OpenSimMirror/OpenSim/Region/PhysicsModules/BulletS/BSActorAvatarMove.cs

460 lines
22 KiB
C#
Executable File

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyrightD
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using OpenSim.Framework;
using OpenSim.Region.PhysicsModules.SharedBase;
using OMV = OpenMetaverse;
namespace OpenSim.Region.PhysicsModule.BulletS
{
public class BSActorAvatarMove : BSActor
{
BSVMotor m_velocityMotor;
// Set to true if we think we're going up stairs.
// This state is remembered because collisions will turn on and off as we go up stairs.
int m_walkingUpStairs;
// The amount the step up is applying. Used to smooth stair walking.
float m_lastStepUp;
// There are times the velocity or force is set but we don't want to inforce
// stationary until some tick in the future and the real velocity drops.
int m_waitingForLowVelocityForStationary = 0;
public BSActorAvatarMove(BSScene physicsScene, BSPhysObject pObj, string actorName)
: base(physicsScene, pObj, actorName)
{
m_velocityMotor = null;
m_walkingUpStairs = 0;
m_physicsScene.DetailLog("{0},BSActorAvatarMove,constructor", m_controllingPrim.LocalID);
}
// BSActor.isActive
public override bool isActive
{
get { return Enabled && m_controllingPrim.IsPhysicallyActive; }
}
// Release any connections and resources used by the actor.
// BSActor.Dispose()
public override void Dispose()
{
base.SetEnabled(false);
DeactivateAvatarMove();
}
// Called when physical parameters (properties set in Bullet) need to be re-applied.
// Called at taint-time.
// BSActor.Refresh()
public override void Refresh()
{
m_physicsScene.DetailLog("{0},BSActorAvatarMove,refresh", m_controllingPrim.LocalID);
// If the object is physically active, add the hoverer prestep action
if (isActive)
{
ActivateAvatarMove();
}
else
{
DeactivateAvatarMove();
}
}
// The object's physical representation is being rebuilt so pick up any physical dependencies (constraints, ...).
// Register a prestep action to restore physical requirements before the next simulation step.
// Called at taint-time.
// BSActor.RemoveDependencies()
public override void RemoveDependencies()
{
// Nothing to do for the hoverer since it is all software at pre-step action time.
}
// Usually called when target velocity changes to set the current velocity and the target
// into the movement motor.
public void SetVelocityAndTarget(OMV.Vector3 vel, OMV.Vector3 targ, bool inTaintTime)
{
m_physicsScene.TaintedObject(inTaintTime, m_controllingPrim.LocalID, "BSActorAvatarMove.setVelocityAndTarget", delegate()
{
if (m_velocityMotor != null)
{
m_velocityMotor.Reset();
m_velocityMotor.SetTarget(targ);
m_velocityMotor.SetCurrent(vel);
m_velocityMotor.Enabled = true;
m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,SetVelocityAndTarget,vel={1}, targ={2}",
m_controllingPrim.LocalID, vel, targ);
m_waitingForLowVelocityForStationary = 0;
}
});
}
public void SuppressStationayCheckUntilLowVelocity()
{
m_waitingForLowVelocityForStationary = 1;
}
public void SuppressStationayCheckUntilLowVelocity(int waitTicks)
{
m_waitingForLowVelocityForStationary = waitTicks;
}
// If a movement motor has not been created, create one and start the movement
private void ActivateAvatarMove()
{
if (m_velocityMotor == null)
{
// Infinite decay and timescale values so motor only changes current to target values.
m_velocityMotor = new BSVMotor("BSCharacter.Velocity",
0.2f, // time scale
BSMotor.Infinite, // decay time scale
1f // efficiency
);
m_velocityMotor.ErrorZeroThreshold = BSParam.AvatarStopZeroThreshold;
// m_velocityMotor.PhysicsScene = m_controllingPrim.PhysScene; // DEBUG DEBUG so motor will output detail log messages.
SetVelocityAndTarget(m_controllingPrim.RawVelocity, m_controllingPrim.TargetVelocity, true /* inTaintTime */);
m_physicsScene.BeforeStep += Mover;
m_controllingPrim.OnPreUpdateProperty += Process_OnPreUpdateProperty;
m_walkingUpStairs = 0;
m_waitingForLowVelocityForStationary = 0;
}
}
private void DeactivateAvatarMove()
{
if (m_velocityMotor != null)
{
m_controllingPrim.OnPreUpdateProperty -= Process_OnPreUpdateProperty;
m_physicsScene.BeforeStep -= Mover;
m_velocityMotor = null;
}
}
// Called just before the simulation step.
private void Mover(float timeStep)
{
// Don't do movement while the object is selected.
if (!isActive)
return;
// TODO: Decide if the step parameters should be changed depending on the avatar's
// state (flying, colliding, ...). There is code in ODE to do this.
