BulletSim: Add banking and other new code to vechile dynamics. Add third party license and contributor in for for Aurora-Sim project for physics code.

integration
Robert Adams 2012-10-25 08:04:20 -07:00
parent 783443705d
commit 804b332d45
13 changed files with 351 additions and 188 deletions

View File

@ -182,12 +182,14 @@ what it is today.
This software uses components from the following developers: This software uses components from the following developers:
* Sleepycat Software (Berkeley DB) * Sleepycat Software (Berkeley DB)
* Aurora-Sim (http://aurora-sim.org)
* SQLite (Public Domain) * SQLite (Public Domain)
* XmlRpcCS (http://xmlrpccs.sf.net/) * XmlRpcCS (http://xmlrpccs.sf.net/)
* MySQL, Inc. (MySQL Connector/NET) * MySQL, Inc. (MySQL Connector/NET)
* NUnit (http://www.nunit.org) * NUnit (http://www.nunit.org)
* AGEIA Inc. (PhysX) * AGEIA Inc. (PhysX)
* Russel L. Smith (ODE) * Russel L. Smith (ODE)
* Erwin Coumans (Bullet)
* Prebuild (http://sourceforge.net/projects/dnpb/) * Prebuild (http://sourceforge.net/projects/dnpb/)
* LibOpenMetaverse (http://lib.openmetaverse.org/) * LibOpenMetaverse (http://lib.openmetaverse.org/)
* DotNetOpenMail v0.5.8b (http://dotnetopenmail.sourceforge.net) * DotNetOpenMail v0.5.8b (http://dotnetopenmail.sourceforge.net)

View File

@ -32,7 +32,7 @@ using OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BS6DofConstraint : BSConstraint public sealed class BS6DofConstraint : BSConstraint
{ {
private static string LogHeader = "[BULLETSIM 6DOF CONSTRAINT]"; private static string LogHeader = "[BULLETSIM 6DOF CONSTRAINT]";

View File

@ -34,7 +34,7 @@ using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSCharacter : BSPhysObject public sealed class BSCharacter : BSPhysObject
{ {
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private static readonly string LogHeader = "[BULLETS CHAR]"; private static readonly string LogHeader = "[BULLETS CHAR]";

View File

@ -33,7 +33,7 @@ using OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSConstraintCollection : IDisposable public sealed class BSConstraintCollection : IDisposable
{ {
// private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType); // private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
// private static readonly string LogHeader = "[CONSTRAINT COLLECTION]"; // private static readonly string LogHeader = "[CONSTRAINT COLLECTION]";

