442 lines
20 KiB
C#
Executable File
442 lines
20 KiB
C#
Executable File
/*
|
|
* Copyright (c) Contributors, http://opensimulator.org/
|
|
* See CONTRIBUTORS.TXT for a full list of copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyrightD
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of the OpenSimulator Project nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Text;
|
|
|
|
using OpenSim.Framework;
|
|
using OpenSim.Region.Framework;
|
|
using OpenSim.Region.CoreModules;
|
|
using OpenSim.Region.Physics.Manager;
|
|
|
|
using Nini.Config;
|
|
using log4net;
|
|
|
|
using OpenMetaverse;
|
|
|
|
namespace OpenSim.Region.Physics.BulletSPlugin
|
|
{
|
|
public sealed class BSTerrainMesh : BSTerrainPhys
|
|
{
|
|
static string LogHeader = "[BULLETSIM TERRAIN MESH]";
|
|
|
|
private float[] m_savedHeightMap;
|
|
int m_sizeX;
|
|
int m_sizeY;
|
|
|
|
BulletShape m_terrainShape;
|
|
BulletBody m_terrainBody;
|
|
|
|
public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, Vector3 regionSize)
|
|
: base(physicsScene, regionBase, id)
|
|
{
|
|
}
|
|
|
|
public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id /* parameters for making mesh */)
|
|
: base(physicsScene, regionBase, id)
|
|
{
|
|
}
|
|
|
|
// Create terrain mesh from a heightmap.
|
|
public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, float[] initialMap,
|
|
Vector3 minCoords, Vector3 maxCoords)
|
|
: base(physicsScene, regionBase, id)
|
|
{
|
|
int indicesCount;
|
|
int[] indices;
|
|
int verticesCount;
|
|
float[] vertices;
|
|
|
|
m_savedHeightMap = initialMap;
|
|
|
|
m_sizeX = (int)(maxCoords.X - minCoords.X);
|
|
m_sizeY = (int)(maxCoords.Y - minCoords.Y);
|
|
|
|
bool meshCreationSuccess = false;
|
|
if (BSParam.TerrainMeshMagnification == 1)
|
|
{
|
|
// If a magnification of one, use the old routine that is tried and true.
|
|
meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh(PhysicsScene,
|
|
initialMap, m_sizeX, m_sizeY, // input size
|
|
Vector3.Zero, // base for mesh
|
|
out indicesCount, out indices, out verticesCount, out vertices);
|
|
}
|
|
else
|
|
{
|
|
// Other magnifications use the newer routine
|
|
meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh2(PhysicsScene,
|
|
initialMap, m_sizeX, m_sizeY, // input size
|
|
BSParam.TerrainMeshMagnification,
|
|
physicsScene.TerrainManager.DefaultRegionSize,
|
|
Vector3.Zero, // base for mesh
|
|
out indicesCount, out indices, out verticesCount, out vertices);
|
|
}
|
|
if (!meshCreationSuccess)
|
|
{
|
|
// DISASTER!!
|
|
PhysicsScene.DetailLog("{0},BSTerrainMesh.create,failedConversionOfHeightmap,id={1}", BSScene.DetailLogZero, ID);
|
|
PhysicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh! base={1}", LogHeader, TerrainBase);
|
|
// Something is very messed up and a crash is in our future.
|
|
return;
|
|
}
|
|
|
|
PhysicsScene.DetailLog("{0},BSTerrainMesh.create,meshed,id={1},indices={2},indSz={3},vertices={4},vertSz={5}",
|
|
BSScene.DetailLogZero, ID, indicesCount, indices.Length, verticesCount, vertices.Length);
|
|
|
|
m_terrainShape = PhysicsScene.PE.CreateMeshShape(PhysicsScene.World, indicesCount, indices, verticesCount, vertices);
|
|
if (!m_terrainShape.HasPhysicalShape)
|
|
{
|
|
// DISASTER!!