// COMMENTARY: when the user is making the avatar walk, except for falling, the velocity
// specified for the avatar is the one that should be used. For falling, if the avatar
// is not flying and is not colliding then it is presumed to be falling and the Z
// component is not fooled with (thus allowing gravity to do its thing).
// When the avatar is standing, though, the user has specified a velocity of zero and
// the avatar should be standing. But if the avatar is pushed by something in the world
// (raising elevator platform, moving vehicle, ...) the avatar should be allowed to
// move. Thus, the velocity cannot be forced to zero. The problem is that small velocity
// errors can creap in and the avatar will slowly float off in some direction.
// So, the problem is that, when an avatar is standing, we cannot tell creaping error
// from real pushing.
// The code below uses whether the collider is static or moving to decide whether to zero motion.
m_velocityMotor.Step(timeStep);
m_controllingPrim.IsStationary = false;
// If we're not supposed to be moving, make sure things are zero.
if (m_velocityMotor.ErrorIsZero() && m_velocityMotor.TargetValue == OMV.Vector3.Zero)
{
// The avatar shouldn't be moving
m_velocityMotor.Zero();
if (m_controllingPrim.IsColliding)
{
// if colliding with something stationary and we're not doing volume detect .
if (!m_controllingPrim.ColliderIsMoving && !m_controllingPrim.ColliderIsVolumeDetect)
{
if (m_waitingForLowVelocityForStationary-- <= 0)
{
// if waiting for velocity to drop and it has finally dropped, we can be stationary
// m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,waitingForLowVelocity {1}",
// m_controllingPrim.LocalID, m_waitingForLowVelocityForStationary);
if (m_controllingPrim.RawVelocity.LengthSquared() < BSParam.AvatarStopZeroThresholdSquared)
{
m_waitingForLowVelocityForStationary = 0;
}
}
if (m_waitingForLowVelocityForStationary <= 0)
{
m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,collidingWithStationary,zeroingMotion", m_controllingPrim.LocalID);
m_controllingPrim.IsStationary = true;
m_controllingPrim.ZeroMotion(true /* inTaintTime */);
}
else
{
m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,waitingForLowVel,rawvel={1}",
m_controllingPrim.LocalID, m_controllingPrim.RawVelocity.Length());
}
}
// Standing has more friction on the ground
if (m_controllingPrim.Friction != BSParam.AvatarStandingFriction)
{
m_controllingPrim.Friction = BSParam.AvatarStandingFriction;
m_physicsScene.PE.SetFriction(m_controllingPrim.PhysBody, m_controllingPrim.Friction);
}
}
else
{
if (m_controllingPrim.Flying)
{
// Flying and not colliding and velocity nearly zero.
m_controllingPrim.ZeroMotion(true /* inTaintTime */);
}
else
{
//We are falling but are not touching any keys make sure not falling too fast
if (m_controllingPrim.RawVelocity.Z < BSParam.AvatarTerminalVelocity)
{
OMV.Vector3 slowingForce = new OMV.Vector3(0f, 0f, BSParam.AvatarTerminalVelocity - m_controllingPrim.RawVelocity.Z) * m_controllingPrim.Mass;
m_physicsScene.PE.ApplyCentralImpulse(m_controllingPrim.PhysBody, slowingForce);
}
}
}
m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,taint,stopping,target={1},colliding={2},isStationary={3}",
m_controllingPrim.LocalID, m_velocityMotor.TargetValue, m_controllingPrim.IsColliding,m_controllingPrim.IsStationary);
}
else
{
// Supposed to be moving.