View File

@ -52,7 +52,7 @@ using OpenSim.Region.Physics.Manager;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSDynamics public sealed class BSDynamics
{ {
private BSScene PhysicsScene { get; set; } private BSScene PhysicsScene { get; set; }
// the prim this dynamic controller belongs to // the prim this dynamic controller belongs to
@ -72,8 +72,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// LIMIT_ROLL_ONLY // LIMIT_ROLL_ONLY
private Vector3 m_BlockingEndPoint = Vector3.Zero; private Vector3 m_BlockingEndPoint = Vector3.Zero;
private Quaternion m_RollreferenceFrame = Quaternion.Identity; private Quaternion m_RollreferenceFrame = Quaternion.Identity;
private Quaternion m_referenceFrame = Quaternion.Identity;
// Linear properties // Linear properties
private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
private Vector3 m_linearFrictionTimescale = Vector3.Zero; private Vector3 m_linearFrictionTimescale = Vector3.Zero;
@ -95,19 +98,19 @@ namespace OpenSim.Region.Physics.BulletSPlugin
private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
//Deflection properties //Deflection properties
// private float m_angularDeflectionEfficiency = 0; private float m_angularDeflectionEfficiency = 0;
// private float m_angularDeflectionTimescale = 0; private float m_angularDeflectionTimescale = 0;
// private float m_linearDeflectionEfficiency = 0; private float m_linearDeflectionEfficiency = 0;
// private float m_linearDeflectionTimescale = 0; private float m_linearDeflectionTimescale = 0;
//Banking properties //Banking properties
// private float m_bankingEfficiency = 0; private float m_bankingEfficiency = 0;
// private float m_bankingMix = 0; private float m_bankingMix = 0;
// private float m_bankingTimescale = 0; private float m_bankingTimescale = 0;
//Hover and Buoyancy properties //Hover and Buoyancy properties
private float m_VhoverHeight = 0f; private float m_VhoverHeight = 0f;
// private float m_VhoverEfficiency = 0f; private float m_VhoverEfficiency = 0f;
private float m_VhoverTimescale = 0f; private float m_VhoverTimescale = 0f;
private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
@ -138,10 +141,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
switch (pParam) switch (pParam)
{ {
case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
// m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f); m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
// m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f); m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f);
@ -150,20 +153,20 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_angularMotorTimescale = Math.Max(pValue, 0.01f); m_angularMotorTimescale = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.BANKING_EFFICIENCY: case Vehicle.BANKING_EFFICIENCY:
// m_bankingEfficiency = Math.Max(pValue, 0.01f); m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f));
break; break;
case Vehicle.BANKING_MIX: case Vehicle.BANKING_MIX:
// m_bankingMix = Math.Max(pValue, 0.01f); m_bankingMix = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.BANKING_TIMESCALE: case Vehicle.BANKING_TIMESCALE:
// m_bankingTimescale = Math.Max(pValue, 0.01f); m_bankingTimescale = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.BUOYANCY: case Vehicle.BUOYANCY:
m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f)); m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f));
break; break;
// case Vehicle.HOVER_EFFICIENCY: case Vehicle.HOVER_EFFICIENCY:
// m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f)); m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f));
// break; break;
case Vehicle.HOVER_HEIGHT: case Vehicle.HOVER_HEIGHT:
m_VhoverHeight = pValue; m_VhoverHeight = pValue;
break; break;
@ -171,10 +174,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_VhoverTimescale = Math.Max(pValue, 0.01f); m_VhoverTimescale = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
// m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f); m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.LINEAR_DEFLECTION_TIMESCALE: case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
// m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
break; break;
case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f); m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f);
@ -196,7 +199,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
break; break;
case Vehicle.ANGULAR_MOTOR_DIRECTION: case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue, pValue, pValue); m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
m_angularMotorApply = 10; m_angularMotorApply = 100;
break; break;
case Vehicle.LINEAR_FRICTION_TIMESCALE: case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
@ -206,7 +209,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
break; break;
case Vehicle.LINEAR_MOTOR_OFFSET: case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue, pValue, pValue); m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
break; break;
} }
@ -221,15 +224,12 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
break; break;
case Vehicle.ANGULAR_MOTOR_DIRECTION: case Vehicle.ANGULAR_MOTOR_DIRECTION:
m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
// Limit requested angular speed to 2 rps= 4 pi rads/sec // Limit requested angular speed to 2 rps= 4 pi rads/sec
if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f));
if (m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f));
if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f));
if (m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; m_angularMotorApply = 100;
