Committing Xantor's LLEuler3Rot still broken fix patch. Mantis 001235. Thanks Xantor!

0.6.0-stable
Teravus Ovares 2008-05-15 19:36:13 +00:00
parent d60e457463
commit bbaf2fe75e
1 changed files with 46 additions and 99 deletions

View File

@ -294,40 +294,19 @@ namespace OpenSim.Region.ScriptEngine.Common
//Now we start getting into quaternions which means sin/cos, matrices and vectors. ckrinke
// Xantor's new llRot2Euler
public LSL_Types.Vector3 llRot2Euler(LSL_Types.Quaternion r)
// Utility function for llRot2Euler
// normalize an angle between 0 - 2*PI (0 and 360 degrees)
private double NormalizeAngle(double angle)
{
m_host.AddScriptLPS(1);
double x, y, z;
double sqw = r.s*r.s;
double sqx = r.x*r.x;
double sqy = r.y*r.y;
double sqz = r.z*r.z;
double unit = sqx + sqy + sqz + sqw; // if normalised is one, otherwise is correction factor
double test = r.x*r.y + r.z*r.s;
if (test > 0.499 * unit) // singularity at north pole
{
x = 0;
y = 2 * Math.Atan2(r.x, r.s);
z = Math.PI/2;
return new LSL_Types.Vector3(x, y, z);
}
if (test < -0.499 * unit) // singularity at south pole
{
x = 0;
y = -2 * Math.Atan2(r.x,r.s);
z = -Math.PI/2;
return new LSL_Types.Vector3(x, y, z);
}
x = Math.Atan2(2 * r.x * r.s - 2 * r.y * r.z, -sqx + sqy - sqz + sqw);
y = Math.Atan2(2*r.y*r.s-2*r.x*r.z , sqx - sqy - sqz + sqw);
z = Math.Asin(2*test/unit);
return new LSL_Types.Vector3(x, y, z);
angle = angle % (Math.PI * 2);
if (angle < 0) angle = angle + Math.PI * 2;
return angle;
}
// Old implementation of llRot2Euler
/*
// Old implementation of llRot2Euler, now normalized
public LSL_Types.Vector3 llRot2Euler(LSL_Types.Quaternion r)
{
m_host.AddScriptLPS(1);
@ -338,89 +317,57 @@ namespace OpenSim.Region.ScriptEngine.Common
double n = 2 * (r.y * r.s + r.x * r.z);
double p = m * m - n * n;
if (p > 0)
return new LSL_Types.Vector3(Math.Atan2(2.0 * (r.x * r.s - r.y * r.z), (-t.x - t.y + t.z + t.s)),
Math.Atan2(n, Math.Sqrt(p)),
Math.Atan2(2.0 * (r.z * r.s - r.x * r.y), (t.x - t.y - t.z + t.s)));
return new LSL_Types.Vector3(NormalizeAngle(Math.Atan2(2.0 * (r.x * r.s - r.y * r.z), (-t.x - t.y + t.z + t.s))),
NormalizeAngle(Math.Atan2(n, Math.Sqrt(p))),
NormalizeAngle(Math.Atan2(2.0 * (r.z * r.s - r.x * r.y), (t.x - t.y - t.z + t.s))));
else if (n > 0)
return new LSL_Types.Vector3(0.0, Math.PI / 2, Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z));
return new LSL_Types.Vector3(0.0, Math.PI / 2, NormalizeAngle(Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z)));
else
return new LSL_Types.Vector3(0.0, -Math.PI / 2, Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z));
return new LSL_Types.Vector3(0.0, -Math.PI / 2, NormalizeAngle(Math.Atan2((r.z * r.s + r.x * r.y), 0.5 - t.x - t.z)));
}
*/
// Xantor's new llEuler2Rot()
// Xantor's newer llEuler2Rot() *try the second* inverted quaternions (-x,-y,-z,w) as LL seems to like
// New and improved, now actually works as described. Prim rotates as expected as does llRot2Euler.
/* From wiki:
The Euler angle vector (in radians) is converted to a rotation by doing the rotations around the 3 axes
