHull cutHull = new SimpleHull();
cutHull.AddVertex(origin);
for (int i = 0; i < iSteps; i++)
{
double angle = fProfileBeginAngle - i * dStepWidth; // we count against the angle orientation!!!!
Vertex v = Vertex.FromAngle(angle * Math.PI / 180.0);
cutHull.AddVertex(v);
}
Vertex legEnd = Vertex.FromAngle(fProfileEndAngle * Math.PI / 180.0);
// Calculated separately to avoid errors
cutHull.AddVertex(legEnd);
SimpleHull cuttedHull = SimpleHull.SubtractHull(outerHull, cutHull);
outerHull = cuttedHull;
}
// Deal with the hole here
if (hollowFactor > 0)
{
if (hollowFactor < 1000)
hollowFactor = 1000; // some sane minimum for our beloved SimpleHull routines
SimpleHull holeHull = BuildHoleHull(primShape, primShape.ProfileShape, primShape.HollowShape, hollowFactor);
if (holeHull != null)
{
SimpleHull hollowedHull = SimpleHull.SubtractHull(outerHull, holeHull);
outerHull = hollowedHull;
}
}
Mesh m = new Mesh();
Vertex Seed1 = new Vertex(0.0f, -10.0f, 0.0f);
Vertex Seed2 = new Vertex(-10.0f, 10.0f, 0.0f);
Vertex Seed3 = new Vertex(10.0f, 10.0f, 0.0f);
m.Add(Seed1);
m.Add(Seed2);
m.Add(Seed3);
m.Add(new Triangle(Seed1, Seed2, Seed3));
m.Add(outerHull.getVertices());
InsertVertices(m.vertices, 3, m.triangles);
m.DumpRaw(baseDir, primName, "Proto first Mesh");
m.Remove(Seed1);
m.Remove(Seed2);
m.Remove(Seed3);
m.DumpRaw(baseDir, primName, "Proto seeds removed");
m.RemoveTrianglesOutside(outerHull);
m.DumpRaw(baseDir, primName, "Proto outsides removed");
foreach (Triangle t in m.triangles)
{
PhysicsVector n = t.getNormal();
if (n.Z < 0.0)
t.invertNormal();
}
Extruder extr = new Extruder();
extr.size = size;
if (taperX != 100)
{
if (taperX > 100)
{
extr.taperTopFactorX = 1.0f - ((float)(taperX - 100) / 100); }
else
{
extr.taperBotFactorX = 1.0f - ((100 - (float)taperX) / 100);
}
}
if (taperY != 100)
{
if (taperY > 100)
{
extr.taperTopFactorY = 1.0f - ((float)(taperY - 100) / 100);
}
else
{
extr.taperBotFactorY = 1.0f - ((100 - (float)taperY) / 100);
}
}
if (pathShearX != 0)
{
if (pathShearX > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushX = (((float)(256 - pathShearX) / 100) * -1f);
}
else
{
extr.pushX = (float)pathShearX / 100;
}
}
if (pathShearY != 0)
{
if (pathShearY > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushY = (((float)(256 - pathShearY) / 100) * -1f);
}
else
{
extr.pushY = (float)pathShearY / 100;
}
}
extr.twistTop = (float)primShape.PathTwist * (float)Math.PI * 0.01f;
extr.twistBot = (float)primShape.PathTwistBegin * (float)Math.PI * 0.01f;
extr.pathBegin = primShape.PathBegin;
extr.pathEnd = primShape.PathEnd;
Mesh result = extr.ExtrudeLinearPath(m);
result.DumpRaw(baseDir, primName, "Z extruded");
#if SPAM
int vCount = 0;
foreach (Vertex v in result.vertices)
if (v != null)
vCount++;
System.Console.WriteLine("Mesh vertex count: " + vCount.ToString());
#endif
return result;
}
private static Mesh CreatePrismMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
// Builds the z (+ and -) surfaces of a box shaped prim
{
UInt16 hollowFactor = primShape.ProfileHollow;
UInt16 profileBegin = primShape.ProfileBegin;
UInt16 profileEnd = primShape.ProfileEnd;
UInt16 taperX = primShape.PathScaleX;
UInt16 taperY = primShape.PathScaleY;
UInt16 pathShearX = primShape.PathShearX;
UInt16 pathShearY = primShape.PathShearY;
#if SPAM
reportPrimParams("[PRISM] " + primName, primShape);
#endif
// Procedure: This is based on the fact that the upper (plus) and lower (minus) Z-surface
// of a block are basically the same
// They may be warped differently but the shape is identical
// So we only create one surface as a model and derive both plus and minus surface of the block from it
// This is done in a model space where the block spans from -.5 to +.5 in X and Y
// The mapping to Scene space is done later during the "extrusion" phase
// Base
Vertex MM = new Vertex(-0.25f, -0.45f, 0.0f);
Vertex PM = new Vertex(+0.5f, 0f, 0.0f);
Vertex PP = new Vertex(-0.25f, +0.45f, 0.0f);
SimpleHull outerHull = new SimpleHull();
outerHull.AddVertex(PP);
outerHull.AddVertex(MM);
outerHull.AddVertex(PM);
// Deal with cuts now
if ((profileBegin != 0) || (profileEnd != 0))
{
double fProfileBeginAngle = profileBegin / 50000.0 * 360.0;
// In degree, for easier debugging and understanding
double fProfileEndAngle = 360.0 - profileEnd / 50000.0 * 360.0; // Pathend comes as complement to 1.0
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
// Note, that we don't want to cut out a triangle, even if this is a
// good approximation for small cuts. Indeed we want to cut out an arc
// and we approximate this arc by a polygon chain
// Also note, that these vectors are of length 1.0 and thus their endpoints lay outside the model space
// So it can easily be subtracted from the outer hull
int iSteps = (int)(((fProfileBeginAngle - fProfileEndAngle) / 45.0) + .5);
// how many steps do we need with approximately 45 degree
double dStepWidth = (fProfileBeginAngle - fProfileEndAngle) / iSteps;
Vertex origin = new Vertex(0.0f, 0.0f, 0.0f);
// Note the sequence of vertices here. It's important to have the other rotational sense than in outerHull
SimpleHull cutHull = new SimpleHull();
cutHull.AddVertex(origin);
for (int i = 0; i < iSteps; i++)
{
double angle = fProfileBeginAngle - i * dStepWidth; // we count against the angle orientation!!!!