if (m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
m_angularMotorApply = 10;
break; break;
case Vehicle.LINEAR_FRICTION_TIMESCALE: case Vehicle.LINEAR_FRICTION_TIMESCALE:
m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
@ -239,7 +239,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
break; break;
case Vehicle.LINEAR_MOTOR_OFFSET: case Vehicle.LINEAR_MOTOR_OFFSET:
// m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
break; break;
case Vehicle.BLOCK_EXIT: case Vehicle.BLOCK_EXIT:
m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
@ -253,7 +253,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
switch (pParam) switch (pParam)
{ {
case Vehicle.REFERENCE_FRAME: case Vehicle.REFERENCE_FRAME:
// m_referenceFrame = pValue; m_referenceFrame = pValue;
break; break;
case Vehicle.ROLL_FRAME: case Vehicle.ROLL_FRAME:
m_RollreferenceFrame = pValue; m_RollreferenceFrame = pValue;
@ -265,21 +265,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{ {
VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove); VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove);
VehicleFlag parm = (VehicleFlag)pParam; VehicleFlag parm = (VehicleFlag)pParam;
if (remove)
{
if (pParam == -1) if (pParam == -1)
{
m_flags = (VehicleFlag)0; m_flags = (VehicleFlag)0;
}
else else
{ {
if (remove)
m_flags &= ~parm; m_flags &= ~parm;
} else
}
else {
m_flags |= parm; m_flags |= parm;
} }
}//end ProcessVehicleFlags }
internal void ProcessTypeChange(Vehicle pType) internal void ProcessTypeChange(Vehicle pType)
{ {
@ -289,98 +284,141 @@ namespace OpenSim.Region.Physics.BulletSPlugin
switch (pType) switch (pType)
{ {
case Vehicle.TYPE_NONE: case Vehicle.TYPE_NONE:
m_linearFrictionTimescale = new Vector3(0, 0, 0);
m_angularFrictionTimescale = new Vector3(0, 0, 0);
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 0; m_linearMotorTimescale = 0;
m_linearMotorDecayTimescale = 0; m_linearMotorDecayTimescale = 0;
m_linearFrictionTimescale = new Vector3(0, 0, 0);
m_angularMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 0;
m_angularMotorDecayTimescale = 0; m_angularMotorDecayTimescale = 0;
m_angularMotorTimescale = 0;
m_angularFrictionTimescale = new Vector3(0, 0, 0);
m_VhoverHeight = 0; m_VhoverHeight = 0;
m_VhoverEfficiency = 0;
m_VhoverTimescale = 0; m_VhoverTimescale = 0;
m_VehicleBuoyancy = 0; m_VehicleBuoyancy = 0;
m_linearDeflectionEfficiency = 1;
m_linearDeflectionTimescale = 1;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 1000;
m_verticalAttractionEfficiency = 0;
m_verticalAttractionTimescale = 0;
m_bankingEfficiency = 0;
m_bankingTimescale = 1000;
m_bankingMix = 1;
m_referenceFrame = Quaternion.Identity;
m_flags = (VehicleFlag)0; m_flags = (VehicleFlag)0;
break; break;
case Vehicle.TYPE_SLED: case Vehicle.TYPE_SLED:
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1000; m_linearMotorTimescale = 1000;
m_linearMotorDecayTimescale = 120; m_linearMotorDecayTimescale = 120;
m_linearFrictionTimescale = new Vector3(30, 1, 1000);
m_angularMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1000; m_angularMotorTimescale = 1000;
m_angularMotorDecayTimescale = 120; m_angularMotorDecayTimescale = 120;
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_VhoverHeight = 0; m_VhoverHeight = 0;
// m_VhoverEfficiency = 1; m_VhoverEfficiency = 10; // TODO: this looks wrong!!
m_VhoverTimescale = 10; m_VhoverTimescale = 10;
m_VehicleBuoyancy = 0; m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 1;
// m_linearDeflectionTimescale = 1; m_linearDeflectionEfficiency = 1;
// m_angularDeflectionEfficiency = 1; m_linearDeflectionTimescale = 1;
// m_angularDeflectionTimescale = 1000;
// m_bankingEfficiency = 0; m_angularDeflectionEfficiency = 1;
// m_bankingMix = 1; m_angularDeflectionTimescale = 1000;
// m_bankingTimescale = 10;
// m_referenceFrame = Quaternion.Identity; m_verticalAttractionEfficiency = 0;
m_verticalAttractionTimescale = 0;
m_bankingEfficiency = 0;
m_bankingTimescale = 10;
m_bankingMix = 1;
m_referenceFrame = Quaternion.Identity;
m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
m_flags &= m_flags &=
~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
break; break;
case Vehicle.TYPE_CAR: case Vehicle.TYPE_CAR:
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 1; m_linearMotorTimescale = 1;
m_linearMotorDecayTimescale = 60; m_linearMotorDecayTimescale = 60;
m_linearFrictionTimescale = new Vector3(100, 2, 1000);
m_angularMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 1; m_angularMotorTimescale = 1;
m_angularMotorDecayTimescale = 0.8f; m_angularMotorDecayTimescale = 0.8f;
m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
m_VhoverHeight = 0; m_VhoverHeight = 0;
// m_VhoverEfficiency = 0; m_VhoverEfficiency = 0;
m_VhoverTimescale = 1000; m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0; m_VehicleBuoyancy = 0;
// // m_linearDeflectionEfficiency = 1;
// // m_linearDeflectionTimescale = 2; m_linearDeflectionEfficiency = 1;
// // m_angularDeflectionEfficiency = 0; m_linearDeflectionTimescale = 2;
// m_angularDeflectionTimescale = 10;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 10;
m_verticalAttractionEfficiency = 1f; m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 10f; m_verticalAttractionTimescale = 10f;
// m_bankingEfficiency = -0.2f;
// m_bankingMix = 1; m_bankingEfficiency = -0.2f;
// m_bankingTimescale = 1; m_bankingMix = 1;
// m_referenceFrame = Quaternion.Identity; m_bankingTimescale = 1;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
| VehicleFlag.HOVER_TERRAIN_ONLY
| VehicleFlag.HOVER_GLOBAL_HEIGHT);