|
|
PhysicsScene.DetailLog("{0},BSTerrainMesh.create,failedCreationOfShape,id={1}", BSScene.DetailLogZero, ID);
|
|
PhysicsScene.Logger.ErrorFormat("{0} Failed creation of terrain mesh! base={1}", LogHeader, TerrainBase);
|
|
// Something is very messed up and a crash is in our future.
|
|
return;
|
|
}
|
|
|
|
Vector3 pos = regionBase;
|
|
Quaternion rot = Quaternion.Identity;
|
|
|
|
m_terrainBody = PhysicsScene.PE.CreateBodyWithDefaultMotionState(m_terrainShape, ID, pos, rot);
|
|
if (!m_terrainBody.HasPhysicalBody)
|
|
{
|
|
// DISASTER!!
|
|
PhysicsScene.Logger.ErrorFormat("{0} Failed creation of terrain body! base={1}", LogHeader, TerrainBase);
|
|
// Something is very messed up and a crash is in our future.
|
|
return;
|
|
}
|
|
physicsScene.PE.SetShapeCollisionMargin(m_terrainShape, BSParam.TerrainCollisionMargin);
|
|
|
|
// Set current terrain attributes
|
|
PhysicsScene.PE.SetFriction(m_terrainBody, BSParam.TerrainFriction);
|
|
PhysicsScene.PE.SetHitFraction(m_terrainBody, BSParam.TerrainHitFraction);
|
|
PhysicsScene.PE.SetRestitution(m_terrainBody, BSParam.TerrainRestitution);
|
|
PhysicsScene.PE.SetContactProcessingThreshold(m_terrainBody, BSParam.TerrainContactProcessingThreshold);
|
|
PhysicsScene.PE.SetCollisionFlags(m_terrainBody, CollisionFlags.CF_STATIC_OBJECT);
|
|
|
|
// Static objects are not very massive.
|
|
PhysicsScene.PE.SetMassProps(m_terrainBody, 0f, Vector3.Zero);
|
|
|
|
// Put the new terrain to the world of physical objects
|
|
PhysicsScene.PE.AddObjectToWorld(PhysicsScene.World, m_terrainBody);
|
|
|
|
// Redo its bounding box now that it is in the world
|
|
PhysicsScene.PE.UpdateSingleAabb(PhysicsScene.World, m_terrainBody);
|
|
|
|
m_terrainBody.collisionType = CollisionType.Terrain;
|
|
m_terrainBody.ApplyCollisionMask(PhysicsScene);
|
|
|
|
if (BSParam.UseSingleSidedMeshes)
|
|
{
|
|
PhysicsScene.DetailLog("{0},BSTerrainMesh.settingCustomMaterial,id={1}", BSScene.DetailLogZero, id);
|
|
PhysicsScene.PE.AddToCollisionFlags(m_terrainBody, CollisionFlags.CF_CUSTOM_MATERIAL_CALLBACK);
|
|
}
|
|
|
|
// Make it so the terrain will not move or be considered for movement.
|
|
PhysicsScene.PE.ForceActivationState(m_terrainBody, ActivationState.DISABLE_SIMULATION);
|
|
}
|
|
|
|
public override void Dispose()
|
|
{
|
|
if (m_terrainBody.HasPhysicalBody)
|
|
{
|
|
PhysicsScene.PE.RemoveObjectFromWorld(PhysicsScene.World, m_terrainBody);
|
|
// Frees both the body and the shape.
|
|
PhysicsScene.PE.DestroyObject(PhysicsScene.World, m_terrainBody);
|
|
m_terrainBody.Clear();
|
|
m_terrainShape.Clear();
|
|
}
|
|
}
|
|
|
|
public override float GetTerrainHeightAtXYZ(Vector3 pos)
|
|
{
|
|
// For the moment use the saved heightmap to get the terrain height.
|
|
// TODO: raycast downward to find the true terrain below the position.