Vertex v = Vertex.FromAngle(angle * Math.PI / 180.0);
cutHull.AddVertex(v);
}
Vertex legEnd = Vertex.FromAngle(fProfileEndAngle * Math.PI / 180.0);
// Calculated separately to avoid errors
cutHull.AddVertex(legEnd);
SimpleHull cuttedHull = SimpleHull.SubtractHull(outerHull, cutHull);
outerHull = cuttedHull;
}
// Deal with the hole here
if (hollowFactor > 0)
{
if (hollowFactor < 1000)
hollowFactor = 1000; // some sane minimum for our beloved SimpleHull routines
SimpleHull holeHull = BuildHoleHull(primShape, primShape.ProfileShape, primShape.HollowShape, hollowFactor);
if (holeHull != null)
{
SimpleHull hollowedHull = SimpleHull.SubtractHull(outerHull, holeHull);
outerHull = hollowedHull;
}
}
Mesh m = new Mesh();
Vertex Seed1 = new Vertex(0.0f, -10.0f, 0.0f);
Vertex Seed2 = new Vertex(-10.0f, 10.0f, 0.0f);
Vertex Seed3 = new Vertex(10.0f, 10.0f, 0.0f);
m.Add(Seed1);
m.Add(Seed2);
m.Add(Seed3);
m.Add(new Triangle(Seed1, Seed2, Seed3));
m.Add(outerHull.getVertices());
InsertVertices(m.vertices, 3, m.triangles);
m.DumpRaw(baseDir, primName, "Proto first Mesh");
m.Remove(Seed1);
m.Remove(Seed2);
m.Remove(Seed3);
m.DumpRaw(baseDir, primName, "Proto seeds removed");
m.RemoveTrianglesOutside(outerHull);
m.DumpRaw(baseDir, primName, "Proto outsides removed");
foreach (Triangle t in m.triangles)
{
PhysicsVector n = t.getNormal();
if (n.Z < 0.0)
t.invertNormal();
}
Extruder extr = new Extruder();
extr.size = size;
if (taperX != 100)
{
if (taperX > 100)
{
extr.taperTopFactorX = 1.0f - ((float)(taperX - 100) / 100);
}
else
{
extr.taperBotFactorX = 1.0f - ((100 - (float)taperX) / 100);
}
}
if (taperY != 100)
{
if (taperY > 100)
{
extr.taperTopFactorY = 1.0f - ((float)(taperY - 100) / 100);
}
else
{
extr.taperBotFactorY = 1.0f - ((100 - (float)taperY) / 100);
}
}
if (pathShearX != 0)
{
if (pathShearX > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushX = (((float)(256 - pathShearX) / 100) * -1f);
}
else
{
extr.pushX = (float)pathShearX / 100;
}
}
if (pathShearY != 0)
{
if (pathShearY > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushY = (((float)(256 - pathShearY) / 100) * -1f);
}
else
{
extr.pushY = (float)pathShearY / 100;
}
}
extr.twistTop = (float)primShape.PathTwist * (float)Math.PI * 0.01f;
extr.twistBot = (float)primShape.PathTwistBegin * (float)Math.PI * 0.01f;
extr.pathBegin = primShape.PathBegin;
extr.pathEnd = primShape.PathEnd;
Mesh result = extr.ExtrudeLinearPath(m);
result.DumpRaw(baseDir, primName, "Z extruded");
#if SPAM
int vCount = 0;
foreach (Vertex v in result.vertices)
if (v != null)
vCount++;
System.Console.WriteLine("Mesh vertex count: " + vCount.ToString());
#endif
return result;
}
/// <summary>
/// builds an icosahedral geodesic sphere - used as default in place of problem meshes
/// </summary>
/// <param name="primName"></param>
/// <param name="primShape"></param>
/// <param name="size"></param>
/// <returns></returns>
private static Mesh CreateSphereMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
{
// Builds an icosahedral geodesic sphere
// based on an article by Paul Bourke
// http://local.wasp.uwa.edu.au/~pbourke/
// articles:
// http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonmesh/
// and
// http://local.wasp.uwa.edu.au/~pbourke/geometry/polyhedra/index.html
// Still have more to do here.