m_flags |= (VehicleFlag.NO_DEFLECTION_UP m_flags |= (VehicleFlag.NO_DEFLECTION_UP
| VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_ROLL_ONLY
| VehicleFlag.LIMIT_MOTOR_UP); | VehicleFlag.LIMIT_MOTOR_UP
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | VehicleFlag.HOVER_UP_ONLY);
m_flags |= (VehicleFlag.HOVER_UP_ONLY);
break; break;
case Vehicle.TYPE_BOAT: case Vehicle.TYPE_BOAT:
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularFrictionTimescale = new Vector3(10,10,10);
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5; m_linearMotorTimescale = 5;
m_linearMotorDecayTimescale = 60; m_linearMotorDecayTimescale = 60;
m_linearFrictionTimescale = new Vector3(10, 3, 2);
m_angularMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4; m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4; m_angularMotorDecayTimescale = 4;
m_angularFrictionTimescale = new Vector3(10,10,10);
m_VhoverHeight = 0; m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f; m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 2; m_VhoverTimescale = 2;
m_VehicleBuoyancy = 1; m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3; m_linearDeflectionEfficiency = 0.5f;
// m_angularDeflectionEfficiency = 0.5f; m_linearDeflectionTimescale = 3;
// m_angularDeflectionTimescale = 5;
m_angularDeflectionEfficiency = 0.5f;
m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 0.5f; m_verticalAttractionEfficiency = 0.5f;
m_verticalAttractionTimescale = 5f; m_verticalAttractionTimescale = 5f;
// m_bankingEfficiency = -0.3f;
// m_bankingMix = 0.8f; m_bankingEfficiency = -0.3f;
// m_bankingTimescale = 1; m_bankingMix = 0.8f;
// m_referenceFrame = Quaternion.Identity; m_bankingTimescale = 1;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY
| VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_GLOBAL_HEIGHT
| VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_ROLL_ONLY
@ -390,28 +428,35 @@ namespace OpenSim.Region.Physics.BulletSPlugin
| VehicleFlag.HOVER_WATER_ONLY); | VehicleFlag.HOVER_WATER_ONLY);
break; break;
case Vehicle.TYPE_AIRPLANE: case Vehicle.TYPE_AIRPLANE:
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 2; m_linearMotorTimescale = 2;
m_linearMotorDecayTimescale = 60; m_linearMotorDecayTimescale = 60;
m_linearFrictionTimescale = new Vector3(200, 10, 5);
m_angularMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 4; m_angularMotorTimescale = 4;
m_angularMotorDecayTimescale = 4; m_angularMotorDecayTimescale = 4;
m_angularFrictionTimescale = new Vector3(20, 20, 20);
m_VhoverHeight = 0; m_VhoverHeight = 0;
// m_VhoverEfficiency = 0.5f; m_VhoverEfficiency = 0.5f;
m_VhoverTimescale = 1000; m_VhoverTimescale = 1000;
m_VehicleBuoyancy = 0; m_VehicleBuoyancy = 0;
// m_linearDeflectionEfficiency = 0.5f;
// m_linearDeflectionTimescale = 3; m_linearDeflectionEfficiency = 0.5f;
// m_angularDeflectionEfficiency = 1; m_linearDeflectionTimescale = 3;
// m_angularDeflectionTimescale = 2;
m_angularDeflectionEfficiency = 1;
m_angularDeflectionTimescale = 2;
m_verticalAttractionEfficiency = 0.9f; m_verticalAttractionEfficiency = 0.9f;
m_verticalAttractionTimescale = 2f; m_verticalAttractionTimescale = 2f;
// m_bankingEfficiency = 1;
// m_bankingMix = 0.7f; m_bankingEfficiency = 1;
// m_bankingTimescale = 2; m_bankingMix = 0.7f;
// m_referenceFrame = Quaternion.Identity; m_bankingTimescale = 2;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
| VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY
| VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_GLOBAL_HEIGHT
@ -421,28 +466,36 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
break; break;
case Vehicle.TYPE_BALLOON: case Vehicle.TYPE_BALLOON:
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_linearMotorTimescale = 5; m_linearMotorTimescale = 5;
m_linearFrictionTimescale = new Vector3(5, 5, 5);
m_linearMotorDecayTimescale = 60; m_linearMotorDecayTimescale = 60;
m_angularMotorDirection = Vector3.Zero; m_angularMotorDirection = Vector3.Zero;
m_angularMotorTimescale = 6; m_angularMotorTimescale = 6;
m_angularFrictionTimescale = new Vector3(10, 10, 10);
m_angularMotorDecayTimescale = 10; m_angularMotorDecayTimescale = 10;
m_VhoverHeight = 5; m_VhoverHeight = 5;
// m_VhoverEfficiency = 0.8f; m_VhoverEfficiency = 0.8f;
m_VhoverTimescale = 10; m_VhoverTimescale = 10;
m_VehicleBuoyancy = 1; m_VehicleBuoyancy = 1;
// m_linearDeflectionEfficiency = 0;
// m_linearDeflectionTimescale = 5; m_linearDeflectionEfficiency = 0;
// m_angularDeflectionEfficiency = 0; m_linearDeflectionTimescale = 5;
// m_angularDeflectionTimescale = 5;
m_angularDeflectionEfficiency = 0;
m_angularDeflectionTimescale = 5;
m_verticalAttractionEfficiency = 1f; m_verticalAttractionEfficiency = 1f;
m_verticalAttractionTimescale = 100f; m_verticalAttractionTimescale = 100f;
// m_bankingEfficiency = 0;
// m_bankingMix = 0.7f; m_bankingEfficiency = 0;
// m_bankingTimescale = 5; m_bankingMix = 0.7f;
// m_referenceFrame = Quaternion.Identity; m_bankingTimescale = 5;
m_referenceFrame = Quaternion.Identity;
m_referenceFrame = Quaternion.Identity;
m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
| VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY
| VehicleFlag.HOVER_UP_ONLY | VehicleFlag.HOVER_UP_ONLY
@ -452,21 +505,27 @@ namespace OpenSim.Region.Physics.BulletSPlugin
| VehicleFlag.HOVER_GLOBAL_HEIGHT); | VehicleFlag.HOVER_GLOBAL_HEIGHT);
break; break;
} }
}//end SetDefaultsForType }
// Some of the properties of this prim may have changed. // Some of the properties of this prim may have changed.
// Do any updating needed for a vehicle // Do any updating needed for a vehicle
public void Refresh() public void Refresh()
