OpenSimMirror/OpenSim/Region/Physics/BulletSPlugin/BSPrim.cs

1494 lines
56 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Reflection;
using System.Collections.Generic;
using System.Xml;
using log4net;
using OMV = OpenMetaverse;
using OpenSim.Framework;
using OpenSim.Region.Physics.Manager;
using OpenSim.Region.Physics.ConvexDecompositionDotNet;
namespace OpenSim.Region.Physics.BulletSPlugin
{
[Serializable]
public sealed class BSPrim : PhysicsActor
{
private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
private static readonly string LogHeader = "[BULLETS PRIM]";
private void DebugLog(string mm, params Object[] xx) { if (_scene.shouldDebugLog) m_log.DebugFormat(mm, xx); }
private IMesh _mesh;
private PrimitiveBaseShape _pbs;
private ShapeData.PhysicsShapeType _shapeType;
private ulong _meshKey;
private ulong _hullKey;
private List<ConvexResult> _hulls;
private BSScene _scene;
public BSScene Scene { get { return _scene; } }
private String _avName;
private uint _localID = 0;
// _size is what the user passed. _scale is what we pass to the physics engine with the mesh.
// Often _scale is unity because the meshmerizer will apply _size when creating the mesh.
private OMV.Vector3 _size; // the multiplier for each mesh dimension as passed by the user
private OMV.Vector3 _scale; // the multiplier for each mesh dimension for the mesh as created by the meshmerizer
private bool _stopped;
private bool _grabbed;
private bool _isSelected;
private bool _isVolumeDetect;
private OMV.Vector3 _position;
private float _mass;
private float _density;
private OMV.Vector3 _force;
private OMV.Vector3 _velocity;
private OMV.Vector3 _torque;
private float _collisionScore;
private OMV.Vector3 _acceleration;
private OMV.Quaternion _orientation;
private int _physicsActorType;
private bool _isPhysical;
private bool _flying;
private float _friction;
private float _restitution;
private bool _setAlwaysRun;
private bool _throttleUpdates;
private bool _isColliding;
private bool _collidingGround;
private bool _collidingObj;
private bool _floatOnWater;
private OMV.Vector3 _rotationalVelocity;
private bool _kinematic;
private float _buoyancy;
private BSPrim _parentPrim;
private List<BSPrim> _childrenPrims;
private int _subscribedEventsMs = 0;
private int _nextCollisionOkTime = 0;
long _collidingStep;
long _collidingGroundStep;
private BSDynamics _vehicle;
private OMV.Vector3 _PIDTarget;
private bool _usePID;
private float _PIDTau;
private bool _useHoverPID;
private float _PIDHoverHeight;
private PIDHoverType _PIDHoverType;
private float _PIDHoverTao;
public BSPrim(uint localID, String primName, BSScene parent_scene, OMV.Vector3 pos, OMV.Vector3 size,
OMV.Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical)
{
// m_log.DebugFormat("{0}: BSPrim creation of {1}, id={2}", LogHeader, primName, localID);
_localID = localID;
_avName = primName;
_scene = parent_scene;
_position = pos;
_size = size;
_scale = new OMV.Vector3(1f, 1f, 1f); // the scale will be set by CreateGeom depending on object type
_orientation = rotation;
_buoyancy = 1f;
_velocity = OMV.Vector3.Zero;
_rotationalVelocity = OMV.Vector3.Zero;
_hullKey = 0;
_meshKey = 0;
_pbs = pbs;
_isPhysical = pisPhysical;
_isVolumeDetect = false;
_subscribedEventsMs = 0;
_friction = _scene.Params.defaultFriction; // TODO: compute based on object material
_density = _scene.Params.defaultDensity; // TODO: compute based on object material
_restitution = _scene.Params.defaultRestitution;
_parentPrim = null; // not a child or a parent
_vehicle = new BSDynamics(this); // add vehicleness
_childrenPrims = new List<BSPrim>();
_mass = CalculateMass();
// do the actual object creation at taint time
_scene.TaintedObject(delegate()
{
RecreateGeomAndObject();
});
}
// called when this prim is being destroyed and we should free all the resources
public void Destroy()
{
// m_log.DebugFormat("{0}: Destroy, id={1}", LogHeader, LocalID);
// DetailLog("{0},Destroy", LocalID);
// Undo any vehicle properties
_vehicle.ProcessTypeChange(Vehicle.TYPE_NONE);
_scene.RemoveVehiclePrim(this); // just to make sure
_scene.TaintedObject(delegate()
{
// undo any dependance with/on other objects
if (_parentPrim != null)
{
// If I'm someone's child, tell them to forget about me.
_parentPrim.RemoveChildFromLinkset(this);
_parentPrim = null;
}
// make sure there are no possible children depending on me
UnlinkAllChildren();
// everything in the C# world will get garbage collected. Tell the C++ world to free stuff.