Mesh m = new Mesh();
#if SPAM
reportPrimParams("[SPHERE] " + primName, primShape);
#endif
float LOD = 0.2f;
float diameter = 0.5f;// Our object will result in -0.5 to 0.5
float sq5 = (float) Math.Sqrt(5.0);
float phi = (1 + sq5) * 0.5f;
float rat = (float) Math.Sqrt(10f + (2f * sq5)) / (4f * phi);
float a = (diameter / rat) * 0.5f;
float b = (diameter / rat) / (2.0f * phi);
// 12 Icosahedron vertexes
Vertex v1 = new Vertex(0f, b, -a);
Vertex v2 = new Vertex(b, a, 0f);
Vertex v3 = new Vertex(-b, a, 0f);
Vertex v4 = new Vertex(0f, b, a);
Vertex v5 = new Vertex(0f, -b, a);
Vertex v6 = new Vertex(-a, 0f, b);
Vertex v7 = new Vertex(0f, -b, -a);
Vertex v8 = new Vertex(a, 0f, -b);
Vertex v9 = new Vertex(a, 0f, b);
Vertex v10 = new Vertex(-a, 0f, -b);
Vertex v11 = new Vertex(b, -a, 0);
Vertex v12 = new Vertex(-b, -a, 0);
// Base Faces of the Icosahedron (20)
SphereLODTriangle(v1, v2, v3, diameter, LOD, m);
SphereLODTriangle(v4, v3, v2, diameter, LOD, m);
SphereLODTriangle(v4, v5, v6, diameter, LOD, m);
SphereLODTriangle(v4, v9, v5, diameter, LOD, m);
SphereLODTriangle(v1, v7, v8, diameter, LOD, m);
SphereLODTriangle(v1, v10, v7, diameter, LOD, m);
SphereLODTriangle(v5, v11, v12, diameter, LOD, m);
SphereLODTriangle(v7, v12, v11, diameter, LOD, m);
SphereLODTriangle(v3, v6, v10, diameter, LOD, m);
SphereLODTriangle(v12, v10, v6, diameter, LOD, m);
SphereLODTriangle(v2, v8, v9, diameter, LOD, m);
SphereLODTriangle(v11, v9, v8, diameter, LOD, m);
SphereLODTriangle(v4, v6, v3, diameter, LOD, m);
SphereLODTriangle(v4, v2, v9, diameter, LOD, m);
SphereLODTriangle(v1, v3, v10, diameter, LOD, m);
SphereLODTriangle(v1, v8, v2, diameter, LOD, m);
SphereLODTriangle(v7, v10, v12, diameter, LOD, m);
SphereLODTriangle(v7, v11, v8, diameter, LOD, m);
SphereLODTriangle(v5, v12, v6, diameter, LOD, m);
SphereLODTriangle(v5, v9, v11, diameter, LOD, m);
// Scale the mesh based on our prim scale
foreach (Vertex v in m.vertices)
{
v.X *= size.X;
v.Y *= size.Y;
v.Z *= size.Z;
}
// This was built with the normals pointing inside..
// therefore we have to invert the normals
foreach (Triangle t in m.triangles)
{
t.invertNormal();
}
// Dump the faces for visualization in blender.
m.DumpRaw(baseDir, primName, "Icosahedron");
#if SPAM
int vCount = 0;
foreach (Vertex v in m.vertices)
if (v != null)
vCount++;
System.Console.WriteLine("Mesh vertex count: " + vCount.ToString());
#endif
return m;
}
private SculptMesh CreateSculptMesh(string primName, PrimitiveBaseShape primShape, PhysicsVector size, float lod)
{
#if SPAM
reportPrimParams("[SCULPT] " + primName, primShape);
#endif
SculptMesh sm = new SculptMesh(primShape.SculptData, lod);
// Scale the mesh based on our prim scale
foreach (Vertex v in sm.vertices)
{
v.X *= 0.5f;
v.Y *= 0.5f;
v.Z *= 0.5f;
v.X *= size.X;
v.Y *= size.Y;
v.Z *= size.Z;
}
// This was built with the normals pointing inside..
// therefore we have to invert the normals
foreach (Triangle t in sm.triangles)
{
t.invertNormal();
}
sm.DumpRaw(baseDir, primName, "Sculpt");
return sm;
}
/// <summary>
/// Creates a mesh for prim types torus, ring, tube, and sphere
/// </summary>
/// <param name="primName"></param>
/// <param name="primShape"></param>
/// <param name="size"></param>
/// <returns></returns>
private static Mesh CreateCircularPathMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size)
{
UInt16 hollowFactor = primShape.ProfileHollow;
UInt16 profileBegin = primShape.ProfileBegin;
UInt16 profileEnd = primShape.ProfileEnd;
UInt16 pathShearX = primShape.PathShearX;
UInt16 pathShearY = primShape.PathShearY;
HollowShape hollowShape = primShape.HollowShape;
#if SPAM
reportPrimParams("[CIRCULAR PATH PRIM] " + primName, primShape);
Console.WriteLine("pathTwist: " + primShape.PathTwist.ToString() + " pathTwistBegin: " + primShape.PathTwistBegin.ToString());
Console.WriteLine("primShape.ProfileCurve & 0x07: " + Convert.ToString(primShape.ProfileCurve & 0x07));
#endif
SimpleHull outerHull = new SimpleHull();
if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
{
#if SPAM
Console.WriteLine("Meshmerizer thinks " + primName + " is a TORUS");
#endif
if (hollowShape == HollowShape.Same)
hollowShape = HollowShape.Circle;
// build the profile shape
// counter-clockwise around the quadrants, start at 45 degrees
outerHull.AddVertex(new Vertex(0.353553f, 0.353553f, 0.0f)); // 45 degrees
outerHull.AddVertex(new Vertex(0.250000f, 0.433013f, 0.0f)); // 60 degrees
outerHull.AddVertex(new Vertex(0.129410f, 0.482963f, 0.0f)); // 75 degrees
outerHull.AddVertex(new Vertex(0.000000f, 0.500000f, 0.0f)); // 90 degrees
outerHull.AddVertex(new Vertex(-0.129410f, 0.482963f, 0.0f)); // 105 degrees
outerHull.AddVertex(new Vertex(-0.250000f, 0.433013f, 0.0f)); // 120 degrees
outerHull.AddVertex(new Vertex(-0.353553f, 0.353553f, 0.0f)); // 135 degrees
outerHull.AddVertex(new Vertex(-0.433013f, 0.250000f, 0.0f)); // 150 degrees
outerHull.AddVertex(new Vertex(-0.482963f, 0.129410f, 0.0f)); // 165 degrees
outerHull.AddVertex(new Vertex(-0.500000f, 0.000000f, 0.0f)); // 180 degrees
outerHull.AddVertex(new Vertex(-0.482963f, -0.129410f, 0.0f)); // 195 degrees
outerHull.AddVertex(new Vertex(-0.433013f, -0.250000f, 0.0f)); // 210 degrees
outerHull.AddVertex(new Vertex(-0.353553f, -0.353553f, 0.0f)); // 225 degrees
outerHull.AddVertex(new Vertex(-0.250000f, -0.433013f, 0.0f)); // 240 degrees
outerHull.AddVertex(new Vertex(-0.129410f, -0.482963f, 0.0f)); // 255 degrees
outerHull.AddVertex(new Vertex(0.000000f, -0.500000f, 0.0f)); // 270 degrees
outerHull.AddVertex(new Vertex(0.129410f, -0.482963f, 0.0f)); // 285 degrees
outerHull.AddVertex(new Vertex(0.250000f, -0.433013f, 0.0f)); // 300 degrees