{ {
if (!IsActive) /*
return; * Doesnt work unless BSDynamics senses and corrects for all collisions
if (IsActive)
// Set the prim's inertia to zero. The vehicle code handles that and this BulletSimAPI.AddToCollisionFlags2(Prim.BSBody.ptr, CollisionFlags.CF_KINEMATIC_OBJECT);
// removes the motion and torque actions introduced by Bullet. else
Vector3 inertia = Vector3.Zero; BulletSimAPI.RemoveFromCollisionFlags2(Prim.BSBody.ptr, CollisionFlags.CF_KINEMATIC_OBJECT);
// comment out for DEBUG test */
// BulletSimAPI.SetMassProps2(Prim.BSBody.ptr, Prim.MassRaw, inertia); /*
// BulletSimAPI.UpdateInertiaTensor2(Prim.BSBody.ptr); * Doesn't work because with zero inertia, Bullet will not apply any forces to the object.
if (IsActive)
{
BulletSimAPI.SetMassProps2(Prim.BSBody.ptr, Prim.MassRaw, Vector3.Zero);
BulletSimAPI.UpdateInertiaTensor2(Prim.BSBody.ptr);
}
*/
} }
// One step of the vehicle properties for the next 'pTimestep' seconds. // One step of the vehicle properties for the next 'pTimestep' seconds.
@ -478,6 +537,22 @@ namespace OpenSim.Region.Physics.BulletSPlugin
MoveAngular(pTimestep); MoveAngular(pTimestep);
LimitRotation(pTimestep); LimitRotation(pTimestep);
/* Experimental
// Wonder if Bullet could handle collision penetration while this applies the forces.
// Apply the computed forces on the vehicle
Prim.ForcePosition += Prim.ForceVelocity * Prim.MassRaw * pTimestep;
if (Prim.ForceRotationalVelocity != Vector3.Zero)
{
Quaternion newOrientation = Prim.ForceOrientation;
newOrientation.Normalize();
Quaternion appliedRotation = new Quaternion((Prim.ForceRotationalVelocity * pTimestep), 0f);
newOrientation += (appliedRotation * newOrientation) * 0.5f;
newOrientation.Normalize();
Prim.ForceOrientation = newOrientation;
}
*/
// remember the position so next step we can limit absolute movement effects // remember the position so next step we can limit absolute movement effects
m_lastPositionVector = Prim.ForcePosition; m_lastPositionVector = Prim.ForcePosition;
@ -489,59 +564,46 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// Also does hover and float. // Also does hover and float.
private void MoveLinear(float pTimestep) private void MoveLinear(float pTimestep)
{ {
// m_linearMotorDirection is the direction we are moving relative to the vehicle coordinates // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates
// m_lastLinearVelocityVector is the speed we are moving in that direction // m_lastLinearVelocityVector is the current speed we are moving in that direction
if (m_linearMotorDirection.LengthSquared() > 0.001f) if (m_linearMotorDirection.LengthSquared() > 0.001f)
{ {
Vector3 origDir = m_linearMotorDirection; Vector3 origDir = m_linearMotorDirection;
Vector3 origVel = m_lastLinearVelocityVector; Vector3 origVel = m_lastLinearVelocityVector;
// add drive to body // add drive to body
// Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale / pTimestep);
Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale / pTimestep); Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale / pTimestep);
// lastLinearVelocityVector is the current body velocity vector // lastLinearVelocityVector is the current body velocity vector
// RA: Not sure what the *10 is for. A correction for pTimestep?
// m_lastLinearVelocityVector += (addAmount*10);
m_lastLinearVelocityVector += addAmount; m_lastLinearVelocityVector += addAmount;
// Limit the velocity vector to less than the last set linear motor direction
if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
/*
// decay applied velocity
Vector3 decayfraction = Vector3.One/(m_linearMotorDecayTimescale / pTimestep);
// (RA: do not know where the 0.5f comes from)
m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
*/
float keepfraction = 1.0f - (1.0f / (m_linearMotorDecayTimescale / pTimestep)); float keepfraction = 1.0f - (1.0f / (m_linearMotorDecayTimescale / pTimestep));
m_linearMotorDirection *= keepfraction; m_linearMotorDirection *= keepfraction;
VDetailLog("{0},MoveLinear,nonZero,origdir={1},origvel={2},add={3},notDecay={4},dir={5},vel={6}", VDetailLog("{0},MoveLinear,nonZero,origdir={1},origvel={2},add={3},notDecay={4},dir={5},vel={6}",
Prim.LocalID, origDir, origVel, addAmount, keepfraction, m_linearMotorDirection, m_lastLinearVelocityVector); Prim.LocalID, origDir, origVel, addAmount, keepfraction, m_linearMotorDirection, m_lastLinearVelocityVector);
// convert requested object velocity to object relative vector
m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation;
} }
else else
{ {
// if what remains of direction is very small, zero it. // if what remains of direction is very small, zero it.
m_linearMotorDirection = Vector3.Zero; m_linearMotorDirection = Vector3.Zero;
m_lastLinearVelocityVector = Vector3.Zero; m_lastLinearVelocityVector = Vector3.Zero;
m_newVelocity = Vector3.Zero;
VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID); VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID);
} }
// convert requested object velocity to object relative vector // m_newVelocity is velocity computed from linear motor
Quaternion rotq = Prim.ForceOrientation;
m_newVelocity = m_lastLinearVelocityVector * rotq;
// Add the various forces into m_dir which will be our new direction vector (velocity) // Add the various forces into m_dir which will be our new direction vector (velocity)
// add Gravity and Buoyancy // add Gravity and Buoyancy
// There is some gravity, make a gravity force vector that is applied after object velocity. // There is some gravity, make a gravity force vector that is applied after object velocity.