|
|
float ret = BSTerrainManager.HEIGHT_GETHEIGHT_RET;
|
|
|
|
int mapIndex = (int)pos.Y * m_sizeY + (int)pos.X;
|
|
try
|
|
{
|
|
ret = m_savedHeightMap[mapIndex];
|
|
}
|
|
catch
|
|
{
|
|
// Sometimes they give us wonky values of X and Y. Give a warning and return something.
|
|
PhysicsScene.Logger.WarnFormat("{0} Bad request for terrain height. terrainBase={1}, pos={2}",
|
|
LogHeader, TerrainBase, pos);
|
|
ret = BSTerrainManager.HEIGHT_GETHEIGHT_RET;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// The passed position is relative to the base of the region.
|
|
public override float GetWaterLevelAtXYZ(Vector3 pos)
|
|
{
|
|
return PhysicsScene.SimpleWaterLevel;
|
|
}
|
|
|
|
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2().
|
|
// Return 'true' if successfully created.
|
|
public static bool ConvertHeightmapToMesh( BSScene physicsScene,
|
|
float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap
|
|
Vector3 extentBase, // base to be added to all vertices
|
|
out int indicesCountO, out int[] indicesO,
|
|
out int verticesCountO, out float[] verticesO)
|
|
{
|
|
bool ret = false;
|
|
|
|
int indicesCount = 0;
|
|
int verticesCount = 0;
|
|
int[] indices = new int[0];
|
|
float[] vertices = new float[0];
|
|
|
|
// Simple mesh creation which assumes magnification == 1.
|
|
// TODO: do a more general solution that scales, adds new vertices and smoothes the result.
|
|
|
|
// Create an array of vertices that is sizeX+1 by sizeY+1 (note the loop
|
|
// from zero to <= sizeX). The triangle indices are then generated as two triangles
|
|
// per heightmap point. There are sizeX by sizeY of these squares. The extra row and
|
|
// column of vertices are used to complete the triangles of the last row and column
|
|
// of the heightmap.
|
|
try
|
|
{
|
|
// One vertice per heightmap value plus the vertices off the side and bottom edge.
|
|
int totalVertices = (sizeX + 1) * (sizeY + 1);
|
|
vertices = new float[totalVertices * 3];
|
|
int totalIndices = sizeX * sizeY * 6;
|
|
indices = new int[totalIndices];
|
|
|
|
if (physicsScene != null)
|
|
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh,totVert={1},totInd={2},extentBase={3}",
|
|
BSScene.DetailLogZero, totalVertices, totalIndices, extentBase);
|
|
float minHeight = float.MaxValue;
|
|
// Note that sizeX+1 vertices are created since there is land between this and the next region.
|
|
for (int yy = 0; yy <= sizeY; yy++)
|
|
{
|
|
for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we go around sizeX + 1 times
|
|
{
|
|
int offset = yy * sizeX + xx;
|
|
// Extend the height with the height from the last row or column
|
|
if (yy == sizeY) offset -= sizeX;
|
|
if (xx == sizeX) offset -= 1;
|
|
float height = heightMap[offset];
|
|
minHeight = Math.Min(minHeight, height);
|
|
vertices[verticesCount + 0] = (float)xx + extentBase.X;
|
|
vertices[verticesCount + 1] = (float)yy + extentBase.Y;
|
|
vertices[verticesCount + 2] = height + extentBase.Z;
|
|
verticesCount += 3;
|
|
}
|
|
}
|
|
verticesCount = verticesCount / 3;
|
|
|
|
for (int yy = 0; yy < sizeY; yy++)
|
|
{
|
|
for (int xx = 0; xx < sizeX; xx++)
|
|
{
|
|
int offset = yy * (sizeX + 1) + xx;
|
|
// Each vertices is presumed to be the upper left corner of a box of two triangles
|
|
indices[indicesCount + 0] = offset;
|
|
indices[indicesCount + 1] = offset + 1;
|
|
indices[indicesCount + 2] = offset + sizeX + 1; // accounting for the extra column
|
|
indices[indicesCount + 3] = offset + 1;