outerHull.AddVertex(new Vertex(0.353553f, -0.353553f, 0.0f)); // 315 degrees
outerHull.AddVertex(new Vertex(0.433013f, -0.250000f, 0.0f)); // 330 degrees
outerHull.AddVertex(new Vertex(0.482963f, -0.129410f, 0.0f)); // 345 degrees
outerHull.AddVertex(new Vertex(0.500000f, 0.000000f, 0.0f)); // 0 degrees
outerHull.AddVertex(new Vertex(0.482963f, 0.129410f, 0.0f)); // 15 degrees
outerHull.AddVertex(new Vertex(0.433013f, 0.250000f, 0.0f)); // 30 degrees
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Square) // a ring
{
#if SPAM
Console.WriteLine("Meshmerizer thinks " + primName + " is a TUBE");
#endif
if (hollowShape == HollowShape.Same)
hollowShape = HollowShape.Square;
outerHull.AddVertex(new Vertex(+0.5f, +0.5f, 0.0f));
outerHull.AddVertex(new Vertex(-0.5f, +0.5f, 0.0f));
outerHull.AddVertex(new Vertex(-0.5f, -0.5f, 0.0f));
outerHull.AddVertex(new Vertex(+0.5f, -0.5f, 0.0f));
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{
#if SPAM
Console.WriteLine("Meshmerizer thinks " + primName + " is a RING");
#endif
if (hollowShape == HollowShape.Same)
hollowShape = HollowShape.Triangle;
outerHull.AddVertex(new Vertex(+0.255f, -0.375f, 0.0f));
outerHull.AddVertex(new Vertex(+0.25f, +0.375f, 0.0f));
outerHull.AddVertex(new Vertex(-0.5f, +0.0f, 0.0f));
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
#if SPAM
Console.WriteLine("Meshmerizer thinks " + primName + " is a SPHERE");
#endif
// sanity check here... some spheres have inverted normals which can trap avatars
// so for now if the shape parameters are such that this may happen, revert to the
// geodesic sphere mesh.. the threshold is arbitrary as it seems any twist on a sphere
// will create some inverted normals
if (
(System.Math.Abs(primShape.PathTwist - primShape.PathTwistBegin) > 65)
|| (primShape.PathBegin == 0
&& primShape.PathEnd == 0
&& primShape.PathTwist == 0
&& primShape.PathTwistBegin == 0
&& primShape.ProfileBegin == 0
&& primShape.ProfileEnd == 0
&& hollowFactor == 0
) // simple sphere, revert to geodesic shape
)
{
#if SPAM
System.Console.WriteLine("reverting to geodesic sphere for prim: " + primName);
#endif
return CreateSphereMesh(primName, primShape, size);
}
if (hollowFactor == 0)
{
// the hull triangulator is happier with a minimal hollow
hollowFactor = 2000;
}
if (hollowShape == HollowShape.Same)
hollowShape = HollowShape.Circle;
outerHull.AddVertex(new Vertex(0.250000f, 0.433013f, 0.0f)); // 60 degrees
outerHull.AddVertex(new Vertex(0.129410f, 0.482963f, 0.0f)); // 75 degrees
outerHull.AddVertex(new Vertex(0.000000f, 0.500000f, 0.0f)); // 90 degrees
outerHull.AddVertex(new Vertex(-0.129410f, 0.482963f, 0.0f)); // 105 degrees
outerHull.AddVertex(new Vertex(-0.250000f, 0.433013f, 0.0f)); // 120 degrees
outerHull.AddVertex(new Vertex(-0.353553f, 0.353553f, 0.0f)); // 135 degrees
outerHull.AddVertex(new Vertex(-0.433013f, 0.250000f, 0.0f)); // 150 degrees
outerHull.AddVertex(new Vertex(-0.482963f, 0.129410f, 0.0f)); // 165 degrees
outerHull.AddVertex(new Vertex(-0.500000f, 0.000000f, 0.0f)); // 180 degrees
outerHull.AddVertex(new Vertex(0.500000f, 0.000000f, 0.0f)); // 0 degrees
outerHull.AddVertex(new Vertex(0.482963f, 0.129410f, 0.0f)); // 15 degrees
outerHull.AddVertex(new Vertex(0.433013f, 0.250000f, 0.0f)); // 30 degrees
outerHull.AddVertex(new Vertex(0.353553f, 0.353553f, 0.0f)); // 45 degrees
}
// Deal with cuts now
if ((profileBegin != 0) || (profileEnd != 0))
{
double fProfileBeginAngle = profileBegin / 50000.0 * 360.0;
// In degree, for easier debugging and understanding
double fProfileEndAngle = 360.0 - profileEnd / 50000.0 * 360.0; // Pathend comes as complement to 1.0
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{ // dimpled sphere uses profile cut but since it's a half circle the angles are smaller
fProfileBeginAngle = 0.0036f * (float)primShape.ProfileBegin;
fProfileEndAngle = 180.0f - 0.0036f * (float)primShape.ProfileEnd;
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0f;
// a cut starting at 0 degrees with a hollow causes an infinite loop so move the start angle
// past it into the empty part of the circle to avoid this condition
if (fProfileBeginAngle == 0.0f) fProfileBeginAngle = -10.0f;
#if SPAM
Console.WriteLine("Sphere dimple: fProfileBeginAngle: " + fProfileBeginAngle.ToString() + " fProfileEndAngle: " + fProfileEndAngle.ToString());
#endif
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Square)
{ // tube profile cut is offset 45 degrees from other prim types
fProfileBeginAngle += 45.0f;
fProfileEndAngle += 45.0f;
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{ // ring profile cut is offset 180 degrees from other prim types
fProfileBeginAngle += 180.0f;
fProfileEndAngle += 180.0f;
if (fProfileBeginAngle < fProfileEndAngle)
fProfileEndAngle -= 360.0;
}
// Note, that we don't want to cut out a triangle, even if this is a
// good approximation for small cuts. Indeed we want to cut out an arc
// and we approximate this arc by a polygon chain
// Also note, that these vectors are of length 1.0 and thus their endpoints lay outside the model space
// So it can easily be subtracted from the outer hull
int iSteps = (int)(((fProfileBeginAngle - fProfileEndAngle) / 45.0) + .5);
// how many steps do we need with approximately 45 degree
double dStepWidth = (fProfileBeginAngle - fProfileEndAngle) / iSteps;
Vertex origin = new Vertex(0.0f, 0.0f, 0.0f);
// Note the sequence of vertices here. It's important to have the other rotational sense than in outerHull
SimpleHull cutHull = new SimpleHull();
cutHull.AddVertex(origin);
for (int i = 0; i < iSteps; i++)
{
double angle = fProfileBeginAngle - i * dStepWidth; // we count against the angle orientation!!!!