BulletSimAPI.DestroyObject(_scene.WorldID, LocalID);
});
}
public override bool Stopped {
get { return _stopped; }
}
public override OMV.Vector3 Size {
get { return _size; }
set {
_size = value;
_scene.TaintedObject(delegate()
{
_mass = CalculateMass(); // changing size changes the mass
BulletSimAPI.SetObjectScaleMass(_scene.WorldID, _localID, _scale, Mass, IsPhysical);
RecreateGeomAndObject();
});
}
}
public override PrimitiveBaseShape Shape {
set {
_pbs = value;
_scene.TaintedObject(delegate()
{
_mass = CalculateMass(); // changing the shape changes the mass
RecreateGeomAndObject();
});
}
}
public override uint LocalID {
set { _localID = value; }
get { return _localID; }
}
public override bool Grabbed {
set { _grabbed = value;
}
}
public override bool Selected {
set {
_isSelected = value;
_scene.TaintedObject(delegate()
{
SetObjectDynamic();
});
}
}
public override void CrossingFailure() { return; }
// link me to the specified parent
public override void link(PhysicsActor obj) {
BSPrim parent = obj as BSPrim;
DebugLog("{0}: link {1}/{2} to {3}", LogHeader, _avName, _localID, obj.LocalID);
DetailLog("{0},link,parent={1}", LocalID, obj.LocalID);
// TODO: decide if this parent checking needs to happen at taint time
if (_parentPrim == null)
{
if (parent != null)
{
// I don't have a parent so I am joining a linkset
parent.AddChildToLinkset(this);
}
}
else
{
// I already have a parent, is parenting changing?
if (parent != _parentPrim)
{
if (parent == null)
{
// we are being removed from a linkset
_parentPrim.RemoveChildFromLinkset(this);
}
else
{
// asking to reparent a prim should not happen
m_log.ErrorFormat("{0}: link(): Reparenting a prim. ", LogHeader);
}
}
}
return;
}
// delink me from my linkset
public override void delink() {
// TODO: decide if this parent checking needs to happen at taint time
// Race condition here: if link() and delink() in same simulation tick, the delink will not happen
DebugLog("{0}: delink {1}/{2}. Parent={3}", LogHeader, _avName, _localID,
(_parentPrim==null ? "NULL" : _parentPrim._avName+"/"+_parentPrim.LocalID.ToString()));
DetailLog("{0},delink,parent={1}", LocalID, (_parentPrim==null ? "NULL" : _parentPrim.LocalID.ToString()));
if (_parentPrim != null)
{
_parentPrim.RemoveChildFromLinkset(this);
}
return;
}
// I am the root of a linkset and a new child is being added
public void AddChildToLinkset(BSPrim pchild)
{
BSPrim child = pchild;
_scene.TaintedObject(delegate()
{
if (!_childrenPrims.Contains(child))
{
DebugLog("{0}: AddChildToLinkset: adding child {1} to {2}", LogHeader, child.LocalID, this.LocalID);
DetailLog("{0},AddChildToLinkset,child={1}", LocalID, pchild.LocalID);
_childrenPrims.Add(child);
child._parentPrim = this; // the child has gained a parent
// RecreateGeomAndObject(); // rebuild my shape with the new child added
LinkAChildToMe(pchild); // build the physical binding between me and the child
_mass = CalculateMass();
}
});
return;
}
// I am the root of a linkset and one of my children is being removed.
// Safe to call even if the child is not really in my linkset.
public void RemoveChildFromLinkset(BSPrim pchild)
{
BSPrim child = pchild;
_scene.TaintedObject(delegate()
{
if (_childrenPrims.Contains(child))
{
DebugLog("{0}: RemoveChildFromLinkset: Removing constraint to {1}", LogHeader, child.LocalID);
DetailLog("{0},RemoveChildFromLinkset,child={1}", LocalID, pchild.LocalID);
_childrenPrims.Remove(child);
child._parentPrim = null; // the child has lost its parent
if (_childrenPrims.Count == 0)
{
// if the linkset is empty, make sure all linkages have been removed
UnlinkAllChildren();
}
else
{
// RecreateGeomAndObject(); // rebuild my shape with the child removed
UnlinkAChildFromMe(pchild);
}
_mass = CalculateMass();
}
else
{
m_log.ErrorFormat("{0}: Asked to remove child from linkset that was not in linkset");
}
});
return;
}
// return true if we are the root of a linkset (there are children to manage)
public bool IsRootOfLinkset
{
get { return (_parentPrim == null && _childrenPrims.Count != 0); }
}
// Set motion values to zero.
// Do it to the properties so the values get set in the physics engine.
// Push the setting of the values to the viewer.
// Called at taint time!
private void ZeroMotion()
{
_velocity = OMV.Vector3.Zero;
_acceleration = OMV.Vector3.Zero;
_rotationalVelocity = OMV.Vector3.Zero;
// Zero some other properties directly into the physics engine
IntPtr obj = BulletSimAPI.GetBodyHandleWorldID2(_scene.WorldID, LocalID);
BulletSimAPI.SetVelocity2(obj, OMV.Vector3.Zero);
BulletSimAPI.SetAngularVelocity2(obj, OMV.Vector3.Zero);
BulletSimAPI.SetInterpolation2(obj, OMV.Vector3.Zero, OMV.Vector3.Zero);
BulletSimAPI.ClearForces2(obj);
}
public override void LockAngularMotion(OMV.Vector3 axis)
{
DetailLog("{0},LockAngularMotion,call,axis={1}", LocalID, axis);
return;
}
public override OMV.Vector3 Position {
get {
// child prims move around based on their parent. Need to get the latest location
if (_parentPrim != null)
_position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID);
// don't do the GetObjectPosition for root elements because this function is called a zillion times
// _position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID);
return _position;
}
set {
_position = value;
// TODO: what does it mean to set the position of a child prim?? Rebuild the constraint?