// m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
Vector3 grav = Prim.PhysicsScene.DefaultGravity * (Prim.Linkset.LinksetMass * (1f - m_VehicleBuoyancy)); // Vector3 grav = Prim.PhysicsScene.DefaultGravity * (Prim.Linkset.LinksetMass * (1f - m_VehicleBuoyancy));
Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
/* /*
* RA: Not sure why one would do this * RA: Not sure why one would do this
@ -567,6 +629,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
} }
// Check if hovering // Check if hovering
// m_VhoverEfficiency: 0=bouncy, 1=totally damped
// m_VhoverTimescale: time to achieve height
if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
{ {
// We should hover, get the target height // We should hover, get the target height
@ -597,13 +661,19 @@ namespace OpenSim.Region.Physics.BulletSPlugin
} }
else else
{ {
float herr0 = pos.Z - m_VhoverTargetHeight; float horizontalError = pos.Z - m_VhoverTargetHeight;
// RA: where does the 50 come from>
float horizontalCorrectionVelocity = ((horizontalError * 50.0f) / (m_VhoverTimescale / pTimestep));
// Replace Vertical speed with correction figure if significant // Replace Vertical speed with correction figure if significant
if (Math.Abs(herr0) > 0.01f) if (Math.Abs(horizontalError) > 0.01f)
{ {
m_newVelocity.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale); m_newVelocity.Z += horizontalCorrectionVelocity;
//KF: m_VhoverEfficiency is not yet implemented //KF: m_VhoverEfficiency is not yet implemented
} }
else if (horizontalError < -0.01)
{
m_newVelocity.Z -= horizontalCorrectionVelocity;
}
else else
{ {
m_newVelocity.Z = 0f; m_newVelocity.Z = 0f;
@ -678,16 +748,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin
if ((m_flags & (VehicleFlag.NO_Z)) != 0) if ((m_flags & (VehicleFlag.NO_Z)) != 0)
m_newVelocity.Z = 0; m_newVelocity.Z = 0;
// Apply velocity
Prim.ForceVelocity = m_newVelocity;
// apply gravity force
// Why is this set here? The physics engine already does gravity.
Prim.AddForce(grav, false, true);
// Apply friction // Apply friction
Vector3 keepFraction = Vector3.One - (Vector3.One / (m_linearFrictionTimescale / pTimestep)); Vector3 keepFraction = Vector3.One - (Vector3.One / (m_linearFrictionTimescale / pTimestep));
m_lastLinearVelocityVector *= keepFraction; m_lastLinearVelocityVector *= keepFraction;
// Apply velocity
// Prim.ForceVelocity = m_newVelocity;
Prim.AddForce(m_newVelocity, false);
VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},grav={4},1Mdecay={5}", VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},grav={4},1Mdecay={5}",
Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, grav, keepFraction); Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, grav, keepFraction);
@ -719,9 +787,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
// ramp up to new value // ramp up to new value
// new velocity += error / ( time to get there / step interval) // new velocity += error / ( time to get there / step interval)
// requested speed - last motor speed // requested speed - last motor speed
m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep);
m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);
VDetailLog("{0},MoveAngular,angularMotorApply,apply={1},angTScale={2},timeStep={3},origvel={4},origDir={5},vel={6}", VDetailLog("{0},MoveAngular,angularMotorApply,apply={1},angTScale={2},timeStep={3},origvel={4},origDir={5},vel={6}",
Prim.LocalID, m_angularMotorApply, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity); Prim.LocalID, m_angularMotorApply, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity);
@ -732,46 +798,50 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{ {
// No motor recently applied, keep the body velocity // No motor recently applied, keep the body velocity
// and decay the velocity // and decay the velocity
m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); if (m_angularMotorVelocity.LengthSquared() < 0.0001)
if (m_angularMotorVelocity.LengthSquared() < 0.00001)
m_angularMotorVelocity = Vector3.Zero; m_angularMotorVelocity = Vector3.Zero;
else
m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
} // end motor section } // end motor section
// Vertical attractor section #region Vertical attactor
Vector3 vertattr = Vector3.Zero; Vector3 vertattr = Vector3.Zero;
Vector3 deflection = Vector3.Zero; Vector3 deflection = Vector3.Zero;
Vector3 banking = Vector3.Zero; Vector3 banking = Vector3.Zero;
if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero) if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
{ {
float VAservo = 0.2f / (m_verticalAttractionTimescale / pTimestep); float VAservo = 0.2f;
if (Prim.Linkset.LinksetIsColliding)
VAservo = 0.05f / (m_verticalAttractionTimescale / pTimestep);
VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
// get present body rotation // get present body rotation
Quaternion rotq = Prim.ForceOrientation; Quaternion rotq = Prim.ForceOrientation;
// vector pointing up // vector pointing up
Vector3 verterr = Vector3.Zero; Vector3 verticalError = Vector3.UnitZ;
verterr.Z = 1.0f;
// rotate it to Body Angle // rotate it to Body Angle
verterr = verterr * rotq; verticalError = verticalError * rotq;
// verterr.X and .Y are the World error amounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. // verticalError.X and .Y are the World error amounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
// As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
// negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
// Error is 0 (no error) to +/- 2 (max error) // Error is 0 (no error) to +/- 2 (max error)