Vertex v = Vertex.FromAngle(angle * Math.PI / 180.0);
cutHull.AddVertex(v);
}
Vertex legEnd = Vertex.FromAngle(fProfileEndAngle * Math.PI / 180.0);
// Calculated separately to avoid errors
cutHull.AddVertex(legEnd);
// m_log.DebugFormat("Starting cutting of the hollow shape from the prim {1}", 0, primName);
SimpleHull cuttedHull = SimpleHull.SubtractHull(outerHull, cutHull);
if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
{
Quaternion zFlip = Quaternion.CreateFromAxisAngle(new Vector3(0.0f, 0.0f, 1.0f), (float)Math.PI);
Vertex vTmp = new Vertex(0.0f, 0.0f, 0.0f);
foreach (Vertex v in cuttedHull.getVertices())
if (v != null)
{
vTmp = v * zFlip;
v.X = vTmp.X;
v.Y = vTmp.Y;
v.Z = vTmp.Z;
}
}
outerHull = cuttedHull;
}
// Deal with the hole here
if (hollowFactor > 0)
{
SimpleHull holeHull;
if (hollowShape == HollowShape.Triangle)
{
holeHull = new SimpleHull();
float hollowFactorF = (float)hollowFactor * 2.0e-5f;
if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{
holeHull.AddVertex(new Vertex(+0.125f * hollowFactorF, -0.1875f * hollowFactorF, 0.0f));
holeHull.AddVertex(new Vertex(-0.25f * hollowFactorF, -0f * hollowFactorF, 0.0f));
holeHull.AddVertex(new Vertex(+0.125f * hollowFactorF, +0.1875f * hollowFactorF, 0.0f));
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
holeHull.AddVertex(new Vertex(-0.500000f * hollowFactorF, 0.000000f * hollowFactorF, 0.0f)); // 180 degrees
holeHull.AddVertex(new Vertex(-0.250000f * hollowFactorF, 0.433013f * hollowFactorF, 0.0f)); // 120 degrees
holeHull.AddVertex(new Vertex(0.250000f * hollowFactorF, 0.433013f * hollowFactorF, 0.0f)); // 60 degrees
holeHull.AddVertex(new Vertex(0.500000f * hollowFactorF, 0.000000f * hollowFactorF, 0.0f)); // 0 degrees
}
else
{
holeHull.AddVertex(new Vertex(+0.25f * hollowFactorF, -0.45f * hollowFactorF, 0.0f));
holeHull.AddVertex(new Vertex(-0.5f * hollowFactorF, -0f * hollowFactorF, 0.0f));
holeHull.AddVertex(new Vertex(+0.25f * hollowFactorF, +0.45f * hollowFactorF, 0.0f));
}
}
else if (hollowShape == HollowShape.Square && (primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
holeHull = new SimpleHull();
float hollowFactorF = (float)hollowFactor * 2.0e-5f;
holeHull.AddVertex(new Vertex(-0.707f * hollowFactorF, 0.0f, 0.0f)); // 180 degrees
holeHull.AddVertex(new Vertex(0.0f, 0.707f * hollowFactorF, 0.0f)); // 120 degrees
holeHull.AddVertex(new Vertex(0.707f * hollowFactorF, 0.0f, 0.0f)); // 60 degrees
}
else
{
holeHull = BuildHoleHull(primShape, primShape.ProfileShape, hollowShape, hollowFactor);
}
if (holeHull != null)
{
SimpleHull hollowedHull = SimpleHull.SubtractHull(outerHull, holeHull);
outerHull = hollowedHull;
}
}
Mesh m = new Mesh();
Vertex Seed1 = new Vertex(0.0f, -10.0f, 0.0f);
Vertex Seed2 = new Vertex(-10.0f, 10.0f, 0.0f);
Vertex Seed3 = new Vertex(10.0f, 10.0f, 0.0f);
m.Add(Seed1);
m.Add(Seed2);
m.Add(Seed3);
m.Add(new Triangle(Seed1, Seed2, Seed3));
m.Add(outerHull.getVertices());
InsertVertices(m.vertices, 3, m.triangles);
m.DumpRaw(baseDir, primName, "Proto first Mesh");
m.Remove(Seed1);
m.Remove(Seed2);
m.Remove(Seed3);
m.DumpRaw(baseDir, primName, "Proto seeds removed");
m.RemoveTrianglesOutside(outerHull);
m.DumpRaw(baseDir, primName, "Proto outsides removed");
foreach (Triangle t in m.triangles)
t.invertNormal();
float skew = primShape.PathSkew * 0.01f;
float pathScaleX = (float)(200 - primShape.PathScaleX) * 0.01f;