_scene.TaintedObject(delegate()
{
DetailLog("{0},SetPosition,taint,pos={1},orient={2}", LocalID, _position, _orientation);
BulletSimAPI.SetObjectTranslation(_scene.WorldID, _localID, _position, _orientation);
});
}
}
// Return the effective mass of the object. Non-physical objects do not have mass.
public override float Mass {
get {
if (IsPhysical)
return _mass;
else
return 0f;
}
}
public override OMV.Vector3 Force {
get { return _force; }
set {
_force = value;
_scene.TaintedObject(delegate()
{
DetailLog("{0},SetForce,taint,force={1}", LocalID, _force);
BulletSimAPI.SetObjectForce(_scene.WorldID, _localID, _force);
});
}
}
public override int VehicleType {
get {
return (int)_vehicle.Type; // if we are a vehicle, return that type
}
set {
Vehicle type = (Vehicle)value;
_scene.TaintedObject(delegate()
{
DetailLog("{0},SetVehicleType,taint,type={1}", LocalID, type);
_vehicle.ProcessTypeChange(type);
if (type == Vehicle.TYPE_NONE)
{
_scene.RemoveVehiclePrim(this);
}
else
{
_scene.TaintedObject(delegate()
{
// Tell the physics engine to clear state
IntPtr obj = BulletSimAPI.GetBodyHandleWorldID2(_scene.WorldID, LocalID);
BulletSimAPI.ClearForces2(obj);
});
// make it so the scene will call us each tick to do vehicle things
_scene.AddVehiclePrim(this);
}
return;
});
}
}
public override void VehicleFloatParam(int param, float value)
{
m_log.DebugFormat("{0} VehicleFloatParam. {1} <= {2}", LogHeader, param, value);
_scene.TaintedObject(delegate()
{
_vehicle.ProcessFloatVehicleParam((Vehicle)param, value, _scene.LastSimulatedTimestep);
});
}
public override void VehicleVectorParam(int param, OMV.Vector3 value)
{
m_log.DebugFormat("{0} VehicleVectorParam. {1} <= {2}", LogHeader, param, value);
_scene.TaintedObject(delegate()
{
_vehicle.ProcessVectorVehicleParam((Vehicle)param, value, _scene.LastSimulatedTimestep);
});
}
public override void VehicleRotationParam(int param, OMV.Quaternion rotation)
{
m_log.DebugFormat("{0} VehicleRotationParam. {1} <= {2}", LogHeader, param, rotation);
_scene.TaintedObject(delegate()
{
_vehicle.ProcessRotationVehicleParam((Vehicle)param, rotation);
});
}
public override void VehicleFlags(int param, bool remove)
{
m_log.DebugFormat("{0} VehicleFlags. {1}. Remove={2}", LogHeader, param, remove);
_scene.TaintedObject(delegate()
{
_vehicle.ProcessVehicleFlags(param, remove);
});
}
// Called each simulation step to advance vehicle characteristics.
// Called from Scene when doing simulation step so we're in taint processing time.
public void StepVehicle(float timeStep)
{
if (IsPhysical)
_vehicle.Step(timeStep);
}
// Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more
public override void SetVolumeDetect(int param) {
bool newValue = (param != 0);
_isVolumeDetect = newValue;
_scene.TaintedObject(delegate()
{
SetObjectDynamic();
});
return;
}
public override OMV.Vector3 GeometricCenter { get { return OMV.Vector3.Zero; } }
public override OMV.Vector3 CenterOfMass { get { return OMV.Vector3.Zero; } }
public override OMV.Vector3 Velocity {
get { return _velocity; }
set {
_velocity = value;
_scene.TaintedObject(delegate()
{
DetailLog("{0},SetVelocity,taint,vel={1}", LocalID, _velocity);
BulletSimAPI.SetObjectVelocity(_scene.WorldID, LocalID, _velocity);
});
}
}
public override OMV.Vector3 Torque {
get { return _torque; }
set { _torque = value;
DetailLog("{0},SetTorque,call,torque={1}", LocalID, _torque);
}
}
public override float CollisionScore {
get { return _collisionScore; }
set { _collisionScore = value;
}
}
public override OMV.Vector3 Acceleration {
get { return _acceleration; }
set { _acceleration = value; }
}
public override OMV.Quaternion Orientation {
get {
if (_parentPrim != null)
{
// children move around because tied to parent. Get a fresh value.
_orientation = BulletSimAPI.GetObjectOrientation(_scene.WorldID, LocalID);
}
return _orientation;
}
set {
_orientation = value;
// TODO: what does it mean if a child in a linkset changes its orientation? Rebuild the constraint?
_scene.TaintedObject(delegate()
{
// _position = BulletSimAPI.GetObjectPosition(_scene.WorldID, _localID);
DetailLog("{0},SetOrientation,taint,pos={1},orient={2}", LocalID, _position, _orientation);
BulletSimAPI.SetObjectTranslation(_scene.WorldID, _localID, _position, _orientation);
});
}
}
public override int PhysicsActorType {
get { return _physicsActorType; }
set { _physicsActorType = value;
}
}
public override bool IsPhysical {
get { return _isPhysical; }
set {
_isPhysical = value;
_scene.TaintedObject(delegate()
{
SetObjectDynamic();
});
}
}
// An object is static (does not move) if selected or not physical
private bool IsStatic
{
get { return _isSelected || !IsPhysical; }
}
// An object is solid if it's not phantom and if it's not doing VolumeDetect
private bool IsSolid
{
get { return !IsPhantom && !_isVolumeDetect; }
}
// Make gravity work if the object is physical and not selected
// No locking here because only called when it is safe
// Only called at taint time so it is save to call into Bullet.