|
|
indices[indicesCount + 4] = offset + sizeX + 2;
|
|
indices[indicesCount + 5] = offset + sizeX + 1;
|
|
indicesCount += 6;
|
|
}
|
|
}
|
|
|
|
ret = true;
|
|
}
|
|
catch (Exception e)
|
|
{
|
|
if (physicsScene != null)
|
|
physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}",
|
|
LogHeader, physicsScene.RegionName, extentBase, e);
|
|
}
|
|
|
|
indicesCountO = indicesCount;
|
|
indicesO = indices;
|
|
verticesCountO = verticesCount;
|
|
verticesO = vertices;
|
|
|
|
return ret;
|
|
}
|
|
|
|
private class HeightMapGetter
|
|
{
|
|
private float[] m_heightMap;
|
|
private int m_sizeX;
|
|
private int m_sizeY;
|
|
public HeightMapGetter(float[] pHeightMap, int pSizeX, int pSizeY)
|
|
{
|
|
m_heightMap = pHeightMap;
|
|
m_sizeX = pSizeX;
|
|
m_sizeY = pSizeY;
|
|
}
|
|
// The heightmap is extended as an infinite plane at the last height
|
|
public float GetHeight(int xx, int yy)
|
|
{
|
|
int offset = 0;
|
|
// Extend the height with the height from the last row or column
|
|
if (yy >= m_sizeY)
|
|
if (xx >= m_sizeX)
|
|
offset = (m_sizeY - 1) * m_sizeX + (m_sizeX - 1);
|
|
else
|
|
offset = (m_sizeY - 1) * m_sizeX + xx;
|
|
else
|
|
if (xx >= m_sizeX)
|
|
offset = yy * m_sizeX + (m_sizeX - 1);
|
|
else
|
|
offset = yy * m_sizeX + xx;
|
|
|
|
return m_heightMap[offset];
|
|
}
|
|
}
|
|
|
|
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2().
|
|
// Version that handles magnification.
|
|
// Return 'true' if successfully created.
|
|
public static bool ConvertHeightmapToMesh2( BSScene physicsScene,
|
|
float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap
|
|
int magnification, // number of vertices per heighmap step
|
|
Vector3 extent, // dimensions of the output mesh
|
|
Vector3 extentBase, // base to be added to all vertices
|
|
out int indicesCountO, out int[] indicesO,
|
|
out int verticesCountO, out float[] verticesO)
|
|
{
|
|
bool ret = false;
|
|
|
|
int indicesCount = 0;
|
|
int verticesCount = 0;
|
|
int[] indices = new int[0];
|
|
float[] vertices = new float[0];
|
|
|
|
HeightMapGetter hmap = new HeightMapGetter(heightMap, sizeX, sizeY);
|
|
|
|
// The vertices dimension of the output mesh
|
|
int meshX = sizeX * magnification;
|
|
int meshY = sizeY * magnification;
|
|
// The output size of one mesh step
|
|
float meshXStep = extent.X / meshX;
|
|
float meshYStep = extent.Y / meshY;
|
|
|
|
// Create an array of vertices that is meshX+1 by meshY+1 (note the loop
|
|
// from zero to <= meshX). The triangle indices are then generated as two triangles
|
|
// per heightmap point. There are meshX by meshY of these squares. The extra row and
|
|
// column of vertices are used to complete the triangles of the last row and column
|
|
// of the heightmap.
|
|
try
|
|
{
|
|
// Vertices for the output heightmap plus one on the side and bottom to complete triangles
|
|
int totalVertices = (meshX + 1) * (meshY + 1);
|
|
vertices = new float[totalVertices * 3];
|
|
int totalIndices = meshX * meshY * 6;
|
|
indices = new int[totalIndices];
|
|
|
|
if (physicsScene != null)
|
|
physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,inSize={1},outSize={2},totVert={3},totInd={4},extentBase={5}",
|
|
BSScene.DetailLogZero, new Vector2(sizeX, sizeY), new Vector2(meshX, meshY),
|
|
totalVertices, totalIndices, extentBase);
|
|
|
|
float minHeight = float.MaxValue;
|
|
// Note that sizeX+1 vertices are created since there is land between this and the next region.