if (verterr.Z < 0.0f) if (verticalError.Z < 0.0f)
{ {
verterr.X = 2.0f - verterr.X; verticalError.X = 2.0f - verticalError.X;
verterr.Y = 2.0f - verterr.Y; verticalError.Y = 2.0f - verticalError.Y;
} }
// scale it by VAservo // scale it by VAservo
verterr = verterr * VAservo; verticalError = verticalError * VAservo;
// As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y then .X increases, so
// Change Body angular velocity X based on Y, and Y based on X. Z is not changed. // Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
vertattr.X = verterr.Y; vertattr.X = verticalError.Y;
vertattr.Y = - verterr.X; vertattr.Y = - verticalError.X;
vertattr.Z = 0f; vertattr.Z = 0f;
// scaling appears better usingsquare-law // scaling appears better usingsquare-law
@ -779,10 +849,77 @@ namespace OpenSim.Region.Physics.BulletSPlugin
vertattr.X += bounce * angularVelocity.X; vertattr.X += bounce * angularVelocity.X;
vertattr.Y += bounce * angularVelocity.Y; vertattr.Y += bounce * angularVelocity.Y;
VDetailLog("{0},MoveAngular,verticalAttraction,verterr={1},bounce={2},vertattr={3}", VDetailLog("{0},MoveAngular,verticalAttraction,verticalError={1},bounce={2},vertattr={3}",
Prim.LocalID, verterr, bounce, vertattr); Prim.LocalID, verticalError, bounce, vertattr);
} // else vertical attractor is off }
#endregion // Vertical attactor
#region Deflection
//Forward is the prefered direction, but if the reference frame has changed, we need to take this into account as well
Vector3 PreferredAxisOfMotion =
new Vector3((10*(m_angularDeflectionEfficiency/m_angularDeflectionTimescale)), 0, 0);
PreferredAxisOfMotion *= Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
//Multiply it so that it scales linearly
//deflection = PreferredAxisOfMotion;
//deflection = ((PreferredAxisOfMotion * m_angularDeflectionEfficiency) / (m_angularDeflectionTimescale / pTimestep));
#endregion
#region Banking
if (m_bankingEfficiency != 0)
{
Vector3 dir = Vector3.One * Prim.ForceOrientation;
float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1);
//Changes which way it banks in and out of turns
//Use the square of the efficiency, as it looks much more how SL banking works
float effSquared = (m_bankingEfficiency*m_bankingEfficiency);
if (m_bankingEfficiency < 0)
effSquared *= -1; //Keep the negative!
float mix = Math.Abs(m_bankingMix);
if (m_angularMotorVelocity.X == 0)
{
/*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
{
Vector3 axisAngle;
float angle;
parent.Orientation.GetAxisAngle(out axisAngle, out angle);
Vector3 rotatedVel = parent.Velocity * parent.Orientation;
if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
else
m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
}*/
}
else
banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4;
if (!Prim.Linkset.LinksetIsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
//If they are colliding, we probably shouldn't shove the prim around... probably
{
float angVelZ = m_angularMotorVelocity.X*-1;
/*if(angVelZ > mix)
angVelZ = mix;
else if(angVelZ < -mix)
angVelZ = -mix;*/
//This controls how fast and how far the banking occurs
Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0);
if (bankingRot.X > 3)
bankingRot.X = 3;
else if (bankingRot.X < -3)
bankingRot.X = -3;
bankingRot *= Prim.ForceOrientation;
banking += bankingRot;
}
m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
}
#endregion
m_lastVertAttractor = vertattr; m_lastVertAttractor = vertattr;
@ -811,7 +948,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
m_lastAngularVelocity -= m_lastAngularVelocity * decayamount; m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
// Apply to the body // Apply to the body
Prim.ForceRotationalVelocity = m_lastAngularVelocity; // Prim.ForceRotationalVelocity = m_lastAngularVelocity;
Prim.AddAngularForce(m_lastAngularVelocity, false);
VDetailLog("{0},MoveAngular,done,decay={1},lastAngular={2}", Prim.LocalID, decayamount, m_lastAngularVelocity); VDetailLog("{0},MoveAngular,done,decay={1},lastAngular={2}", Prim.LocalID, decayamount, m_lastAngularVelocity);
} //end MoveAngular } //end MoveAngular
@ -820,38 +958,31 @@ namespace OpenSim.Region.Physics.BulletSPlugin
{ {
Quaternion rotq = Prim.ForceOrientation; Quaternion rotq = Prim.ForceOrientation;
Quaternion m_rot = rotq; Quaternion m_rot = rotq;
bool changed = false;
if (m_RollreferenceFrame != Quaternion.Identity) if (m_RollreferenceFrame != Quaternion.Identity)
{ {
if (rotq.X >= m_RollreferenceFrame.X) if (rotq.X >= m_RollreferenceFrame.X)
{ {
m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2); m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
changed = true;
} }
if (rotq.Y >= m_RollreferenceFrame.Y) if (rotq.Y >= m_RollreferenceFrame.Y)
{ {
m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2); m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
changed = true;
} }
if (rotq.X <= -m_RollreferenceFrame.X) if (rotq.X <= -m_RollreferenceFrame.X)
{ {
m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2); m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
changed = true;
} }
if (rotq.Y <= -m_RollreferenceFrame.Y) if (rotq.Y <= -m_RollreferenceFrame.Y)
{ {
m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2); m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
changed = true;
} }
changed = true;
} }
if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
{ {
m_rot.X = 0; m_rot.X = 0;
m_rot.Y = 0; m_rot.Y = 0;
changed = true;
} }
if (changed) if (rotq != m_rot)
{ {
Prim.ForceOrientation = m_rot; Prim.ForceOrientation = m_rot;
VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);