private void SetObjectDynamic()
{
// m_log.DebugFormat("{0}: ID={1}, SetObjectDynamic: IsStatic={2}, IsSolid={3}", LogHeader, _localID, IsStatic, IsSolid);
// non-physical things work best with a mass of zero
if (!IsStatic)
{
_mass = CalculateMass();
RecreateGeomAndObject();
}
DetailLog("{0},SetObjectDynamic,taint,static={1},solid={2},mass={3}", LocalID, IsStatic, IsSolid, Mass);
BulletSimAPI.SetObjectProperties(_scene.WorldID, LocalID, IsStatic, IsSolid, SubscribedEvents(), Mass);
}
// prims don't fly
public override bool Flying {
get { return _flying; }
set { _flying = value; }
}
public override bool SetAlwaysRun {
get { return _setAlwaysRun; }
set { _setAlwaysRun = value; }
}
public override bool ThrottleUpdates {
get { return _throttleUpdates; }
set { _throttleUpdates = value; }
}
public override bool IsColliding {
get { return (_collidingStep == _scene.SimulationStep); }
set { _isColliding = value; }
}
public override bool CollidingGround {
get { return (_collidingGroundStep == _scene.SimulationStep); }
set { _collidingGround = value; }
}
public override bool CollidingObj {
get { return _collidingObj; }
set { _collidingObj = value; }
}
public bool IsPhantom {
get {
// SceneObjectPart removes phantom objects from the physics scene
// so, although we could implement touching and such, we never
// are invoked as a phantom object
return false;
}
}
public override bool FloatOnWater {
set { _floatOnWater = value; }
}
public override OMV.Vector3 RotationalVelocity {
get {
/*
OMV.Vector3 pv = OMV.Vector3.Zero;
// if close to zero, report zero
// This is copied from ODE but I'm not sure why it returns zero but doesn't
// zero the property in the physics engine.
if (_rotationalVelocity.ApproxEquals(pv, 0.2f))
return pv;
*/
return _rotationalVelocity;
}
set {
_rotationalVelocity = value;
// m_log.DebugFormat("{0}: RotationalVelocity={1}", LogHeader, _rotationalVelocity);
_scene.TaintedObject(delegate()
{
DetailLog("{0},SetRotationalVel,taint,rotvel={1}", LocalID, _rotationalVelocity);
BulletSimAPI.SetObjectAngularVelocity(_scene.WorldID, LocalID, _rotationalVelocity);
});
}
}
public override bool Kinematic {
get { return _kinematic; }
set { _kinematic = value;
// m_log.DebugFormat("{0}: Kinematic={1}", LogHeader, _kinematic);
}
}
public override float Buoyancy {
get { return _buoyancy; }
set {
_buoyancy = value;
_scene.TaintedObject(delegate()
{
DetailLog("{0},SetBuoyancy,taint,buoy={1}", LocalID, _buoyancy);
BulletSimAPI.SetObjectBuoyancy(_scene.WorldID, _localID, _buoyancy);
});
}
}
// Used for MoveTo
public override OMV.Vector3 PIDTarget {
set { _PIDTarget = value; }
}
public override bool PIDActive {
set { _usePID = value; }
}
public override float PIDTau {
set { _PIDTau = value; }
}
// Used for llSetHoverHeight and maybe vehicle height
// Hover Height will override MoveTo target's Z
public override bool PIDHoverActive {
set { _useHoverPID = value; }
}
public override float PIDHoverHeight {
set { _PIDHoverHeight = value; }
}
public override PIDHoverType PIDHoverType {
set { _PIDHoverType = value; }
}
public override float PIDHoverTau {
set { _PIDHoverTao = value; }
}
// For RotLookAt
public override OMV.Quaternion APIDTarget { set { return; } }
public override bool APIDActive { set { return; } }
public override float APIDStrength { set { return; } }
public override float APIDDamping { set { return; } }
private List<OMV.Vector3> m_accumulatedForces = new List<OMV.Vector3>();
public override void AddForce(OMV.Vector3 force, bool pushforce) {
if (force.IsFinite())
{
// _force += force;
lock (m_accumulatedForces)
m_accumulatedForces.Add(new OMV.Vector3(force));
}
else
{
m_log.WarnFormat("{0}: Got a NaN force applied to a Character", LogHeader);
return;
}
_scene.TaintedObject(delegate()
{
lock (m_accumulatedForces)
{
if (m_accumulatedForces.Count > 0)
{
OMV.Vector3 fSum = OMV.Vector3.Zero;
foreach (OMV.Vector3 v in m_accumulatedForces)
{
fSum += v;
}
m_accumulatedForces.Clear();
DetailLog("{0},SetObjectForce,taint,force={1}", LocalID, fSum);
BulletSimAPI.SetObjectForce(_scene.WorldID, _localID, fSum);
}
}
});
}
public override void AddAngularForce(OMV.Vector3 force, bool pushforce) {
DetailLog("{0},AddAngularForce,call,angForce={1},push={2}", LocalID, force, pushforce);
// m_log.DebugFormat("{0}: AddAngularForce. f={1}, push={2}", LogHeader, force, pushforce);
}
public override void SetMomentum(OMV.Vector3 momentum) {
DetailLog("{0},SetMomentum,call,mom={1}", LocalID, momentum);
}
public override void SubscribeEvents(int ms) {
_subscribedEventsMs = ms;
// make sure first collision happens
_nextCollisionOkTime = Util.EnvironmentTickCount() - _subscribedEventsMs;
}
public override void UnSubscribeEvents() {
_subscribedEventsMs = 0;
}
public override bool SubscribedEvents() {
return (_subscribedEventsMs > 0);
}
#region Mass Calculation
private float CalculateMass()
{
float volume = _size.X * _size.Y * _size.Z; // default
float tmp;
float returnMass = 0;