float pathScaleY = (float)(200 - primShape.PathScaleY) * 0.01f;
float profileXComp = pathScaleX * (1.0f - Math.Abs(skew));
#if SPAM
//Console.WriteLine("primShape.PathScaleX: " + primShape.PathScaleX.ToString() + " primShape.PathScaleY: " + primShape.PathScaleY.ToString());
//Console.WriteLine("primShape.PathSkew: " + primShape.PathSkew.ToString() + " primShape.PathRadiusOffset: " + primShape.PathRadiusOffset.ToString() + " primShape.pathRevolutions: " + primShape.PathRevolutions.ToString());
Console.WriteLine("PathScaleX: " + pathScaleX.ToString() + " pathScaleY: " + pathScaleY.ToString());
Console.WriteLine("skew: " + skew.ToString() + " profileXComp: " + profileXComp.ToString());
#endif
foreach (Vertex v in m.vertices)
if (v != null)
{
v.X *= profileXComp;
v.Y *= pathScaleY;
}
Extruder extr = new Extruder();
extr.size = size;
extr.pathScaleX = pathScaleX;
extr.pathScaleY = pathScaleY;
extr.pathCutBegin = 0.00002f * primShape.PathBegin;
extr.pathCutEnd = 0.00002f * (50000 - primShape.PathEnd);
extr.pathBegin = primShape.PathBegin;
extr.pathEnd = primShape.PathEnd;
extr.skew = skew;
extr.revolutions = 1.0f + (float)primShape.PathRevolutions * 3.0f / 200.0f;
extr.pathTaperX = 0.01f * (float)primShape.PathTaperX;
extr.pathTaperY = 0.01f * (float)primShape.PathTaperY;
extr.radius = 0.01f * (float)primShape.PathRadiusOffset;
#if SPAM
//System.Console.WriteLine("primShape.PathBegin: " + primShape.PathBegin.ToString() + " primShape.PathEnd: " + primShape.PathEnd.ToString());
System.Console.WriteLine("extr.pathCutBegin: " + extr.pathCutBegin.ToString() + " extr.pathCutEnd: " + extr.pathCutEnd.ToString());
System.Console.WriteLine("extr.revolutions: " + extr.revolutions.ToString());
//System.Console.WriteLine("primShape.PathTaperX: " + primShape.PathTaperX.ToString());
//System.Console.WriteLine("primShape.PathTaperY: " + primShape.PathTaperY.ToString());
//System.Console.WriteLine("primShape.PathRadiusOffset: " + primShape.PathRadiusOffset.ToString());
#endif
if (pathShearX != 0)
{
if (pathShearX > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushX = (((float)(256 - pathShearX) / 100) * -1f);
}
else
{
extr.pushX = (float)pathShearX / 100;
}
}
if (pathShearY != 0)
{
if (pathShearY > 50)
{
// Complimentary byte. Negative values wrap around the byte. Positive values go up to 50
extr.pushY = (((float)(256 - pathShearY) / 100) * -1f);
}
else
{
extr.pushY = (float)pathShearY / 100;
}
}
extr.twistTop = (float)primShape.PathTwist * (float)Math.PI * 0.02f;
extr.twistBot = (float)primShape.PathTwistBegin * (float)Math.PI * 0.02f;
Mesh result = extr.ExtrudeCircularPath(m);
result.DumpRaw(baseDir, primName, "Z extruded");
#if SPAM
int vCount = 0;
foreach (Vertex v in result.vertices)
{
if (v != null)
vCount++;
}
System.Console.WriteLine("Mesh vertex count: " + vCount.ToString());
#endif
return result;
}
public static Vertex midUnitRadialPoint(Vertex a, Vertex b, float radius)
{
Vertex midpoint = new Vertex(a + b) * 0.5f;
return (midpoint.normalize() * radius);
}
public static void SphereLODTriangle(Vertex a, Vertex b, Vertex c, float diameter, float LOD, Mesh m)
{
Vertex aa = a - b;
Vertex ba = b - c;
Vertex da = c - a;
if (((aa.length() < LOD) && (ba.length() < LOD) && (da.length() < LOD)))
{
// We don't want duplicate verticies. Duplicates cause the scale algorithm to produce a spikeball
// spikes are novel, but we want ellipsoids.