|
|
// Loop through the output vertices and compute the mediun height in between the input vertices
|
|
for (int yy = 0; yy <= meshY; yy++)
|
|
{
|
|
for (int xx = 0; xx <= meshX; xx++) // Hint: the "<=" means we go around sizeX + 1 times
|
|
{
|
|
float offsetY = (float)yy * (float)sizeY / (float)meshY; // The Y that is closest to the mesh point
|
|
int stepY = (int)offsetY;
|
|
float fractionalY = offsetY - (float)stepY;
|
|
float offsetX = (float)xx * (float)sizeX / (float)meshX; // The X that is closest to the mesh point
|
|
int stepX = (int)offsetX;
|
|
float fractionalX = offsetX - (float)stepX;
|
|
|
|
// physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,xx={1},yy={2},offX={3},stepX={4},fractX={5},offY={6},stepY={7},fractY={8}",
|
|
// BSScene.DetailLogZero, xx, yy, offsetX, stepX, fractionalX, offsetY, stepY, fractionalY);
|
|
|
|
// get the four corners of the heightmap square the mesh point is in
|
|
float heightUL = hmap.GetHeight(stepX , stepY );
|
|
float heightUR = hmap.GetHeight(stepX + 1, stepY );
|
|
float heightLL = hmap.GetHeight(stepX , stepY + 1);
|
|
float heightLR = hmap.GetHeight(stepX + 1, stepY + 1);
|
|
|
|
// bilinear interplolation
|
|
float height = heightUL * (1 - fractionalX) * (1 - fractionalY)
|
|
+ heightUR * fractionalX * (1 - fractionalY)
|
|
+ heightLL * (1 - fractionalX) * fractionalY
|
|
+ heightLR * fractionalX * fractionalY;
|
|
|
|
// physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,heightUL={1},heightUR={2},heightLL={3},heightLR={4},heightMap={5}",
|
|
// BSScene.DetailLogZero, heightUL, heightUR, heightLL, heightLR, height);
|
|
|
|
minHeight = Math.Min(minHeight, height);
|
|
|
|
vertices[verticesCount + 0] = (float)xx * meshXStep + extentBase.X;
|
|
vertices[verticesCount + 1] = (float)yy * meshYStep + extentBase.Y;
|
|
vertices[verticesCount + 2] = height + extentBase.Z;
|
|
verticesCount += 3;
|
|
}
|
|
}
|
|
// The number of vertices generated
|
|
verticesCount /= 3;
|
|
|
|
// Loop through all the heightmap squares and create indices for the two triangles for that square
|
|
for (int yy = 0; yy < meshY; yy++)
|
|
{
|
|
for (int xx = 0; xx < meshX; xx++)
|
|
{
|
|
int offset = yy * (meshX + 1) + xx;
|
|
// Each vertices is presumed to be the upper left corner of a box of two triangles
|
|
indices[indicesCount + 0] = offset;
|
|
indices[indicesCount + 1] = offset + 1;
|
|
indices[indicesCount + 2] = offset + meshX + 1; // accounting for the extra column
|
|
indices[indicesCount + 3] = offset + 1;
|
|
indices[indicesCount + 4] = offset + meshX + 2;
|
|
indices[indicesCount + 5] = offset + meshX + 1;
|
|
indicesCount += 6;
|
|
}
|
|
}
|
|
|
|
ret = true;
|
|
}
|
|
catch (Exception e)
|
|
{
|
|
if (physicsScene != null)
|
|
physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}",
|
|
LogHeader, physicsScene.RegionName, extentBase, e);
|
|
}
|
|
|
|
indicesCountO = indicesCount;
|
|
indicesO = indices;
|
|
verticesCountO = verticesCount;
|
|
verticesO = vertices;
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
}
|