float hollowAmount = (float)_pbs.ProfileHollow * 2.0e-5f;
float hollowVolume = hollowAmount * hollowAmount;
switch (_pbs.ProfileShape)
{
case ProfileShape.Square:
// default box
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;
break;
case HollowShape.Triangle:
hollowVolume *= (0.5f * .5f);
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
//a tube
volume *= 0.78539816339e-2f * (float)(200 - _pbs.PathScaleX);
tmp= 1.0f -2.0e-2f * (float)(200 - _pbs.PathScaleY);
volume -= volume*tmp*tmp;
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Square:
case HollowShape.Same:
break;
case HollowShape.Circle:
hollowVolume *= 0.78539816339f;;
break;
case HollowShape.Triangle:
hollowVolume *= 0.5f * 0.5f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.Circle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.78539816339f; // elipse base
if (hollowAmount > 0.0)
{
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Circle:
break;
case HollowShape.Square:
hollowVolume *= 0.5f * 2.5984480504799f;
break;
case HollowShape.Triangle:
hollowVolume *= .5f * 1.27323954473516f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
case ProfileShape.HalfCircle:
if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.52359877559829887307710723054658f;
}
break;
case ProfileShape.EquilateralTriangle:
if (_pbs.PathCurve == (byte)Extrusion.Straight)
{
volume *= 0.32475953f;
if (hollowAmount > 0.0)
{
// calculate the hollow volume by it's shape compared to the prim shape
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
// Hollow shape is a perfect cyllinder in respect to the cube's scale
// Cyllinder hollow volume calculation
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
else if (_pbs.PathCurve == (byte)Extrusion.Curve1)
{
volume *= 0.32475953f;
volume *= 0.01f * (float)(200 - _pbs.PathScaleX);
tmp = 1.0f - .02f * (float)(200 - _pbs.PathScaleY);
volume *= (1.0f - tmp * tmp);
if (hollowAmount > 0.0)
{
hollowVolume *= hollowAmount;
switch (_pbs.HollowShape)
{
case HollowShape.Same:
case HollowShape.Triangle:
hollowVolume *= .25f;
break;
case HollowShape.Square:
hollowVolume *= 0.499849f * 3.07920140172638f;
break;
case HollowShape.Circle:
hollowVolume *= 0.1963495f * 3.07920140172638f;
break;
default:
hollowVolume = 0;
break;
}
volume *= (1.0f - hollowVolume);
}
}
break;
default:
break;
}
float taperX1;
float taperY1;
float taperX;
float taperY;
float pathBegin;
float pathEnd;
float profileBegin;
float profileEnd;
if (_pbs.PathCurve == (byte)Extrusion.Straight || _pbs.PathCurve == (byte)Extrusion.Flexible)
{
taperX1 = _pbs.PathScaleX * 0.01f;
if (taperX1 > 1.0f)
taperX1 = 2.0f - taperX1;
taperX = 1.0f - taperX1;
taperY1 = _pbs.PathScaleY * 0.01f;
if (taperY1 > 1.0f)
taperY1 = 2.0f - taperY1;
taperY = 1.0f - taperY1;
}
else
{
taperX = _pbs.PathTaperX * 0.01f;
if (taperX < 0.0f)
taperX = -taperX;
taperX1 = 1.0f - taperX;
taperY = _pbs.PathTaperY * 0.01f;
if (taperY < 0.0f)
taperY = -taperY;
taperY1 = 1.0f - taperY;
}
volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY);
pathBegin = (float)_pbs.PathBegin * 2.0e-5f;
pathEnd = 1.0f - (float)_pbs.PathEnd * 2.0e-5f;
volume *= (pathEnd - pathBegin);
// this is crude aproximation
profileBegin = (float)_pbs.ProfileBegin * 2.0e-5f;
profileEnd = 1.0f - (float)_pbs.ProfileEnd * 2.0e-5f;
volume *= (profileEnd - profileBegin);
returnMass = _density * volume;
if (IsRootOfLinkset)
{
foreach (BSPrim prim in _childrenPrims)
{
returnMass += prim.CalculateMass();
}
}
if (returnMass <= 0)
returnMass = 0.0001f;
if (returnMass > _scene.MaximumObjectMass)
returnMass = _scene.MaximumObjectMass;
return returnMass;
}// end CalculateMass
#endregion Mass Calculation
// Create the geometry information in Bullet for later use
// The objects needs a hull if it's physical otherwise a mesh is enough
// No locking here because this is done when we know physics is not simulating
// if 'forceRebuild' is true, the geometry is rebuilt. Otherwise a previously built version is used
private void CreateGeom(bool forceRebuild)
{
// the mesher thought this was too simple to mesh. Use a native Bullet collision shape.
if (!_scene.NeedsMeshing(_pbs))
{
if (_pbs.ProfileShape == ProfileShape.HalfCircle && _pbs.PathCurve == (byte)Extrusion.Curve1)
{
if (_size.X == _size.Y && _size.Y == _size.Z && _size.X == _size.Z)
{
// m_log.DebugFormat("{0}: CreateGeom: Defaulting to sphere of size {1}", LogHeader, _size);
_shapeType = ShapeData.PhysicsShapeType.SHAPE_SPHERE;
DetailLog("{0},CreateGeom,sphere", LocalID);
// Bullet native objects are scaled by the Bullet engine so pass the size in
_scale = _size;
}
}
else
{
// m_log.DebugFormat("{0}: CreateGeom: Defaulting to box. lid={1}, size={2}", LogHeader, LocalID, _size);
DetailLog("{0},CreateGeom,box", LocalID);
_shapeType = ShapeData.PhysicsShapeType.SHAPE_BOX;
_scale = _size;
}
}
else
{
if (IsPhysical)
{
if (forceRebuild || _hullKey == 0)
{
// physical objects require a hull for interaction.