if (!m.vertices.Contains(a))
m.Add(a);
if (!m.vertices.Contains(b))
m.Add(b);
if (!m.vertices.Contains(c))
m.Add(c);
// Add the triangle to the mesh
Triangle t = new Triangle(a, b, c);
m.Add(t);
}
else
{
Vertex ab = midUnitRadialPoint(a, b, diameter);
Vertex bc = midUnitRadialPoint(b, c, diameter);
Vertex ca = midUnitRadialPoint(c, a, diameter);
// Recursive! Splits the triangle up into 4 smaller triangles
SphereLODTriangle(a, ab, ca, diameter, LOD, m);
SphereLODTriangle(ab, b, bc, diameter, LOD, m);
SphereLODTriangle(ca, bc, c, diameter, LOD, m);
SphereLODTriangle(ab, bc, ca, diameter, LOD, m);
}
}
public Mesh CreateMeshFromPrimMesher(string primName, PrimitiveBaseShape primShape, PhysicsVector size, float lod)
{
Mesh mesh = new Mesh();
float pathShearX = primShape.PathShearX < 128 ? (float)primShape.PathShearX * 0.01f : (float)(primShape.PathShearX - 256) * 0.01f;
float pathShearY = primShape.PathShearY < 128 ? (float)primShape.PathShearY * 0.01f : (float)(primShape.PathShearY - 256) * 0.01f;
float pathBegin = (float)primShape.PathBegin * 2.0e-5f;
float pathEnd = 1.0f - (float)primShape.PathEnd * 2.0e-5f;
float pathScaleX = (float)(primShape.PathScaleX - 100) * 0.01f;
float pathScaleY = (float)(primShape.PathScaleY - 100) * 0.01f;
float profileBegin = (float)primShape.ProfileBegin * 2.0e-5f;
float profileEnd = 1.0f - (float)primShape.ProfileEnd * 2.0e-5f;
float profileHollow = (float)primShape.ProfileHollow * 2.0e-5f;
int sides = 4;
if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
sides = 3;
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
sides = 24;
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{ // half circle, prim is a sphere
sides = 24;
profileBegin = 0.5f * profileBegin + 0.5f;
profileEnd = 0.5f * profileEnd + 0.5f;
}
int hollowSides = sides;
if (primShape.HollowShape == HollowShape.Circle)
hollowSides = 24;
else if (primShape.HollowShape == HollowShape.Square)
hollowSides = 4;
else if (primShape.HollowShape == HollowShape.Triangle)
hollowSides = 3;
PrimMesh primMesh = new PrimMesh(sides, profileBegin, profileEnd, profileHollow, hollowSides);
primMesh.topShearX = pathShearX;
primMesh.topShearY = pathShearY;
primMesh.pathCutBegin = pathBegin;
primMesh.pathCutEnd = pathEnd;
if (primShape.PathCurve == (byte)Extrusion.Straight)
{
primMesh.twistBegin = primShape.PathTwistBegin * 18 / 10;
primMesh.twistEnd = primShape.PathTwist * 18 / 10;
primMesh.taperX = pathScaleX;
primMesh.taperY = pathScaleY;
#if SPAM
Console.WriteLine("****** PrimMesh Parameters (Linear) ******\n" + primMesh.ParamsToDisplayString());
#endif
try
{
primMesh.ExtrudeLinear();
}
catch (Exception ex)
{
Console.WriteLine("Extrusion failure: exception: " + ex.ToString());
Console.WriteLine("\n Prim Name: " + primName);
Console.WriteLine("****** PrimMesh Parameters (Linear) ******\n" + primMesh.ParamsToDisplayString());
return null;
}
}
else
{
primMesh.holeSizeX = (200 - primShape.PathScaleX) * 0.01f;
primMesh.holeSizeY = (200 - primShape.PathScaleY) * 0.01f;
primMesh.radius = 0.01f * primShape.PathRadiusOffset;
primMesh.revolutions = 1.0f + 0.015f * primShape.PathRevolutions;
primMesh.skew = 0.01f * primShape.PathSkew;
primMesh.twistBegin = primShape.PathTwistBegin * 36 / 10;
primMesh.twistEnd = primShape.PathTwist * 36 / 10;
primMesh.taperX = primShape.PathTaperX * 0.01f;
primMesh.taperY = primShape.PathTaperY * 0.01f;
#if SPAM
Console.WriteLine("****** PrimMesh Parameters (Circular) ******\n" + primMesh.ParamsToDisplayString());
#endif
try
{
primMesh.ExtrudeCircular();
}
catch (Exception ex)
{
Console.WriteLine("Extrusion failure: exception: " + ex.ToString());
Console.WriteLine("\n Prim Name: " + primName);
Console.WriteLine("****** PrimMesh Parameters (Circular) ******\n" + primMesh.ParamsToDisplayString());
return null;
}
}
primMesh.DumpRaw(baseDir, primName, "primMesh");
primMesh.Scale(size.X, size.Y, size.Z);
int numCoords = primMesh.coords.Count;
int numFaces = primMesh.faces.Count;
List<Coord> coords = primMesh.coords;
for (int i = 0; i < numCoords; i++)
{
Coord c = coords[i];
mesh.vertices.Add(new Vertex(c.X, c.Y, c.Z));
}
List<Face> faces = primMesh.faces;
List<Vertex> vertices = mesh.vertices;
for (int i = 0; i < numFaces; i++)
{
Face f = faces[i];
mesh.triangles.Add(new Triangle(vertices[f.v1], vertices[f.v2], vertices[f.v3]));
}
//for (int i = 0; i < numFaces; i++)
//{
// Face f = primMesh.faces[i];
// Coord vert = primMesh.coords[f.v1];
// Vertex v1 = new Vertex(vert.X, vert.Y, vert.Z);
// mesh.vertices.Add(v1);
// vert = primMesh.coords[f.v2];
// Vertex v2 = new Vertex(vert.X, vert.Y, vert.Z);
// mesh.vertices.Add(v2);
// vert = primMesh.coords[f.v3];
// Vertex v3 = new Vertex(vert.X, vert.Y, vert.Z);
// mesh.vertices.Add(v3);
// mesh.triangles.Add(new Triangle(v1, v2, v3));
//}
//mesh.DumpRaw(baseDir, primName, "Mesh");
//mesh.primMesh = primMesh;
return mesh;
}
public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size, float lod)
{
return CreateMesh(primName, primShape, size, lod, false);
}
public IMesh CreateMesh(String primName, PrimitiveBaseShape primShape, PhysicsVector size, float lod, bool isPhysical)
{
Mesh mesh = null;
if (size.X < 0.01f) size.X = 0.01f;