View File

@ -32,7 +32,7 @@ using OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
class BSHingeConstraint : BSConstraint public sealed class BSHingeConstraint : BSConstraint
{ {
public override ConstraintType Type { get { return ConstraintType.HINGE_CONSTRAINT_TYPE; } } public override ConstraintType Type { get { return ConstraintType.HINGE_CONSTRAINT_TYPE; } }

View File

@ -88,6 +88,8 @@ public abstract class BSLinkset
} }
} }
public virtual bool LinksetIsColliding { get { return false; } }
public OMV.Vector3 CenterOfMass public OMV.Vector3 CenterOfMass
{ {
get { return ComputeLinksetCenterOfMass(); } get { return ComputeLinksetCenterOfMass(); }

View File

@ -32,7 +32,7 @@ using OMV = OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSLinksetConstraints : BSLinkset public sealed class BSLinksetConstraints : BSLinkset
{ {
// private static string LogHeader = "[BULLETSIM LINKSET CONSTRAINTS]"; // private static string LogHeader = "[BULLETSIM LINKSET CONSTRAINTS]";

View File

@ -311,6 +311,7 @@ public sealed class BSPrim : BSPhysObject
if ((CurrentCollisionFlags & CollisionFlags.BS_FLOATS_ON_WATER) != 0) if ((CurrentCollisionFlags & CollisionFlags.BS_FLOATS_ON_WATER) != 0)
{ {
float waterHeight = PhysicsScene.GetWaterLevelAtXYZ(_position); float waterHeight = PhysicsScene.GetWaterLevelAtXYZ(_position);
// TODO: a floating motor so object will bob in the water
if (Position.Z < waterHeight) if (Position.Z < waterHeight)
{ {
_position.Z = waterHeight; _position.Z = waterHeight;
@ -902,6 +903,7 @@ public sealed class BSPrim : BSPhysObject
} }
// DetailLog("{0},BSPrim.AddObjectForce,taint,force={1}", LocalID, fSum); // DetailLog("{0},BSPrim.AddObjectForce,taint,force={1}", LocalID, fSum);
// For unknown reasons, "ApplyCentralForce" adds this force to the total force on the object. // For unknown reasons, "ApplyCentralForce" adds this force to the total force on the object.
if (fSum != OMV.Vector3.Zero)
BulletSimAPI.ApplyCentralForce2(BSBody.ptr, fSum); BulletSimAPI.ApplyCentralForce2(BSBody.ptr, fSum);
}; };
if (inTaintTime) if (inTaintTime)

View File

@ -62,7 +62,7 @@ using OpenMetaverse;
// //
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSScene : PhysicsScene, IPhysicsParameters public sealed class BSScene : PhysicsScene, IPhysicsParameters
{ {
private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType); private static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);
private static readonly string LogHeader = "[BULLETS SCENE]"; private static readonly string LogHeader = "[BULLETS SCENE]";

View File

@ -34,7 +34,7 @@ using OpenSim.Region.Physics.ConvexDecompositionDotNet;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSShapeCollection : IDisposable public sealed class BSShapeCollection : IDisposable
{ {
private static string LogHeader = "[BULLETSIM SHAPE COLLECTION]"; private static string LogHeader = "[BULLETSIM SHAPE COLLECTION]";

View File

@ -40,7 +40,7 @@ using OpenMetaverse;
namespace OpenSim.Region.Physics.BulletSPlugin namespace OpenSim.Region.Physics.BulletSPlugin
{ {
public class BSTerrainManager public sealed class BSTerrainManager
{ {
static string LogHeader = "[BULLETSIM TERRAIN MANAGER]"; static string LogHeader = "[BULLETSIM TERRAIN MANAGER]";

View File

@ -0,0 +1,26 @@
/*
* Copyright (c) Contributors, http://aurora-sim.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Aurora-Sim Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/