// This will create the mesh if it doesn't already exist
CreateGeomHull();
}
}
else
{
if (forceRebuild || _meshKey == 0)
{
// Static (non-physical) objects only need a mesh for bumping into
CreateGeomMesh();
}
}
}
}
// No locking here because this is done when we know physics is not simulating
private void CreateGeomMesh()
{
float lod = _pbs.SculptEntry ? _scene.SculptLOD : _scene.MeshLOD;
ulong newMeshKey = (ulong)_pbs.GetMeshKey(_size, lod);
// m_log.DebugFormat("{0}: CreateGeomMesh: lID={1}, oldKey={2}, newKey={3}", LogHeader, _localID, _meshKey, newMeshKey);
// if this new shape is the same as last time, don't recreate the mesh
if (_meshKey == newMeshKey) return;
DetailLog("{0},CreateGeomMesh,create,key={1}", LocalID, _meshKey);
// Since we're recreating new, get rid of any previously generated shape
if (_meshKey != 0)
{
// m_log.DebugFormat("{0}: CreateGeom: deleting old mesh. lID={1}, Key={2}", LogHeader, _localID, _meshKey);
DetailLog("{0},CreateGeomMesh,deleteOld,key={1}", LocalID, _meshKey);
BulletSimAPI.DestroyMesh(_scene.WorldID, _meshKey);
_mesh = null;
_meshKey = 0;
}
_meshKey = newMeshKey;
// always pass false for physicalness as this creates some sort of bounding box which we don't need
_mesh = _scene.mesher.CreateMesh(_avName, _pbs, _size, lod, false);
int[] indices = _mesh.getIndexListAsInt();
List<OMV.Vector3> vertices = _mesh.getVertexList();
float[] verticesAsFloats = new float[vertices.Count * 3];
int vi = 0;
foreach (OMV.Vector3 vv in vertices)
{
verticesAsFloats[vi++] = vv.X;
verticesAsFloats[vi++] = vv.Y;
verticesAsFloats[vi++] = vv.Z;
}
// m_log.DebugFormat("{0}: CreateGeomMesh: calling CreateMesh. lid={1}, key={2}, indices={3}, vertices={4}",
// LogHeader, _localID, _meshKey, indices.Length, vertices.Count);
BulletSimAPI.CreateMesh(_scene.WorldID, _meshKey, indices.GetLength(0), indices,
vertices.Count, verticesAsFloats);
_shapeType = ShapeData.PhysicsShapeType.SHAPE_MESH;
// meshes are already scaled by the meshmerizer
_scale = new OMV.Vector3(1f, 1f, 1f);
DetailLog("{0},CreateGeomMesh,done", LocalID);
return;
}
// No locking here because this is done when we know physics is not simulating
private void CreateGeomHull()
{
float lod = _pbs.SculptEntry ? _scene.SculptLOD : _scene.MeshLOD;
ulong newHullKey = (ulong)_pbs.GetMeshKey(_size, lod);
// m_log.DebugFormat("{0}: CreateGeomHull: lID={1}, oldKey={2}, newKey={3}", LogHeader, _localID, _hullKey, newHullKey);
// if the hull hasn't changed, don't rebuild it
if (newHullKey == _hullKey) return;
DetailLog("{0},CreateGeomHull,create,key={1}", LocalID, _meshKey);
// Since we're recreating new, get rid of any previously generated shape
if (_hullKey != 0)
{
// m_log.DebugFormat("{0}: CreateGeom: deleting old hull. Key={1}", LogHeader, _hullKey);
DetailLog("{0},CreateGeomHull,deleteOldHull,key={1}", LocalID, _meshKey);
BulletSimAPI.DestroyHull(_scene.WorldID, _hullKey);
_hullKey = 0;
_hulls.Clear();
DetailLog("{0},CreateGeomHull,deleteOldMesh,key={1}", LocalID, _meshKey);
BulletSimAPI.DestroyMesh(_scene.WorldID, _meshKey);
_mesh = null; // the mesh cannot match either
_meshKey = 0;
}
_hullKey = newHullKey;
if (_meshKey != _hullKey)
{
// if the underlying mesh has changed, rebuild it
CreateGeomMesh();
}
int[] indices = _mesh.getIndexListAsInt();
List<OMV.Vector3> vertices = _mesh.getVertexList();
//format conversion from IMesh format to DecompDesc format
List<int> convIndices = new List<int>();
List<float3> convVertices = new List<float3>();
for (int ii = 0; ii < indices.GetLength(0); ii++)
{
convIndices.Add(indices[ii]);
}
foreach (OMV.Vector3 vv in vertices)
{
convVertices.Add(new float3(vv.X, vv.Y, vv.Z));
}
// setup and do convex hull conversion
_hulls = new List<ConvexResult>();
DecompDesc dcomp = new DecompDesc();
dcomp.mIndices = convIndices;
dcomp.mVertices = convVertices;
ConvexBuilder convexBuilder = new ConvexBuilder(HullReturn);
// create the hull into the _hulls variable
convexBuilder.process(dcomp);
// Convert the vertices and indices for passing to unmanaged
// The hull information is passed as a large floating point array.
// The format is:
// convHulls[0] = number of hulls
// convHulls[1] = number of vertices in first hull
// convHulls[2] = hull centroid X coordinate
// convHulls[3] = hull centroid Y coordinate
// convHulls[4] = hull centroid Z coordinate
// convHulls[5] = first hull vertex X
// convHulls[6] = first hull vertex Y
// convHulls[7] = first hull vertex Z
// convHulls[8] = second hull vertex X
// ...
// convHulls[n] = number of vertices in second hull
// convHulls[n+1] = second hull centroid X coordinate
// ...
//
// TODO: is is very inefficient. Someday change the convex hull generator to return
// data structures that do not need to be converted in order to pass to Bullet.