if (size.Y < 0.01f) size.Y = 0.01f;
if (size.Z < 0.01f) size.Z = 0.01f;
#if SPAM
reportPrimParams(primName, primShape);
#endif
if (primShape.SculptEntry && primShape.SculptType != (byte)0 && primShape.SculptData.Length > 0)
{
SculptMesh smesh = CreateSculptMesh(primName, primShape, size, lod);
mesh = (Mesh)smesh;
}
else if (usePrimMesher)
{
mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Square)
{
if (primShape.PathCurve == (byte)Extrusion.Straight)
{ // its a box
mesh = CreateBoxMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
else if (primShape.PathCurve == (byte)Extrusion.Curve1)
{ // tube
// do a cylinder for now
mesh = CreateCylinderMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.Circle)
{
if (primShape.PathCurve == (byte)Extrusion.Straight)
{
mesh = CreateCylinderMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
// ProfileCurve seems to combine hole shape and profile curve so we need to only compare against the lower 3 bits
else if (primShape.PathCurve == (byte) Extrusion.Curve1)
{ // dahlia's favorite, a torus :)
mesh = CreateCircularPathMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);\
}
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.HalfCircle)
{
if (primShape.PathCurve == (byte)Extrusion.Curve1 || primShape.PathCurve == (byte) Extrusion.Curve2)
{
//mesh = CreateSphereMesh(primName, primShape, size);
mesh = CreateCircularPathMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
}
else if ((primShape.ProfileCurve & 0x07) == (byte)ProfileShape.EquilateralTriangle)
{
if (primShape.PathCurve == (byte)Extrusion.Straight)
{
mesh = CreatePrismMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
else if (primShape.PathCurve == (byte) Extrusion.Curve1)
{ // a ring - do a cylinder for now
//mesh = CreateCylinderMesh(primName, primShape, size);
mesh = CreateCircularPathMesh(primName, primShape, size);
//mesh = CreateMeshFromPrimMesher(primName, primShape, size, lod);
}
}
else // just do a box
{
mesh = CreateBoxMesh(primName, primShape, size);
}
if (mesh != null)
{
if ((!isPhysical) && size.X < minSizeForComplexMesh && size.Y < minSizeForComplexMesh && size.Z < minSizeForComplexMesh)
{
#if SPAM
Console.WriteLine("Meshmerizer: prim " + primName + " has a size of " + size.ToString() + " which is below threshold of " + minSizeForComplexMesh.ToString() + " - creating simple bounding box" );
#endif
mesh = CreateBoundingBoxMesh(mesh);
mesh.DumpRaw(baseDir, primName, "Z extruded");
}
// trim the vertex and triangle lists to free up memory
mesh.vertices.TrimExcess();
mesh.triangles.TrimExcess();
}
return mesh;
}
#if SPAM
// please dont comment this out until I'm done with this module - dahlia
private static void reportPrimParams(string name, PrimitiveBaseShape primShape)
{
float pathShearX = primShape.PathShearX < 128 ? (float)primShape.PathShearX * 0.01f : (float)(primShape.PathShearX - 256) * 0.01f;
float pathShearY = primShape.PathShearY < 128 ? (float)primShape.PathShearY * 0.01f : (float)(primShape.PathShearY - 256) * 0.01f;
float pathBegin = (float)primShape.PathBegin * 2.0e-5f;
float pathEnd = 1.0f - (float)primShape.PathEnd * 2.0e-5f;
float pathScaleX = (float)(primShape.PathScaleX - 100) * 0.01f;
float pathScaleY = (float)(primShape.PathScaleY - 100) * 0.01f;
float profileBegin = (float)primShape.ProfileBegin * 2.0e-5f;
float profileEnd = 1.0f - (float)primShape.ProfileEnd * 2.0e-5f;
float profileHollow = (float)primShape.ProfileHollow * 2.0e-5f;
Console.WriteLine("********************* PrimitiveBaseShape Parameters *******************\n"
+ "Name.............: " + name.ToString() + "\n"
+ "HollowShape......: " + primShape.HollowShape.ToString() + "\n"
+ "PathBegin........: " + primShape.PathBegin.ToString() + " " + pathBegin.ToString() + "\n"
+ "PathCurve........: " + primShape.PathCurve.ToString() + "\n"
+ "PathEnd..........: " + primShape.PathEnd.ToString() + " " + pathEnd.ToString() + "\n"
+ "PathRadiusOffset.: " + primShape.PathRadiusOffset.ToString() + "\n"
+ "PathRevolutions..: " + primShape.PathRevolutions.ToString() + "\n"
+ "PathScaleX.......: " + primShape.PathScaleX.ToString() + " " + pathScaleX.ToString() + "\n"
+ "PathScaleY.......: " + primShape.PathScaleY.ToString() + " " + pathScaleY.ToString() + "\n"
+ "PathShearX.......: " + primShape.PathShearX.ToString() + " (" + pathShearX.ToString() + ")\n"
+ "PathShearY.......: " + primShape.PathShearY.ToString() + " (" + pathShearY.ToString() + ")\n"
+ "PathSkew.........: " + primShape.PathSkew.ToString() + "\n"
+ "PathTaperX.......: " + primShape.PathTaperX.ToString() + "\n"
+ "PathTaperY.......: " + primShape.PathTaperY.ToString() + "\n"
+ "PathTwist........: " + primShape.PathTwist.ToString() + "\n"
+ "PathTwistBegin...: " + primShape.PathTwistBegin.ToString() + "\n"
+ "ProfileBegin.....: " + primShape.ProfileBegin.ToString() + " " + profileBegin.ToString() + "\n"
+ "ProfileCurve.....: " + primShape.ProfileCurve.ToString() + "\n"
+ "ProfileEnd.......: " + primShape.ProfileEnd.ToString() + " " + profileEnd.ToString() + "\n"
+ "ProfileHollow....: " + primShape.ProfileHollow.ToString() + " " + profileHollow.ToString() + "\n"
+ "ProfileShape.....: " + primShape.ProfileShape.ToString() + "\n"
);
}
#endif
}
}