OMV.Vector3 stepVelocity = m_velocityMotor.CurrentValue;
if (m_controllingPrim.Friction != BSParam.AvatarFriction)
{
// Probably starting to walk. Set friction to moving friction.
m_controllingPrim.Friction = BSParam.AvatarFriction;
m_physicsScene.PE.SetFriction(m_controllingPrim.PhysBody, m_controllingPrim.Friction);
}
// 'm_velocityMotor is used for walking, flying, and jumping and will thus have the correct values
// for Z. But in come cases it must be over-ridden. Like when falling or jumping.
float realVelocityZ = m_controllingPrim.RawVelocity.Z;
// If not flying and falling, we over-ride the stepping motor so we can fall to the ground
if (!m_controllingPrim.Flying && realVelocityZ < 0)
{
// Can't fall faster than this
if (realVelocityZ < BSParam.AvatarTerminalVelocity)
{
realVelocityZ = BSParam.AvatarTerminalVelocity;
}
stepVelocity.Z = realVelocityZ;
}
// m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,DEBUG,motorCurrent={1},realZ={2},flying={3},collid={4},jFrames={5}",
// m_controllingPrim.LocalID, m_velocityMotor.CurrentValue, realVelocityZ, m_controllingPrim.Flying, m_controllingPrim.IsColliding, m_jumpFrames);
//Alicia: Maintain minimum height when flying.
// SL has a flying effect that keeps the avatar flying above the ground by some margin
if (m_controllingPrim.Flying)
{
float hover_height = m_physicsScene.TerrainManager.GetTerrainHeightAtXYZ(m_controllingPrim.RawPosition)
+ BSParam.AvatarFlyingGroundMargin;
if( m_controllingPrim.Position.Z < hover_height)
{
m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,addingUpforceForGroundMargin,height={1},hoverHeight={2}",
m_controllingPrim.LocalID, m_controllingPrim.Position.Z, hover_height);
stepVelocity.Z += BSParam.AvatarFlyingGroundUpForce;
}
}
// 'stepVelocity' is now the speed we'd like the avatar to move in. Turn that into an instantanous force.
OMV.Vector3 moveForce = (stepVelocity - m_controllingPrim.RawVelocity) * m_controllingPrim.Mass;
// Add special movement force to allow avatars to walk up stepped surfaces.
moveForce += WalkUpStairs();
m_physicsScene.DetailLog("{0},BSCharacter.MoveMotor,move,stepVel={1},vel={2},mass={3},moveForce={4}",
m_controllingPrim.LocalID, stepVelocity, m_controllingPrim.RawVelocity, m_controllingPrim.Mass, moveForce);
m_physicsScene.PE.ApplyCentralImpulse(m_controllingPrim.PhysBody, moveForce);
}
}
// Called just as the property update is received from the physics engine.
// Do any mode necessary for avatar movement.
private void Process_OnPreUpdateProperty(ref EntityProperties entprop)
{
// Don't change position if standing on a stationary object.
if (m_controllingPrim.IsStationary)
{
entprop.Position = m_controllingPrim.RawPosition;
entprop.Velocity = OMV.Vector3.Zero;
m_physicsScene.PE.SetTranslation(m_controllingPrim.PhysBody, entprop.Position, entprop.Rotation);
}
}
// Decide if the character is colliding with a low object and compute a force to pop the
// avatar up so it can walk up and over the low objects.
private OMV.Vector3 WalkUpStairs()
{
OMV.Vector3 ret = OMV.Vector3.Zero;
m_physicsScene.DetailLog("{0},BSCharacter.WalkUpStairs,IsColliding={1},flying={2},targSpeed={3},collisions={4},avHeight={5}",
m_controllingPrim.LocalID, m_controllingPrim.IsColliding, m_controllingPrim.Flying,
m_controllingPrim.TargetVelocitySpeed, m_controllingPrim.CollisionsLastTick.Count, m_controllingPrim.Size.Z);
// Check for stairs climbing if colliding, not flying and moving forward
if ( m_controllingPrim.IsColliding
&& !m_controllingPrim.Flying
&& m_controllingPrim.TargetVelocitySpeed > 0.1f )
{
// The range near the character's feet where we will consider stairs
// float nearFeetHeightMin = m_controllingPrim.RawPosition.Z - (m_controllingPrim.Size.Z / 2f) + 0.05f;
// Note: there is a problem with the computation of the capsule height. Thus RawPosition is off
// from the height. Revisit size and this computation when height is scaled properly.
float nearFeetHeightMin = m_controllingPrim.RawPosition.Z - (m_controllingPrim.Size.Z / 2f) - BSParam.AvatarStepGroundFudge;
float nearFeetHeightMax = nearFeetHeightMin + BSParam.AvatarStepHeight;
// Look for a collision point that is near the character's feet and is oriented the same as the charactor is.
// Find the highest 'good' collision.