in Z, Y, X order. So llEuler2Rot(<1.0, 2.0, 3.0> * DEG_TO_RAD) generates a rotation by taking the zero rotation,
a vector pointing along the X axis, first rotating it 3 degrees around the global Z axis, then rotating the resulting
vector 2 degrees around the global Y axis, and finally rotating that 1 degree around the global X axis.
*/
public LSL_Types.Quaternion llEuler2Rot(LSL_Types.Vector3 v)
{
m_host.AddScriptLPS(1);
double x,y,z,s;
double x,y,z,s,s_i;
double c1 = Math.Cos(v.y / 2);
double s1 = Math.Sin(v.y / 2);
double c2 = Math.Cos(v.z / 2);
double s2 = Math.Sin(v.z / 2);
double c3 = Math.Cos(v.x / 2);
double s3 = Math.Sin(v.x / 2);
double c1c2 = c1 * c2;
double s1s2 = s1 * s2;
s = c1c2 * c3 - s1s2 * s3;
x = c1c2 * s3 + s1s2 * c3;
y = s1 * c2 * c3 + c1 * s2 * s3;
z = c1 * s2 * c3 - s1 * c2 * s3;
double cosX = Math.Cos(v.x);
double cosY = Math.Cos(v.y);
double cosZ = Math.Cos(v.z);
double sinX = Math.Sin(v.x);
double sinY = Math.Sin(v.y);
double sinZ = Math.Sin(v.z);
s = Math.Sqrt( cosY * cosZ - sinX * sinY * sinZ + cosX * cosZ + cosX * cosY + 1.0f) * 0.5f;
if (Math.Abs(s) < 0.00001) // null rotation
{
x = 0.0f;
y = 1.0f;
z = 0.0f;
}
else
{
s_i = 1.0f / (4.0f * s);
x = - ( -sinX * cosY - cosX * sinY * sinZ - sinX * cosZ) * s_i;
y = - ( -cosX * sinY * cosZ + sinX * sinZ - sinY) * s_i;
z = - ( -cosY * sinZ - sinX * sinY * cosZ - cosX * sinZ) * s_i;
}
return new LSL_Types.Quaternion(x, y, z, s);
}
/*
// Old implementation
public LSL_Types.Quaternion llEuler2Rot(LSL_Types.Vector3 v)
{
m_host.AddScriptLPS(1);
//this comes from from http://lslwiki.net/lslwiki/wakka.php?wakka=LibraryRotationFunctions but is incomplete as of 8/19/07
float err = 0.00001f;
double ax = Math.Sin(v.x / 2);
double aw = Math.Cos(v.x / 2);
double by = Math.Sin(v.y / 2);
double bw = Math.Cos(v.y / 2);
double cz = Math.Sin(v.z / 2);
double cw = Math.Cos(v.z / 2);
LSL_Types.Quaternion a1 = new LSL_Types.Quaternion(0.0, 0.0, cz, cw);
LSL_Types.Quaternion a2 = new LSL_Types.Quaternion(0.0, by, 0.0, bw);
LSL_Types.Quaternion a3 = new LSL_Types.Quaternion(ax, 0.0, 0.0, aw);
LSL_Types.Quaternion a = (a1 * a2) * a3;
//This multiplication doesnt compile, yet. a = a1 * a2 * a3;
LSL_Types.Quaternion b = new LSL_Types.Quaternion(ax * bw * cw + aw * by * cz,
aw * by * cw - ax * bw * cz, aw * bw * cz + ax * by * cw,
aw * bw * cw - ax * by * cz);
LSL_Types.Quaternion c = new LSL_Types.Quaternion();
//This addition doesnt compile yet c = a + b;
LSL_Types.Quaternion d = new LSL_Types.Quaternion();
//This addition doesnt compile yet d = a - b;
if ((Math.Abs(c.x) > err && Math.Abs(d.x) > err) ||
(Math.Abs(c.y) > err && Math.Abs(d.y) > err) ||
(Math.Abs(c.z) > err && Math.Abs(d.z) > err) ||
(Math.Abs(c.s) > err && Math.Abs(d.s) > err))
{
return b;
//return a new Quaternion that is null until I figure this out
// return b;
// return a;
}
return a;
}
*/
public LSL_Types.Quaternion llAxes2Rot(LSL_Types.Vector3 fwd, LSL_Types.Vector3 left, LSL_Types.Vector3 up)
{
m_host.AddScriptLPS(1);