// And maybe put the values directly into pinned memory rather than marshaling.
int hullCount = _hulls.Count;
int totalVertices = 1; // include one for the count of the hulls
foreach (ConvexResult cr in _hulls)
{
totalVertices += 4; // add four for the vertex count and centroid
totalVertices += cr.HullIndices.Count * 3; // we pass just triangles
}
float[] convHulls = new float[totalVertices];
convHulls[0] = (float)hullCount;
int jj = 1;
foreach (ConvexResult cr in _hulls)
{
// copy vertices for index access
float3[] verts = new float3[cr.HullVertices.Count];
int kk = 0;
foreach (float3 ff in cr.HullVertices)
{
verts[kk++] = ff;
}
// add to the array one hull's worth of data
convHulls[jj++] = cr.HullIndices.Count;
convHulls[jj++] = 0f; // centroid x,y,z
convHulls[jj++] = 0f;
convHulls[jj++] = 0f;
foreach (int ind in cr.HullIndices)
{
convHulls[jj++] = verts[ind].x;
convHulls[jj++] = verts[ind].y;
convHulls[jj++] = verts[ind].z;
}
}
// create the hull definition in Bullet
// m_log.DebugFormat("{0}: CreateGeom: calling CreateHull. lid={1}, key={2}, hulls={3}", LogHeader, _localID, _hullKey, hullCount);
BulletSimAPI.CreateHull(_scene.WorldID, _hullKey, hullCount, convHulls);
_shapeType = ShapeData.PhysicsShapeType.SHAPE_HULL;
// meshes are already scaled by the meshmerizer
_scale = new OMV.Vector3(1f, 1f, 1f);
DetailLog("{0},CreateGeomHull,done", LocalID);
return;
}
// Callback from convex hull creater with a newly created hull.
// Just add it to the collection of hulls for this shape.
private void HullReturn(ConvexResult result)
{
_hulls.Add(result);
return;
}
// Create an object in Bullet if it has not already been created
// No locking here because this is done when the physics engine is not simulating
private void CreateObject()
{
if (IsRootOfLinkset)
{
// Create a linkset around this object
CreateLinkset();
}
else
{
// simple object
// the mesh or hull must have already been created in Bullet
ShapeData shape;
FillShapeInfo(out shape);
// m_log.DebugFormat("{0}: CreateObject: lID={1}, shape={2}", LogHeader, _localID, shape.Type);
BulletSimAPI.CreateObject(_scene.WorldID, shape);
}
}
// Copy prim's info into the BulletSim shape description structure
public void FillShapeInfo(out ShapeData shape)
{
shape.ID = _localID;
shape.Type = _shapeType;
shape.Position = _position;
shape.Rotation = _orientation;
shape.Velocity = _velocity;
shape.Scale = _scale;
shape.Mass = Mass;
shape.Buoyancy = _buoyancy;
shape.HullKey = _hullKey;
shape.MeshKey = _meshKey;
shape.Friction = _friction;
shape.Restitution = _restitution;
shape.Collidable = (!IsPhantom) ? ShapeData.numericTrue : ShapeData.numericFalse;
shape.Static = _isPhysical ? ShapeData.numericFalse : ShapeData.numericTrue;
}
#region Linkset creation and destruction
// Create the linkset by putting constraints between the objects of the set so they cannot move
// relative to each other.
void CreateLinkset()
{
DebugLog("{0}: CreateLinkset. Root prim={1}, prims={2}", LogHeader, LocalID, _childrenPrims.Count+1);
// remove any constraints that might be in place
DebugLog("{0}: CreateLinkset: RemoveConstraints between me and any children", LogHeader, LocalID);
BulletSimAPI.RemoveConstraintByID(_scene.WorldID, LocalID);
// create constraints between the root prim and each of the children
foreach (BSPrim prim in _childrenPrims)
{
LinkAChildToMe(prim);
}
}
// Create a constraint between me (root of linkset) and the passed prim (the child).
// Called at taint time!
private void LinkAChildToMe(BSPrim childPrim)
{
// Zero motion for children so they don't interpolate
childPrim.ZeroMotion();
// relative position normalized to the root prim
OMV.Quaternion invThisOrientation = OMV.Quaternion.Inverse(this._orientation);
OMV.Vector3 childRelativePosition = (childPrim._position - this._position) * invThisOrientation;
// relative rotation of the child to the parent
OMV.Quaternion childRelativeRotation = invThisOrientation * childPrim._orientation;
// create a constraint that allows no freedom of movement between the two objects
// http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=4818
DebugLog("{0}: CreateLinkset: Adding a constraint between root prim {1} and child prim {2}", LogHeader, LocalID, childPrim.LocalID);
DetailLog("{0},LinkAChildToMe,taint,root={1},child={2}", LocalID, LocalID, childPrim.LocalID);
BulletSimAPI.AddConstraint(_scene.WorldID, LocalID, childPrim.LocalID,
childRelativePosition,
childRelativeRotation,
OMV.Vector3.Zero,
OMV.Quaternion.Identity,
OMV.Vector3.Zero, OMV.Vector3.Zero,
OMV.Vector3.Zero, OMV.Vector3.Zero);
}
// Remove linkage between myself and a particular child
// Called at taint time!
private void UnlinkAChildFromMe(BSPrim childPrim)
{
DebugLog("{0}: UnlinkAChildFromMe: RemoveConstraint between root prim {1} and child prim {2}",
LogHeader, LocalID, childPrim.LocalID);
DetailLog("{0},UnlinkAChildFromMe,taint,root={1},child={2}", LocalID, LocalID, childPrim.LocalID);
BulletSimAPI.RemoveConstraint(_scene.WorldID, LocalID, childPrim.LocalID);
}
// Remove linkage between myself and any possible children I might have
// Called at taint time!
private void UnlinkAllChildren()
{
DebugLog("{0}: UnlinkAllChildren:", LogHeader);
DetailLog("{0},UnlinkAllChildren,taint", LocalID);
BulletSimAPI.RemoveConstraintByID(_scene.WorldID, LocalID);
}
#endregion // Linkset creation and destruction
// Rebuild the geometry and object.