OMV.Vector3 highestTouchPosition = OMV.Vector3.Zero;
foreach (KeyValuePair<uint, ContactPoint> kvp in m_controllingPrim.CollisionsLastTick.m_objCollisionList)
{
// Don't care about collisions with the terrain
if (kvp.Key > m_physicsScene.TerrainManager.HighestTerrainID)
{
BSPhysObject collisionObject;
if (m_physicsScene.PhysObjects.TryGetValue(kvp.Key, out collisionObject))
{
if (!collisionObject.IsVolumeDetect)
{
OMV.Vector3 touchPosition = kvp.Value.Position;
m_physicsScene.DetailLog("{0},BSCharacter.WalkUpStairs,min={1},max={2},touch={3}",
m_controllingPrim.LocalID, nearFeetHeightMin, nearFeetHeightMax, touchPosition);
if (touchPosition.Z >= nearFeetHeightMin && touchPosition.Z <= nearFeetHeightMax)
{
// This contact is within the 'near the feet' range.
// The step is presumed to be more or less vertical. Thus the Z component should
// be nearly horizontal.
OMV.Vector3 directionFacing = OMV.Vector3.UnitX * m_controllingPrim.RawOrientation;
OMV.Vector3 touchNormal = OMV.Vector3.Normalize(kvp.Value.SurfaceNormal);
const float PIOver2 = 1.571f; // Used to make unit vector axis into approx radian angles
// m_physicsScene.DetailLog("{0},BSCharacter.WalkUpStairs,avNormal={1},colNormal={2},diff={3}",
// m_controllingPrim.LocalID, directionFacing, touchNormal,
// Math.Abs(OMV.Vector3.Distance(directionFacing, touchNormal)) );
if ((Math.Abs(directionFacing.Z) * PIOver2) < BSParam.AvatarStepAngle
&& (Math.Abs(touchNormal.Z) * PIOver2) < BSParam.AvatarStepAngle)
{
// The normal should be our contact point to the object so it is pointing away
// thus the difference between our facing orientation and the normal should be small.
float diff = Math.Abs(OMV.Vector3.Distance(directionFacing, touchNormal));
if (diff < BSParam.AvatarStepApproachFactor)
{
if (highestTouchPosition.Z < touchPosition.Z)
highestTouchPosition = touchPosition;
}
}
}
}
}
}
}
m_walkingUpStairs = 0;
// If there is a good step sensing, move the avatar over the step.
if (highestTouchPosition != OMV.Vector3.Zero)
{
// Remember that we are going up stairs. This is needed because collisions
// will stop when we move up so this smoothes out that effect.
m_walkingUpStairs = BSParam.AvatarStepSmoothingSteps;
m_lastStepUp = highestTouchPosition.Z - nearFeetHeightMin;
ret = ComputeStairCorrection(m_lastStepUp);
m_physicsScene.DetailLog("{0},BSCharacter.WalkUpStairs,touchPos={1},nearFeetMin={2},ret={3}",
m_controllingPrim.LocalID, highestTouchPosition, nearFeetHeightMin, ret);
}
}
else
{
// If we used to be going up stairs but are not now, smooth the case where collision goes away while
// we are bouncing up the stairs.
if (m_walkingUpStairs > 0)
{
m_walkingUpStairs--;
ret = ComputeStairCorrection(m_lastStepUp);
}
}
return ret;
}
private OMV.Vector3 ComputeStairCorrection(float stepUp)
{
OMV.Vector3 ret = OMV.Vector3.Zero;
OMV.Vector3 displacement = OMV.Vector3.Zero;
if (stepUp > 0f)
{
// Found the stairs contact point. Push up a little to raise the character.
if (BSParam.AvatarStepForceFactor > 0f)
{
float upForce = stepUp * m_controllingPrim.Mass * BSParam.AvatarStepForceFactor;
ret = new OMV.Vector3(0f, 0f, upForce);
}
// Also move the avatar up for the new height
if (BSParam.AvatarStepUpCorrectionFactor > 0f)
{
// Move the avatar up related to the height of the collision
displacement = new OMV.Vector3(0f, 0f, stepUp * BSParam.AvatarStepUpCorrectionFactor);
m_controllingPrim.ForcePosition = m_controllingPrim.RawPosition + displacement;
}
else
{
if (BSParam.AvatarStepUpCorrectionFactor < 0f)
{
// Move the avatar up about the specified step height
displacement = new OMV.Vector3(0f, 0f, BSParam.AvatarStepHeight);
m_controllingPrim.ForcePosition = m_controllingPrim.RawPosition + displacement;
}
}
m_physicsScene.DetailLog("{0},BSCharacter.WalkUpStairs.ComputeStairCorrection,stepUp={1},isp={2},force={3}",
m_controllingPrim.LocalID, stepUp, displacement, ret);
}
return ret;
}
}
}