// This is called when the shape changes so we need to recreate the mesh/hull.
// No locking here because this is done when the physics engine is not simulating
private void RecreateGeomAndObject()
{
// m_log.DebugFormat("{0}: RecreateGeomAndObject. lID={1}", LogHeader, _localID);
CreateGeom(true);
CreateObject();
return;
}
// The physics engine says that properties have updated. Update same and inform
// the world that things have changed.
// TODO: do we really need to check for changed? Maybe just copy values and call RequestPhysicsterseUpdate()
enum UpdatedProperties {
Position = 1 << 0,
Rotation = 1 << 1,
Velocity = 1 << 2,
Acceleration = 1 << 3,
RotationalVel = 1 << 4
}
const float ROTATION_TOLERANCE = 0.01f;
const float VELOCITY_TOLERANCE = 0.001f;
const float POSITION_TOLERANCE = 0.05f;
const float ACCELERATION_TOLERANCE = 0.01f;
const float ROTATIONAL_VELOCITY_TOLERANCE = 0.01f;
public void UpdateProperties(EntityProperties entprop)
{
/*
UpdatedProperties changed = 0;
// assign to the local variables so the normal set action does not happen
// if (_position != entprop.Position)
if (!_position.ApproxEquals(entprop.Position, POSITION_TOLERANCE))
{
_position = entprop.Position;
changed |= UpdatedProperties.Position;
}
// if (_orientation != entprop.Rotation)
if (!_orientation.ApproxEquals(entprop.Rotation, ROTATION_TOLERANCE))
{
_orientation = entprop.Rotation;
changed |= UpdatedProperties.Rotation;
}
// if (_velocity != entprop.Velocity)
if (!_velocity.ApproxEquals(entprop.Velocity, VELOCITY_TOLERANCE))
{
_velocity = entprop.Velocity;
changed |= UpdatedProperties.Velocity;
}
// if (_acceleration != entprop.Acceleration)
if (!_acceleration.ApproxEquals(entprop.Acceleration, ACCELERATION_TOLERANCE))
{
_acceleration = entprop.Acceleration;
changed |= UpdatedProperties.Acceleration;
}
// if (_rotationalVelocity != entprop.RotationalVelocity)
if (!_rotationalVelocity.ApproxEquals(entprop.RotationalVelocity, ROTATIONAL_VELOCITY_TOLERANCE))
{
_rotationalVelocity = entprop.RotationalVelocity;
changed |= UpdatedProperties.RotationalVel;
}
if (changed != 0)
{
// Only update the position of single objects and linkset roots
if (this._parentPrim == null)
{
base.RequestPhysicsterseUpdate();
}
}
*/
// Don't check for damping here -- it's done in BulletSim and SceneObjectPart.
// Updates only for individual prims and for the root object of a linkset.
if (_parentPrim == null)
{
// Assign to the local variables so the normal set action does not happen
_position = entprop.Position;
_orientation = entprop.Rotation;
_velocity = entprop.Velocity;
_acceleration = entprop.Acceleration;
_rotationalVelocity = entprop.RotationalVelocity;
// m_log.DebugFormat("{0}: RequestTerseUpdate. id={1}, ch={2}, pos={3}, rot={4}, vel={5}, acc={6}, rvel={7}",
// LogHeader, LocalID, changed, _position, _orientation, _velocity, _acceleration, _rotationalVelocity);
DetailLog("{0},UpdateProperties,call,pos={1},orient={2},vel={3},accel={4},rotVel={5}",
LocalID, _position, _orientation, _velocity, _acceleration, _rotationalVelocity);
base.RequestPhysicsterseUpdate();
}
}
// I've collided with something
CollisionEventUpdate collisionCollection = null;
public void Collide(uint collidingWith, ActorTypes type, OMV.Vector3 contactPoint, OMV.Vector3 contactNormal, float pentrationDepth)
{
// m_log.DebugFormat("{0}: Collide: ms={1}, id={2}, with={3}", LogHeader, _subscribedEventsMs, LocalID, collidingWith);
// The following lines make IsColliding() and IsCollidingGround() work
_collidingStep = _scene.SimulationStep;
if (collidingWith == BSScene.TERRAIN_ID || collidingWith == BSScene.GROUNDPLANE_ID)
{
_collidingGroundStep = _scene.SimulationStep;
}
// if someone is subscribed to collision events....
if (_subscribedEventsMs != 0) {
// throttle the collisions to the number of milliseconds specified in the subscription
int nowTime = _scene.SimulationNowTime;
if (nowTime >= _nextCollisionOkTime) {
_nextCollisionOkTime = nowTime + _subscribedEventsMs;
if (collisionCollection == null)
collisionCollection = new CollisionEventUpdate();
collisionCollection.AddCollider(collidingWith, new ContactPoint(contactPoint, contactNormal, pentrationDepth));
}
}
}
// The scene is telling us it's time to pass our collected collisions into the simulator
public void SendCollisions()
{
if (collisionCollection != null && collisionCollection.Count > 0)
{
base.SendCollisionUpdate(collisionCollection);
collisionCollection.Clear();
}
}
// Invoke the detailed logger and output something if it's enabled.
private void DetailLog(string msg, params Object[] args)
{
Scene.PhysicsLogging.Write(msg, args);
}
}
}